Methyl Salicylate Increases Attraction and Function of Beneficial Arthropods in Cranberries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Arthropod Community Response to MeSA
2.2. Field Egg Predation
2.3. Video Recordings
2.4. Data Analyses
3. Results
3.1. Arthropod Community Response to MeSA
3.2. Field Egg Predation
3.3. Video Recordings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Altieri, M.A. The ecological role of biodiversity in agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 19–31. [Google Scholar] [CrossRef]
- Fiedler, A.K.; Landis, D.A.; Wratten, S. Maximizing ecosystem services from conservation biological control: The role of habitat management. Biol. Control 2008, 45, 254–271. [Google Scholar] [CrossRef]
- Power, A.G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. B 2010, 365, 2959–2971. [Google Scholar] [CrossRef] [PubMed]
- Safarzoda, S.; Bahlai, C.A.; Fox, A.F.; Landis, D.A. The role of natural enemy foraging guilds in controlling cereal aphids in Michigan Wheat. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Tooker, J.; O’Neal, M.E.; Rodriguez-Saona, C. Balancing disturbance and conservation in agroecosystems to improve biological control. Annu. Rev. Entomol. 2020, in press. [Google Scholar]
- Meyer, R.S.; DuVal, A.E.; Jensen, H.R. Patterns and processes in crop domestication: An historical review and quantitative analysis of 203 global food crops. New Phytol. 2012, 196, 29–48. [Google Scholar] [CrossRef]
- Chen, Y.H.; Gols, R.; Benrey, B. Crop domestication and its impact on naturally selected trophic interactions. Annu. Rev. Entomol. 2015, 60, 35–58. [Google Scholar] [CrossRef]
- Whitehead, S.R.; Turcotte, M.M.; Poveda, K. Domestication impacts on plant-herbivore interactions: A meta-analysis. Philos. Trans. R. Soc. B 2017, 372. [Google Scholar] [CrossRef]
- Rodriguez-Saona, C.; Kaplan, I.; Braasch, J.; Chinnasamy, D.; Williams, L. Field responses of predaceous arthropods to methyl salicylate: A meta-analysis and case study in cranberries. Biol. Control 2011, 59, 294–303. [Google Scholar] [CrossRef]
- Tamiru, A.; Bruce, T.J.A.; Woodcock, C.M.; Caulfield, J.C.; Midega, C.A.O.; Ogol, C.K.P.O.; Mayon, P.; Birkett, M.A.; Pickett, J.A.; Khan, Z.R. Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecol. Lett. 2011, 14, 1075–1083. [Google Scholar] [CrossRef]
- De Lange, E.S.; Farnier, K.; Gaudillat, B.; Turlings, T.C.J. Comparing the attraction of two parasitoids to herbivore-induced volatiles of maize and its wild ancestors, the teosintes. Chemoecology. 2016, 26, 33–44. [Google Scholar] [CrossRef]
- Li, X.; Garvey, M.; Kaplan, I.; Li, B.; Carrillo, J. Domestication of tomato has reduced the attraction of herbivore natural enemies to pest-damaged plants. Agric. For. Entomol. 2018, 20, 390–401. [Google Scholar] [CrossRef]
- Rowen, E.; Kaplan, I. Eco-evolutionary factors drive induced plant volatiles: A meta-analysis. New Phytol. 2016, 210, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Holopainen, J.K.; Gershenzon, J. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 2010, 15, 176–184. [Google Scholar] [CrossRef]
