Numerical Study of a Journal Bearing with Scratches: Validation with Literature and Comparison with Experimental Data
Abstract
:1. Introduction
2. Theoretical Analysis and Numerical Modeling
2.1. Basic Equations
2.2. Boundary Conditions
- For the inlet temperature at the leading sections of each lobe:
- At the fluid/bush interfaces, the temperature is given by the heat flux continuity condition:
- At the fluid/journal interface, the temperature of the journal surface can be either imposed or calculated; if it is calculated, then, due to the shaft rotation, it is considered to vary only in the axial direction, and so, for each transverse section, the following relationship applies:
- At the outer surface of the bushing, a free convection hypothesis is applied:
- Heat exchange conditions at the interfaces of the bush and groove zones are taken into account by the following equations:
2.3. Numerical Procedure
3. Validation with Scientific Literature
3.1. Comparison with Boncompain et al.’s Numerical and Experimental Results
3.2. Comparison with Lund et al.’s Numerical and Experimental Results
4. Comparison with Experimental Data
4.1. Experimental Setup
4.2. Validation for Bearing with No Scratch
4.3. Validation for a Bearing with One Scratch
4.4. Validation for a Bearing with Two Scratches
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
L | Bearing length | m |
h | Film thickness | m |
p | Pressure | MPa |
ρ | Lubricant density | kg/m3 |
Shaft speed | rpm | |
x, y, z | Cartesian coordinates | |
, , z | Cylindrical coordinates | |
Inlet circumferential coordinate | ||
Outlet circumferential coordinate | ||
µ | Dynamic viscosity | Pa.s |
Lubricant specific heat | J/kg.K | |
u, v, w | Velocity components | rpm |
Lubricant temperature | °C | |
Lobe temperature | °C | |
Inner radius of the bush | m | |
Outer radius of the bush | m | |
Supply pressure | MPa | |
Ambient pressure | MPa | |
Inlet temperature | °C | |
Outlet temperature | °C | |
Supply temperature | °C | |
Supply flow rate | m3/s | |
Flow rate at the inlet | m3/s | |
Flow rate at the outlet | m3/s | |
Thermal conductivity of the lubricant | W/m.K | |
Thermal conductivity of the bush | W/m.K | |
Convection heat transfer coefficient of the bush outer surface | W/m2.K | |
Heat exchange coefficient of the groove wall | W/m2.K |
References
- Branagan, L.A. Survey of Damage Investigation of Babbitted Industrial Bearings. Lubricants 2015, 3, 91–112. [Google Scholar] [CrossRef]
- Dobrica, M.B.; Fillon, M. Performance Degradation in Scratched Journal Bearings. Tribol. Int. 2012, 51, 1–10. [Google Scholar] [CrossRef]
- Giraudeau, C.; Bouyer, J.; Fillon, M.; Hélène, M.; Beaurain, J. Experimental Study of the Influence of Scratches on the Performance of a Two-Lobe Journal Bearing. Tribol. Trans. 2017, 60, 942–955. [Google Scholar] [CrossRef]
- Bouyer, J.; Fillon, M.; Helene, M.; Beaurain, J.; Giraudeau, C. Behavior of a Two-Lobe Journal Bearing With a Scratched Shaft: Comparison Between Theory and Experiment. J. Tribol. 2018, 141. [Google Scholar] [CrossRef]
- Bouyer, J.; Alexandre, Y.; Fillon, M. Experimental Investigation on the Influence of a Multi-Scratched Shaft on Hydrodynamic Journal Bearing Performance. Tribol. Int. 2021, 153, 106543. [Google Scholar] [CrossRef]
- Bonneau, D.; Fatu, A.; Souchet, D. Hydrodynamic Bearings; ISTE: London, UK; John Wiley & Sons: New York, NY, USA, 2014; pp. 17–61. ISBN 978-1-84821-681-5. [Google Scholar]
- Brito, F.P.; Miranda, A.S.; Claro, J.C.P.; Teixeira, J.C.; Costa, L.; Fillon, M. The Role of Lubricant Feeding Conditions on the Performance Improvement and Friction Reduction of Journal Bearings. Tribol. Int. 2014, 72, 65–82. [Google Scholar] [CrossRef] [Green Version]
