Two Divergent Genetic Lineages within the Horned Passalus Beetle, Odontotaenius disjunctus (Coleoptera: Passalidae): An Emerging Model for Insect Behavior, Physiology, and Microbiome Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Molecular Datasets
2.3. Analyses
2.4. PCR Restriction Fragment Length Polymorphism (PCR-RFLP) Assay
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Valenzuela-González, J. Pupal cell-building behavior in Passalid beetles (Coleoptera: Passalidae). J. Insect Behav. 1993, 6, 33–41. [Google Scholar] [CrossRef]
- Schuster, J.C. (Odontotaenius floridanus new species (Coleoptera: Passalidae): A second U.S. Passalid beetle. Fla. Entomol. 1994, 77, 474–479. [Google Scholar] [CrossRef]
- MacGown, J.; MacGown, M. Observation of a nuptial flight of the Horned Passalus beetle, Odontotaenius disjunctus (Illiger) (Coleoptera: Passalidae). Coleopt. Bull. 1996, 50, 201–203. [Google Scholar]
- Gray, I.E. Observations on the life history of the Horned Passalus. Am. Midl. Nat. 1946, 35, 728–746. [Google Scholar] [CrossRef]
- Dillard, J.R. High rates of extra-pair paternity in a socially monogamous beetle with biparental care. Ecol. Entomol. 2017, 42, 1–10. [Google Scholar] [CrossRef]
- Schuster, J.C.; Schuster, L.A. Social behavior in Passalid beetles (Coleoptera: Passalidae): Cooperative brood care. Fla. Entomol. 1985, 68, 266–272. [Google Scholar] [CrossRef]
- Schuster, J.C. Acoustical signals of Passalid beetles: Complex repertoires. Fla. Entomol. 1983, 66, 486–496. [Google Scholar] [CrossRef]
- Dillard, J.R.; Maigret, T.A. Delayed dispersal and prolonged brood care in a family-living beetle. J. Evol. Biol. 2017, 30, 2230–2243. [Google Scholar] [CrossRef]
- King, A.; Fashing, N. Infanticidal behavior in the subsocial beetle Odontotaenius disjunctus (Illiger) (Coleoptera: Passalidae). J. Insect Behav. 2007, 20, 527–536. [Google Scholar] [CrossRef]
- Jackson, H.B.; Baum, K.A.; Robert, T.; Cronin, J.T. Habitat-specific movement and edge-mediated behavior of the saproxylic insect Odontotaenius disjunctus (Coleoptera: Passalidae). Environ. Entomol. 2009, 38, 1411–1422. [Google Scholar] [CrossRef] [PubMed]
- Jackson, H.B.; Baum, K.A.; Cronin, J.T. From logs to landscapes: Determining the scale of ecological processes affecting the incidence of a saproxylic beetle. Ecol. Entomol. 2012, 37, 233–243. [Google Scholar] [CrossRef]
- Jackson, H.B.; Zeccarias, A.; Cronin, J.T. Mechanisms driving the density-area relationship in a saproxylic beetle. Oecologia 2013, 173, 1237–1247. [Google Scholar] [CrossRef]
- Wicknick, J.A.; Miskelly, S.A. Behavioral interactions between non-cohabiting Bess beetles, Odontotaenius disjvnctus (Illiger) (Coleoptera: Passalidae). Coleopt. Bull. 2009, 63, 108–116. [Google Scholar] [CrossRef]
- Vasquez, D.; Willoughby, A.; Davis, A.K. Fighting while parasitized: Can nematode infections affect the outcome of staged combat in beetles? PLoS ONE 2015, 10, e0121614. [Google Scholar] [CrossRef] [PubMed]
- Buchler, E.R.; Wright, T.B.; Brown, E.D. On the functions of stridulation by the Passalid beetle Odontotaenius disjunctus (Coleoptera: Passalidae). Anim. Behav. 1981, 29, 483–486. [Google Scholar] [CrossRef]
- Bedick, J.C.; Hoback, W.W.; Albrecht, M.C. High water-loss rates and rapid dehydration in the burying beetle, Nicrophorus marginatus. Physiol. Entomol. 2006, 31, 23–29. [Google Scholar] [CrossRef]