- Danner, H.; Desurmont, G.A.; Cristescu, S.M.; van Dam, N.M. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores. New Phytol. 2017, 220, 726–738. [Google Scholar] [CrossRef]
- Turlings, T.C.J.; Tumlinson, J.H.; Lewis, W.J. Exploitation of herbivore induced plant odors by host-seeking parasitic wasps. Science 1990, 250, 1251–1253. [Google Scholar] [CrossRef]
- Vet, L.E.M.; Dicke, M. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 1992, 37, 141–172. [Google Scholar] [CrossRef]
- De Moraes, C.M.; Lewis, W.J.; Pare, P.W.; Alborn, H.T.; Tumlinson, J.H. Herbivore-infested plants selectively attract parasitoids. Nature 1998, 393, 570–573. [Google Scholar] [CrossRef]
- Hare, J.D. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu. Rev. Entomol. 2011, 56, 161–180. [Google Scholar] [CrossRef]
- Stam, J.M.; Kroes, A.; Li, Y.; Gols, R.; van Loon, J.J.A.; Poelman, E.H.; Dicke, M. Plant interactions with multiple insect herbivores: From community to genes. Annu. Rev. Plant Biol. 2014, 65, 689–713. [Google Scholar] [CrossRef]
- Gish, M.; De Moraes, C.M.; Mescher, M.C. Herbivore-induced plant volatiles in natural and agricultural ecosystems: Open questions and future prospects. Curr. Opin. Insect. Sci. 2015, 9, 1–6. [Google Scholar] [CrossRef]
- Kessler, A.; Baldwin, I.T. Defensive function of herbivore-induced plant volatile emissions in nature. Science 2001, 291, 2141–2144. [Google Scholar] [CrossRef] [PubMed]
- Turlings, T.C.; Matthias, E. Tritrophic interactions mediated by herbivore-induced plant volatiles: Mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 2018, 63, 433–452. [Google Scholar] [CrossRef] [PubMed]
- Turlings, T.C.; Ton, J. Exploiting scents of distress: The prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr. Opin. Plant Biol. 2006, 9, 421–427. [Google Scholar] [CrossRef]
- Khan, Z.R.; James, D.G.; Midega, C.A.O.; Pickett, J.A. Chemical ecology and conservation biological control. Biol. Control 2008, 45, 210–224. [Google Scholar] [CrossRef]
- Rodriguez-Saona, C.; Isaacs, R.; Blaauw, B. Manipulation of natural enemies in agroecosystems: Habitat and semiochemicals for sustainable insect pest control. In Integrated Pest Management and Pest Control-Current and Future Tactics; Soloneski, S., Larramendy, M.L., Eds.; InTech: Rijeka, Croatia, 2012; pp. 89–126. [Google Scholar]
- Peñaflor, M.F.G.V.; Bento, J.M.S. Herbivore-induced plant volatiles to enhance biological control in agriculture. Neotrop. Entomol. 2013, 42, 331–343. [Google Scholar] [CrossRef]
- James, D.G. Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environ. Entomol. 2003, 32, 977–982. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Y.; Wu, K.; Gao, X.W.; Guo, Y.Y. Field-testing of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. Environ. Entomol. 2008, 37, 1410–1415. [Google Scholar] [CrossRef]
- Braasch, J.; Wimp, G.M.; Kaplan, I. Testing for phytochemical synergism: Arthropod community responses to induced plant volatile blends across crops. J. Chem. Ecol. 2012, 38, 1264–1275. [Google Scholar] [CrossRef]
- Pichersky, E.; Gershenzon, J. The formation and function of plant volatiles: Perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 2002, 5, 237–243. [Google Scholar] [CrossRef]