- Brito, F.; Miranda, A.; Claro, J.; Teixeira, J.; Costa, L.; Fillon, M. Thermohydrodynamic Modelling of Journal Bearings under Varying Load Angle and Negative Groove Flow Rate. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2014, 228, 955–973. [Google Scholar] [CrossRef] [Green Version]
- Leister, H.-J.; Perić, M. Vectorized Strongly Implicit Solving Procedure for a Seven-diagonal Coefficient Matrix. Int. J. Num. Meth. HFF 1994, 4, 159–172. [Google Scholar] [CrossRef]
- Boncompain, R.; Fillon, M.; Frêne, J. Analysis of Thermal Effects in Hydrodynamic Bearings. J. Tribol. 1986, 108, 219–224. [Google Scholar] [CrossRef]
- Lund, J.W.; Tonnesen, J. An Approximate Analysis of the Temperature Conditions in a Journal Bearing. Part II: Application. J. Tribol. 1984, 106, 237–244. [Google Scholar] [CrossRef]
- Bouyer, J.; Fillon, M. On the Significance of Thermal and Deformation Effects on a Plain Journal Bearing Subjected to Severe Operating Conditions. J. Tribol. 2004, 126, 819–822. [Google Scholar] [CrossRef]
- Chatterton, S.; Dang, P.V.; Pennacchi, P.; De Luca, A.; Flumian, F. Experimental Evidence of a Two-Axial Groove Hydrodynamic Journal Bearing under Severe Operation Conditions. Tribol. Int. 2017, 109, 416–427. [Google Scholar] [CrossRef]
- Dang, P.V.; Chatterton, S.; Pennacchi, P.; Vania, A. Effect of the Load Direction on Non-Nominal Five-Pad Tilting-Pad Journal Bearings. Tribol. Int. 2016, 98, 197–211. [Google Scholar] [CrossRef]
- Kucinschi, B.-R.; Fillon, M.; Frêne, J.; Pascovici, M.D. A Transient Thermoelastohydrodynamic Study of Steadily Loaded Plain Journal Bearings Using Finite Element Method Analysis. J. Tribol. 1999, 122, 219–226. [Google Scholar] [CrossRef]
Bearing and Lubricant Properties | Unit | ||
---|---|---|---|
Journal diameter | 99.908 | mm | |
Bearing diameter | 100.058 | mm | |
Bearing length | 68.4 | mm | |
Angular amplitude of each lobe | 145 | deg | |
Preload ratio | 0.524 | mm | |
Horizontal radial clearance | 143 | µm | |
Vertical radial clearance | 68 | µm | |
Radial thickness of bushing | 20 | mm | |
Lubricant | ISO VG 46 | ||
Viscosity at 40 °C | 0.0416 | Pa.s | |
Viscosity at 60 °C | 0.0191 | Pa.s | |
Lubricant density | 850 | kg/m3 | |
Specific heat | 2000 | J/kg.K | |
Thermal conductivity | 0.13 | W/m.K | |
Supply pressure | 0.17 | MPa | |
Supply temperature | 43 | °C | |
Recirculating coefficient | 60% and 100% |
Parameters | Experiment | Simulation | Percentage Difference |
---|---|---|---|
Maximum pressure (MPa) | 1.14 | 1.10 | 3.34% |
Maximum oil temperature (°C) | 72.16 | 66.86 | 7.62% |
Friction torque (N.m) | 3.71 | 4.16 | 11.44% |
Flow rate (l/min) | 3.97 | 4.55 | 13.62% |
Parameters | Experiment | Simulation | Percentage Difference |
---|---|---|---|
Maximum pressure (MPa) | 2.36 | 2.45 | 4.02% |
Maximum oil temperature (°C) | 67.92 | 74.90 | 9.78% |
Friction torque (N.m) | 3.91 | 3.70 | 5.39% |
Flow rate (l/min) | 4.10 | 4.56 | 10.58% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vo, A.T.; Fillon, M.; Bouyer, J. Numerical Study of a Journal Bearing with Scratches: Validation with Literature and Comparison with Experimental Data. Lubricants 2021, 9, 61. https://doi.org/10.3390/lubricants9060061
Vo AT, Fillon M, Bouyer J. Numerical Study of a Journal Bearing with Scratches: Validation with Literature and Comparison with Experimental Data. Lubricants. 2021; 9(6):61. https://doi.org/10.3390/lubricants9060061
Chicago/Turabian StyleVo, Anh T., Michel Fillon, and Jean Bouyer. 2021. "Numerical Study of a Journal Bearing with Scratches: Validation with Literature and Comparison with Experimental Data" Lubricants 9, no. 6: 61. https://doi.org/10.3390/lubricants9060061
APA StyleVo, A. T., Fillon, M., & Bouyer, J. (2021). Numerical Study of a Journal Bearing with Scratches: Validation with Literature and Comparison with Experimental Data. Lubricants, 9(6), 61. https://doi.org/10.3390/lubricants9060061