- Rains, T.D.; Dimock, R.V., Jr. Seasonal variation in cold hardiness of the beetle Popilius disjunctus. J. Insect Physiol. 1978, 24, 551–554. [Google Scholar] [CrossRef]
- Waters, J.S.; Lee, W.-K.; Westneat, M.W.; Socha, J.J. Dynamics of tracheal compression in the Horned Passalus beetle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304, R621–R627. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.K.; Coogler, B.; Johnson, I. The heartrate reaction to acute stress in Horned Passalus beetles (Odontotaenius disjunctus) is negatively affected by a naturally-occurring nematode parasite. Insects 2017, 8, 110. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.K.; Vasquez, D.; Lefeuvre, J.; Sims, S.; Craft, M.; Vizurraga, A. Parasite manipulation of its host’s physiological reaction to acute stress: Experimental results from a natural beetle-nematode system. Physiol. Biochem. Zool. 2017, 90, 273–280. [Google Scholar] [CrossRef]
- Davis, A.K.; Attarha, B.; Piefke, T.J. Measuring the strength of the Horned Passalus beetle, Odontotaenius disjunctus: Revisiting an old topic with modern technology. J. Insect Sci. 2013, 13, 107. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.; Davis, A.K. Effect of a parasitic nematode, Chondronema passali Leidy (Incertae sedis), on the size and strength of the Horned Passalus, Odontotaenius disjunctus Illiger (Coleoptera: Passalidae). Coleopt. Bull. 2013, 67, 179–185. [Google Scholar] [CrossRef]
- Davis, A.K. Lifting capacity of Horned Passalus beetles during passive and stressed states. J. Insect Behav. 2014, 27, 496–502. [Google Scholar] [CrossRef]
- Lefeuvre, J.; Davis, A.K. Effects of the naturally occurring parasitic nematode Chondronema passali Leidy on lifting strength and captivity-related body mass patterns in the Horned Passalus beetle, Odontotaenius disjunctus (Illiger) (Coleoptera: Passalidae). Coleopt. Bull. 2015, 69, 744–750. [Google Scholar] [CrossRef]
- Suh, S.-O.; Marshall, C.J.; McHugh, J.V.; Blackwell, M. Wood ingestion by Passalid beetles in the presence of xylose-fermenting gut yeasts. Mol. Ecol. 2003, 12, 3137–3145. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.-O.; White, M.M.; Nguyen, N.H.; Blackwell, M. The status and characterization of Enteroramus dimorphus: A xylose-fermenting yeast attached to the gut of beetles. Mycologia 2004, 96, 756–760. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Suh, S.-O.; Marshall, C.J.; Blackwell, M. Morphological and ecological similarities: Wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. Mycol. Res. 2006, 110, 1232–1241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Suh, S.-O.; Blackwell, M. Microorganisms in the gut of beetles: Evidence from molecular cloning. J. Invertebr. Pathol. 2003, 84, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Lichtwardt, R.W.; White, M.M.; Cafaro, M.J.; Misra, J.K. Fungi associated with Passalid beetles and their mites. Mycologia 1999, 91, 694–702. [Google Scholar] [CrossRef]
- Ceja-Navarro, J.A.; Nguyen, N.H.; Karaoz, U.; Gross, S.R.; Herman, D.J.; Andersen, G.L.; Bruns, T.D.; Pett-Ridge, J.; Blackwell, M.; Brodie, E.L. Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus. ISME J. 2014, 8, 6–18. [Google Scholar] [CrossRef]