- Ament, K.; Kant, M.R.; Sabelis, M.W.; Haring, M.A.; Schuurink, R.C. Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol. 2004, 135, 2025–2037. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Park, K. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. J. Chem. Ecol. 2005, 31, 1733–1746. [Google Scholar] [CrossRef] [PubMed]
- Salamanca, J.; Pareja, M.; Rodriguez-Saona, C.; Resende, A.L.S.; Souza, B. Behavioral responses of adult lacewings, Chrysoperla externa, to a rose-aphid-coriander complex. Biol. Control 2015, 80, 103–112. [Google Scholar] [CrossRef]
- Bolter, C.J.; Dicke, M.; van Loon, J.J.A.; Visser, J.H.; Posthumus, M.A. Attraction of Colorado potato beetles to herbivore-damaged plants during herbivory and after its termination. J. Chem. Ecol. 1997, 23, 1003–1023. [Google Scholar] [CrossRef]
- James, D.G.; Price, T.S. Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J. Chem. Ecol. 2004, 30, 1613–1628. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.C. Effect of methyl salicylate-based lures on beneficial and pest arthropods in strawberry. Environ. Entomol. 2010, 39, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Mallinger, R.E.; Hogg, D.B.; Gratton, C. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. J. Econ. Entomol. 2011, 104, 115–124. [Google Scholar] [CrossRef]
- Kelly, J.L.; Hagler, J.R.; Kaplan, I. Semiochemical lures reduce emigration and enhance pest control services in open-field predator augmentation. Biol. Control 2014, 71, 70–77. [Google Scholar] [CrossRef]
- Oudemans, P.; Majek, B.; Rodriguez-Saona, C. Commercial cranberry pest control recommendations for New Jersey. Rutgers New Jersey Agric. Exp. Stn. 2015, p. E308. Available online: https://njaes.rutgers.edu/pubs/publication.php?pid=E308 (accessed on 20 November 2019).
- Bartholomai, C.W. Predatism [sic] of European corn borer eggs by arthropods. J. Econ. Entomol. 1954, 47, 295–299. [Google Scholar] [CrossRef]
- Richman, D.B.; Hemenway, R.C.; Whitcomb, W.H. Field cage evaluation of predators of the soybean looper Pseudoplusia includens (Lepidoptera: Noctuidae). Environ. Entomol. 1980, 9, 315–317. [Google Scholar] [CrossRef]
- Musser, F.R.; Shelton, A.M. Predation of Ostrinia nubilalis (Lepidoptera: Crambidae) eggs in sweet corn by generalist predators and the impact of alternative foods. Environ. Entomol. 2003, 32, 1131–1138. [Google Scholar] [CrossRef] [Green Version]
- R Development Core Team. R, A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An Analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer Science and Business Media: New York, NY, USA, 2009. [Google Scholar]
- De Lange, E.S.; Salamanca, J.; Polashock, J.; Rodriguez-Saona, C. Genotypic variation and phenotypic plasticity in gene expression and emissions of herbivore-induced volatiles, and their potential tritrophic implications, in cranberries. J. Chem. Ecol. 2019, 45, 298–312. [Google Scholar] [CrossRef] [PubMed]
- Voss, K.K. Studies on the Cranberry Tipworm (Dasineura oxycoccana Johnson) and A Predator, Toxomerus Marginatum in Wisconsin. Master’s Thesis, University of Wisconsin, Madison, WI, USA, 1996. [Google Scholar]
- Gervais, A.; Chagnon, M.; Fournier, V. Diversity and pollen loads of flower flies (Diptera: Syrphidae) in cranberry crops. Ann. Entomol. Soc. Am. 2018, 111, 326–334. [Google Scholar] [CrossRef]