- Ceja-Navarro, J.A.; Karaoz, U.; Bill, M.; Hao, Z.; White, R.A.; Arellano, A.; Ramanculova, L.; Filley, T.R.; Berry, T.D.; Conrad, M.E.; et al. Gut anatomical properties and microbial functional assembly promote lignocellulose deconstruction and colony subsistence of a wood-feeding beetle. Nat. Microbiol. 2019, 4, 864–875. [Google Scholar] [CrossRef] [PubMed]
- Nardi, J.B.; Bee, C.M.; Miller, L.A.; Nguyen, N.H.; Suh, S.-O.; Blackwell, M. Communities of microbes that inhabit the changing hindgut landscape of a subsocial beetle. Arthropod. Struct. Dev. 2006, 35, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Ulyshen, M.D. Ecology and conservation of Passalidae. In Saproxylic Insects: Diversity, Ecology and Conservation; Ulyshen, M.D., Ed.; Springer: Heidelberg, Germany, 2018; pp. 129–147. [Google Scholar]
- Garrick, R.C.; Reppel, D.K.; Morgan, J.T.; Burgess, S.; Hyseni, C.; Worthington, R.J.; Ulyshen, M.D. Trophic interactions among dead-wood-dependent forest arthropods in the southern Appalachian Mountains, USA. Food Webs. 2019, 18, e00112. [Google Scholar] [CrossRef]
- Swanson, A.P. Population structure in the Horned Passalus, Odontotaenius disjunctus (Illiger) (Coleoptera: Passalidae). Bachelor’s Thesis, Cornell University, Ithaca, NY, USA, May 2005. [Google Scholar]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods. 2012, 9, 772. [Google Scholar] [CrossRef]
- Garrick, R.C.; Collins, B.D.; Yi, R.N.; Dyer, R.J.; Hyseni, C. Identification of eastern United States Reticulitermes termite species via PCR-RFLP, assessed using training and test data. Insects 2015, 6, 524–537. [Google Scholar] [CrossRef]
- Vincze, T.; Posfai, J.; Roberts, R.J. NEBcutter: A program to cleave DNA with restriction enzymes. Nucleic Acids Res. 2003, 31, 3688–3691. [Google Scholar] [CrossRef]
- Sunnucks, P.; Hales, D.F. Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol. Biol. Evol. 1996, 13, 510–524. [Google Scholar] [CrossRef]
- Everaerts, C.; Maekawa, K.; Farine, J.P.; Shimada, K.; Luykx, P.; Brossut, R.; Nalepa, C.A. The Cryptocercus punctulatus species complex (Dictyoptera: Cryptocercidae) in the eastern United States: Comparison of cuticular hydrocarbons, chromosome number, and DNA sequences. Mol. Phylogenet. Evol. 2008, 47, 950–959. [Google Scholar] [CrossRef] [PubMed]
- Garrick, R.C.; Sabree, Z.L.; Jahnes, B.C.; Oliver, J.C. Strong spatial-genetic congruence between a wood-feeding cockroach and its bacterial endosymbiont, across a topographically complex landscape. J. Biogeogr. 2017, 44, 1500–1511. [Google Scholar] [CrossRef]
- Garrick, R.C. True syntopy between chromosomal races of the Cryptocercus punctulatus wood-roach species complex. Insectes Soc. 2016, 63, 353–355. [Google Scholar] [CrossRef]
- Caterino, M.S.; Langton-Myers, S.S. Long-term population persistence of flightless weevils (Eurhoptus pyriformis) across old- and second-growth forests patches in southern Appalachia. BMC Evol. Biol. 2018, 18, 165. [Google Scholar] [CrossRef] [PubMed]
- Keith, R.; Hedin, M. Extreme mitochondrial population subdivision in southern Appalachian paleoendemic spiders (Araneae: Hypochilidae: Hypochilus), with implications for species delimitation. J. Arachnol. 2012, 40, 167–181. [Google Scholar] [CrossRef]
- Thomas, S.M.; Hedin, M. Multigenic phylogeographic divergence in the paleoendemic southern Appalachian opilionids Fumontana deprehendor Shear (Opiliones, Laniatores, Triaenonychidae). Mol. Phylogenet. Evol. 2008, 46, 645–658. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.J.; Stockman, A.K.; Marek, P.E.; Bond, J.E. Pleistocene glacial refugia in the Appalachian Mountains and coastal plain: Evidence from a unique mitochondrial phylogeographic pattern in the millipede genus Narceus. BMC Evol. Biol. 2009, 9, 25. [Google Scholar] [CrossRef] [PubMed]
- Hedin, M.; McCormack, M. Biogeographical evidence for common vicariance and rare dispersal in a southern Appalachian harvestman (Sabaconidae, Sabacon cavicolens). J. Biogeogr. 2017, 44, 1665–1678. [Google Scholar] [CrossRef]
- Garrick, R.C.; Newton, K.E.; Worthington, R.J. Cryptic diversity in the southern Appalachian Mountains: Genetic data reveal that the red centipede, Scolopocryptops sexspinosus, is a species complex. J. Insect Conserv. 2018, 22, 799–805. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; DeWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Hebert, P.D.N.; Stoeckle, M.Y.; Zemlak, T.S.; Francis, C.M. Identification of birds through DNA barcodes. PLoS Biol. 2004, 2, 1657–1663. [Google Scholar] [CrossRef] [PubMed]
- Hickerson, M.J.; Meyer, C.P.; Moritz, C. DNA barcoding will often fail to discover new animal species over broad parameter space. Syst. Biol. 2006, 55, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Poulakakis, N.; Edwards, D.L.; Chiari, Y.; Garrick, R.C.; Russello, M.A.; Benavides, E.; Watkins-Colwell, G.J.; Glaberman, S.; Tapia, W.; Gibbs, J.P.; et al. Description of a new Galapagos giant tortoise species (Chelonoidis; Testudines: Testudinidae) from Cerro Fatal on Santa Cruz Island. PLoS ONE 2015, 10, e0138779. [Google Scholar] [CrossRef] [PubMed]
- Benham, P.M.; Cheviron, Z.A. Divergent mitochondrial lineages arose within a large, panmictic population of the Savannah sparrow (Passerculus sandwichensis). Mol. Ecol. 2019, 28, 1765–1783. [Google Scholar] [CrossRef] [PubMed]
- Moritz, C.; Hoskin, C.J.; MacKenzie, J.B.; Phillips, B.L.; Tonione, M.; Silva, N.; VanDerWal, J.; Williams, S.E.; Graham, C.H. Identification and dynamics of a cryptic suture zone in tropical rainforest. Proc. R. Soc. Lond. B Biol. Sci. 2009, 276, 1235–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, G.E. Mitonuclear ecology. Mol. Biol. Evol. 2015, 32, 1917–1927. [Google Scholar] [CrossRef] [PubMed]
- Morales, H.E.; Pavlova, A.; Amos, N.; Major, R.; Kilian, A.; Greening, C.; Sunnucks, P. Concordant divergence of mitogenomes and a mitonuclear gene cluster in bird lineages inhabiting different climates. Nat. Ecol. Evol. 2018, 2, 1258–1267. [Google Scholar] [CrossRef] [PubMed]
- Garrick, R.C.; Nason, J.D.; Fernández-Manjarrés, J.F.; Dyer, R.J. Ecological coassociations influence species’ responses to past climatic change: An example from a Sonoran Desert bark beetle. Mol. Ecol. 2013, 22, 3345–3361. [Google Scholar] [CrossRef]
- Garrick, R.C.; Caccone, A.; Sunnucks, P. Inference of population history by coupling exploratory and model-driven phylogeographic analyses. Int. J. Mol. Sci. 2010, 11, 1190–1227. [Google Scholar] [CrossRef]
- Hickerson, M.J.; Carstens, B.C.; Cavender-Bares, J.; Crandall, K.A.; Graham, C.H.; Johnson, J.B.; Rissler, L.; Victoriano, P.F.; Yoder, A.D. Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol. Phylogenet. Evol. 2010, 54, 291–301. [Google Scholar] [CrossRef]
Biological Discipline | Research Focus | No. of Rotting Logs Sampled | No. of Individuals Used | Location/Origin of Specimens a | Reference |
---|---|---|---|---|---|