- De Boer, J.G.; Dicke, M. The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. J. Chem. Ecol. 2004, 30, 255–271. [Google Scholar] [CrossRef]
- Sznajder, B.; Sabelis, M.W.; Egas, M. Response of predatory mites to a herbivore-induced plant volatile: Genetic variation for context-dependent behaviour. J. Chem. Ecol. 2010, 36, 680–688. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.; Rodriguez-Saona, C.; Castle, S.C.; Zhu, S. EAG-active herbivore-induced plant volatiles modify behavioral responses and host attack by an egg parasitoid. J. Chem. Ecol. 2008, 34, 1190–1201. [Google Scholar] [CrossRef]
- Ingrao, A.J.; Walters, J.; Szendrei, Z. Biological control of asparagus pests using synthetic herbivore-induced volatiles. Environ. Entomol. 2018, 48, 202–210. [Google Scholar] [CrossRef]
- Gilbert, F.S. Foraging ecology of hoverflies: Morphology of the mouthparts in relation to feeding on nectar and pollen in some common urban species. Ecol. Entomol. 1981, 6, 245–262. [Google Scholar] [CrossRef]
- Fréchette, B.; Rojo, S.; Alomar, O.; Lucas, É. Intraguild predation between syrphids and mirids: Who is the prey? Who is the predator? Entomophaga 2007, 52, 175–191. [Google Scholar] [CrossRef]
- Rosenheim, J.A.; Kaya, H.K.; Ehler, L.E.; Marois, J.J.; Jaffee, B.A. Intraguild predation among biological control agents: Theory and evidence. Biol. Control 1995, 5, 303–335. [Google Scholar] [CrossRef]
- Kaplan, I. Attracting carnivorous arthropods with plant volatiles: The future of biocontrol or playing with fire? Biol. Control 2012, 60, 77–89. [Google Scholar] [CrossRef]
- Wells-Hansen, L.D.; McManaus, P.S. Tobacco Streak Virus in Cranberry; University of Wisconsin-Extension: Madison, WI, USA, 2016; p. 4. [Google Scholar]
- Franklin, H.J. Cranberry insects in Massachusetts. In Massachusetts Agricultural Experiment Station Bulletin 445; Massachusetts Agricultural Experiment Station: East Wareham, MA, USA, 1950; p. 88. [Google Scholar]
- Snoeren, T.A.L.; Mumm, R.; Poelman, E.H.; Yang, Y.; Pichersky, E.; Dicke, M. The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum. J. Chem. Ecol. 2010, 36, 479–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, V.P.; Mills, N.J.; Brunner, J.F.; Horton, D.R.; Beers, E.H.; Unruh, T.R.; Shearer, P.W.; Goldberger, J.R.; Gastagnoli, S.; Lehrer, N.; et al. From planning to execution to the future: An overview of a concerted effort to enhance biological control in western apple, pear, and walnut orchards in the western U.S. Biol. Control 2016, 102, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Jones, V.P.; Steffan, S.A.; Wiman, N.G.; Horton, D.R.; Miliczky, E.; Zhang, Q.H.; Baker, C.C. Evaluation of herbivore-induced plant volatiles for monitoring green lacewings in Washington apple orchards. Biol. Control 2011, 56, 98–105. [Google Scholar] [CrossRef]
- Jones, V.P.; Horton, D.R.; Mills, N.J.; Unruh, T.R.; Baker, C.C.; Melton, T.D.; Milickzy, E.; Steffan, S.A.; Shearer, P.W.; Amarasekare, K.G. Evaluating plant volatiles for monitoring natural enemies in apple, pear and walnut orchards. Biol. Control 2015, 102, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Roubos, C.R.; Rodriguez-Saona, C.; Isaacs, R. Mitigating the effects of insecticides on arthropod biological control at field and landscape scales. Biol. Control 2014, 75, 28–38. [Google Scholar] [CrossRef]