Behavior | Brood care, delayed juvenile dispersal | 6 | 92 | Wolfe Co., KY | [8] |
Brood care, extra-pair paternity | 6 | 88 | Wolfe Co., KY | [5] | |
Brood care, infanticide | NR | 291 | Williamsburg, VA | [9] | |
Movement behavior, habitat edge effects | >1 | 76 | Baton Rouge, LA | [10] | |
Movement behavior, territory size | many | many | multiple parishes, LA | [11] | |
Movement behavior, local density | many | many | Baton Rouge, LA | [12] | |
Movement behavior, nuptial flights | NR | 12–15 | Oktibbeha Co., MS | [3] | |
Aggression, resident/intruder interactions | 24 | 24 | Shelby Co., AL | [13] | |
Aggression, fighting ability vs. parasite load | >1 | 192 | Clarke Co., GA | [14] | |
Anti-predator behavior, deterrence | >1 | 28 | Prince Georges Co., MD | [15] | |
Physiology | Thermal tolerance, water loss & dehydration | NR | 24 | Piedmont region, NC a | [16] |
Thermal tolerance, overwintering stress | NR | 40 | Forsyth Co., NC | [17] | |
Respiration, tracheal system compression | NR | 5 | Piedmont region, NC a | [18] | |
Heart rate, stress response vs. parasite load | >1 | 99 | Clarke Co., GA | [19] | |
Heart rate, stress response vs. parasite load | >1 | 17–77 | Clarke Co., GA | [20] | |
Strength, pulling force vs. size & gender | >1 | 41 | Clarke Co., GA | [21] | |
Strength, pulling force vs. parasite load | >2 | 92 | Clarke Co. & Chatham Co., GA | [22] | |
Strength, lifting capacity vs. mild stress | >1 | 20 | Clarke Co. & Chatham Co., GA | [23] | |
Strength, lifting capacity vs. parasite load | >1 | 40 | Clarke Co., GA | [24] | |
Gut microbiome | Xylose-fermenting yeast | >5 | NR | Burke Co. & Clarke Co., GA; Baton Rouge, LA; Chester Co., PA; Orangeburg Co., SC | [25,26] |
Xylose-fermenting yeast | >10 | >300 | Southeastern, Hammond, LA | [27] | |
Xylose-fermenting yeast | >1 | NR | Southeastern, Hammond, LA | [28] | |
Discovery & description of a new genus of yeast | >1 | NR | Douglas Co. KS | [29] | |
Compartmentalization and N-fixation (bacteria & archaea) | 1 | 8 | Baton Rouge, LA | [30] | |
Compartmentalization and microbial functional assembly | NR | 39 | Baton Rouge, LA | [31] | |
Microbiome change over time (bacteria, fungi, & protists) | >1 | NR | Baton Rouge, LA | [32] |
State | Region | Site ID | No. of Logs | Longitude | Latitude | No. of Clade A Individuals | No. of Clade B Individuals |
---|---|---|---|---|---|---|---|
Alabama | Little River Canyon Nature Preserve | A134 | 1 | 34.45540 | −85.58357 | 3 | 0 |
Bankhead NF | A130 | 1 | 34.29811 | −87.38140 | 1 | 5 | |
C10 | 1 | 34.28235 | −87.39905 | 0 | 1 | ||
A133 | 1 | 34.17659 | −87.27680 | 6 | 1 | ||
C13 | 1 | 34.10336 | −87.32465 | 1 | 0 | ||
C15 | 1 | 34.10230 | −87.32407 | 1 | 0 | ||
C16 | 1 | 34.10151 | −87.32454 | 1 | 0 | ||
Shinbone Ridge Road | A138 | 1 | 34.14676 | −85.84679 | 0 | 2 | |
Talladega NF | A137 a | 2 | 33.96340 | −85.45730 | 7 | 2 | |
A41 | 1 | 33.91858 | −85.49764 | 2 | 0 | ||
A12 | 1 | 33.57157 | −85.69391 | 2 | 0 | ||
A13 | 1 | 33.56059 | −85.70074 | 6 | 0 | ||
A117 | 1 | 33.47105 | −85.80658 | 4 | 2 | ||
A124 | 1 | 33.40451 | −85.87318 | 7 | 0 | ||
A15 b | 2 | 33.39762 | −85.88391 | 7 | 2 | ||
A126 | 1 | 33.36136 | −85.93017 | 5 | 0 | ||
Georgia | W-Chattahoochee NF | A18 | 1 | 34.87866 | −84.71137 | 0 | 1 |
A154 | 1 | 34.75933 | −84.69117 | 3 | 0 | ||
Johns Mtn WMA | A04 | 1 | 34.57297 | −85.06536 | 1 | 0 | |
A153 | 1 | 34.57281 | −85.06541 | 1 | 0 | ||
A152 | 1 | 34.56806 | −85.07185 | 1 | 0 | ||
A10 | 1 | 34.56416 | −85.24043 | 2 | 3 | ||
Red Top Mtn SP | A140 | 1 | 34.15014 | −84.71650 | 1 | 1 | |
Oconee NF | A150 | 2 | 33.72088 | −83.29258 | 4 | 0 | |
Mississippi | Tishomingo SP | A86 c | 2 | 34.60502 | −88.19299 | 2 | 3 |
Holly Springs NF | M01 | 1 | 34.50676 | −89.44006 | 1 | 0 | |
M05 | 1 | 34.50665 | −89.44013 | 1 | 0 | ||
UMFS | FS03 | 1 | 34.42800 | −89.38657 | 3 | 0 | |
M14 | 1 | 34.42396 | −89.38293 | 2 | 0 | ||
Whirlpool Trail | M13 | 1 | 34.34670 | −89.55107 | 3 | 0 | |
Tombigbee SP | M-5 d | 3 | 34.23167 | −88.61667 | 2 | 1 | |
County Road 484 | M-4 d | 4 | 33.83333 | −89.33333 | 2 | 2 | |
Malmaison State WMA | M-6 d | 1 | 33.68667 | −90.04333 | 1 | 0 | |
Natchez Trace Pkwy | M-3 d | 4 | 33.52833 | −89.16667 | 0 | 4 | |
Noxubee NWR | M-1 d | 9 | 33.29167 | −88.77833 | 5 | 4 | |
Tombigbee NF | M-2 d | 7 | 33.20667 | −89.07500 | 0 | 7 | |
North Carolina | Great Smoky Mtn NP | A156 | 1 | 35.52144 | −83.30981 | 3 | 0 |
Nantahala NF | A92 | 1 | 35.32969 | −83.59187 | 14 | 0 | |
Tennessee | Great Smoky Mtn NP | A159 | 1 | 35.66272 | −83.52245 | 2 | 0 |
Rich Mtn. Loop Trail | T-1 d | 3 | 35.61667 | −83.79833 | 2 | 1 | |
Natchez Trace Pkwy | A73 | 1 | 35.39384 | −87.52677 | 1 | 2 | |
Virginia | Tuleyries Lane | V-2 d | 6 | 39.06167 | −78.07500 | 6 | 0 |
Shenandoah River SP | V-1 d | 4 | 38.84167 | −78.31000 | 3 | 1 | |
Jefferson NF | A53 | 1 | 37.40599 | −79.80718 | 2 | 0 | |
West Virginia | Cacapon Resort SP | V-3 d | 2 | 39.59000 | −78.27667 | 2 | 0 |
PCR-RFLP Assay/MtDNA Genetic Lineage | TaqI Single Digest | BsaI + DdeI Double Digest |
---|---|---|
Clade A | 103/141 | 68/176 |
Clade B | 23/80/141 | 108/136 |
MtDNA Dataset/Statistic | Garrick et al. Dataset | Swanson Dataset | Combined Dataset |
---|---|---|---|
Nhap | 20 | 25 | 31 |
S | 41 | 41 | 48 |
Spi | 29 | 28 | 31 |
Pwithin clade A | 0.0029 | 0.0034 | 0.0035 |
Pwithin clade B | 0.0022 | 0.0028 | 0.0044 |
Pwithin mean | 0.0026 | 0.0031 | 0.0040 |
Pbetween | 0.0194 | 0.0228 | 0.0233 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrick, R.C.; Dickinson, T.; Reppel, D.K.; Yi, R.N. Two Divergent Genetic Lineages within the Horned Passalus Beetle, Odontotaenius disjunctus (Coleoptera: Passalidae): An Emerging Model for Insect Behavior, Physiology, and Microbiome Research. Insects 2019, 10, 159. https://doi.org/10.3390/insects10060159
Garrick RC, Dickinson T, Reppel DK, Yi RN. Two Divergent Genetic Lineages within the Horned Passalus Beetle, Odontotaenius disjunctus (Coleoptera: Passalidae): An Emerging Model for Insect Behavior, Physiology, and Microbiome Research. Insects. 2019; 10(6):159. https://doi.org/10.3390/insects10060159
Chicago/Turabian StyleGarrick, Ryan C., Trey Dickinson, Dana K. Reppel, and Rachel N. Yi. 2019. "Two Divergent Genetic Lineages within the Horned Passalus Beetle, Odontotaenius disjunctus (Coleoptera: Passalidae): An Emerging Model for Insect Behavior, Physiology, and Microbiome Research" Insects 10, no. 6: 159. https://doi.org/10.3390/insects10060159
APA StyleGarrick, R. C., Dickinson, T., Reppel, D. K., & Yi, R. N. (2019). Two Divergent Genetic Lineages within the Horned Passalus Beetle, Odontotaenius disjunctus (Coleoptera: Passalidae): An Emerging Model for Insect Behavior, Physiology, and Microbiome Research. Insects, 10(6), 159. https://doi.org/10.3390/insects10060159