Trap Type | Years | Guilds | Variables | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | Date | Treatment × Date | Block | |||||||||||||||
Wilk’s λ | F | dfa | Pb | Wilk’s λ | F | dfa | Pb | Wilk’s λ | F | dfa | Pb | Wilk’s λ | F | dfa | Pb | |||
Sticky | 2011 | Predators c | 0.81 | 5.54 | 1, 104 | <0.001 | 0.18 | 7.8 | 7, 104 | <0.001 | 0.85 | 0.56 | 7, 104 | 0.96 | 0.98 | 0.5 | 1, 104 | 0.73 |
Parasitoids d | 0.95 | 2.64 | 1, 104 | 0.07 | 0.5 | 5.93 | 7, 104 | <0.001 | 0.86 | 1.14 | 7, 104 | 0.32 | 0.97 | 1.39 | 1, 104 | 0.25 | ||
Herbivores e | 0.94 | 1.25 | 1, 103 | 0.28 | 0.2 | 5.56 | 7, 103 | <0.001 | 0.69 | 1.06 | 7, 103 | 0.37 | 0.93 | 1.46 | 1, 103 | 0.2 | ||
2012 | Predators c | 0.71 | 9.07 | 1, 94 | <0.001 | 0.16 | 0.97 | 6, 94 | <0.001 | 0.83 | 0.7 | 6, 94 | 0.84 | 0.9 | 2.46 | 1, 94 | 0.05 | |
Parasitoids d | 0.99 | 0.27 | 1, 94 | 0.76 | 0.44 | 7.79 | 6, 94 | <0.001 | 0.9 | 0.8 | 6, 94 | 0.64 | 0.97 | 1.32 | 1, 94 | 0.27 | ||
Herbivores e | 0.81 | 4.04 | 1, 94 | <0.01 | 0.17 | 6.5 | 6, 94 | <0.001 | 0.82 | 0.59 | 6, 94 | 0.95 | 0.96 | 0.69 | 1, 94 | 0.63 | ||
Pitfall | 2011 | Predators f | 0.93 | 1.18 | 1, 94 | 0.32 | 0.15 | 6.05 | 7, 94 | <0.001 | 0.72 | 0.87 | 7, 94 | 0.67 | 0.95 | 0.85 | 1, 94 | 0.51 |
2012 | Predators f | 0.98 | 0.2 | 1, 94 | 0.95 | 0.38 | 3.25 | 6, 94 | <0.001 | 0.69 | 1.15 | 6, 94 | 0.26 | 0.91 | 1.74 | 1, 94 | 0.13 |
Years | Guilds | Taxa | Variables | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | Date | Treatment × Date | Block | |||||||||||
F | dfa | Pb | F | dfa | Pb | F | dfa | Pb | F | dfa | Pb | |||
2011 | Predators | Syrphidae | 18.69 | 1, 104 | <0.001 | 25.04 | 7, 104 | <0.001 | 0.49 | 7, 104 | 0.83 | 0.03 | 1, 104 | 0.84 |
2012 | Predators | Syrphidae | 34.63 | 1, 94 | <0.001 | 48.45 | 6, 94 | <0.001 | 0.83 | 6, 94 | 0.54 | 9.46 | 1, 94 | <0.01 |
Herbivores | Miridae | 7.87 | 1, 94 | <0.01 | 1.46 | 6, 94 | 0.19 | 0.95 | 6, 94 | 0.46 | 0.43 | 1, 94 | 0.51 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salamanca, J.; Souza, B.; Kyryczenko-Roth, V.; Rodriguez-Saona, C. Methyl Salicylate Increases Attraction and Function of Beneficial Arthropods in Cranberries. Insects 2019, 10, 423. https://doi.org/10.3390/insects10120423
Salamanca J, Souza B, Kyryczenko-Roth V, Rodriguez-Saona C. Methyl Salicylate Increases Attraction and Function of Beneficial Arthropods in Cranberries. Insects. 2019; 10(12):423. https://doi.org/10.3390/insects10120423
Chicago/Turabian StyleSalamanca, Jordano, Brígida Souza, Vera Kyryczenko-Roth, and Cesar Rodriguez-Saona. 2019. "Methyl Salicylate Increases Attraction and Function of Beneficial Arthropods in Cranberries" Insects 10, no. 12: 423. https://doi.org/10.3390/insects10120423
APA StyleSalamanca, J., Souza, B., Kyryczenko-Roth, V., & Rodriguez-Saona, C. (2019). Methyl Salicylate Increases Attraction and Function of Beneficial Arthropods in Cranberries. Insects, 10(12), 423. https://doi.org/10.3390/insects10120423