Synergistic Toxicity of Plant Essential Oils Combined with Pyrethroid Insecticides against Blow Flies and the House Fly
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rearing of Flies
2.2. Preparation of Plant EOs
2.3. Gas Chromatographic-Mass Spectrometry Analysis
2.4. Preliminary Screening of EOs
2.5. Adulticidal Bioassay of EOs
2.6. Adulticidal Bioassay of Insecticides
2.7. Adulticidal Bioassays of Binary Mixtures of EOs with Insecticides
2.8. Statistical Analysis
3. Results
3.1. Physical and Chemical Compositions of EOs
3.2. Adulticidal Activity of EOs
3.3. Adulticidal Activity of Insecticides
3.4. Adulticidal Activity of Binary Mixtures
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Klong-klaew, T.; Sontigun, N.; Sanit, S.; Samerjaia, C.; Sukontason, K.; Kurahashi, H.; Koehler, P.G.; Pereira, R.M.; Limsopatham, K.; Suwannayod, S.; et al. Field evaluation of a semi-automatic funnel trap targeted the medically important non-biting flies. Acta Trop. 2017, 176, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, D. Review of Chrysomya rufifacies (Diptera: Calliphoridae). J. Med. Entomol. 1993, 30, 338–352. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, B. Flies and Disease. In Biology and Disease Transmission; Oxford University Press: Chicago, IL, USA, 1973; Volume 2. [Google Scholar]
- Malik, A.; Singh, N.; Satya, S. Musca domestica (housefly): A challenging pest and the control strategies. J. Environ. Sci. Health 2007, 42, 453–469. [Google Scholar] [CrossRef]
- Palacios, S.; Bertoni, A.; Rossi, Y.; Santander, R.; Urzua, A. A insecticidal activity of essential oils from native medicinal plants of central Argentina against the housefly, Musca domestica (L.). Parasitol. Res. 2009, 106, 207–212. [Google Scholar] [CrossRef]
- Zumpt, F. Myiasis in Man and Animals in the Old World; Butterworth: London, UK, 1965. [Google Scholar]
- Sukontason, K.; Chaiwong, T.; Tayutivutikul, J.; Choochote, W.; Piangjai, S.; Sukontason, K.L. Susceptibility of Musca domestica and Chrysomya megacephala to permethrin and deltamethrin in Thailand. J. Med. Entomol. 2005, 42, 812–814. [Google Scholar] [CrossRef]
- Suwannayod, S.; Sukontason, K.L.; Tomberlin, J.K.; Chareonviriyaphap, T.; Sukontason, K. Resistance risk of house fly (Musca domestica) and blow fly (Chrysomya megacephala) to permethrin and deltamethrin in Chiang Mai province, Thailand. Southeast Asian J. Trop. Med. Public Health 2019. (in preparation). [Google Scholar]
- Murugan, K.; Jeyabalan, D.; Senthilkurnar, N.; Babu, R.; Sivaramakrishnan, S. Antipupational effect of neem seed kernel extract against mosquito larvae of Anopheles stephensi (Liston). J. Entomol. Res. 1996, 20, 137–139. [Google Scholar]
- Koul, O. Insect Antifeedants; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Bowers, W. Biorational approaches for insect control. Korean J. Appl. Entomol. 1992, 31, 289–303. [Google Scholar]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oils and insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef]
- Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Compositional analysis and insecticidal activity of Eucalyptus globulus (family: Myrtaceae) essential oil against housefly (Musca domestica). Acta Trop. 2012, 122, 212–218. [Google Scholar] [CrossRef]
- Morey, R.; Khandagle, A.J. Bioefficacy of essential oils of medicinal plants against housefly, Musca domestica L. Parasitol. Res. 2012, 111, 1799–1805. [Google Scholar] [CrossRef] [PubMed]
- Sinthusiri, J.; Soonwera, M. Efficacy of herbal essential oils as insecticides against the house fly, Musca domestica L. Southeast Asian J. Trop. Med. Public Health 2013, 44, 188–196. [Google Scholar] [PubMed]
- Suwannayod, S.; Sukontason, K.L.; Somboon, P.; Junkum, A.; Leksomboon, R.; Chaiwong, T.; Jones, M.K.; Sripa, B.; Balthaisong, S.; Phuyao, C.; et al. Activity of kaffirlime (Citrus hystrix) essential oil against blow flies and house fly. Southeast Asian J. Trop. Med. Public Health 2018, 49, 32–45. [Google Scholar]
- Tawatsin, A.; Thavara, U.; Chansang, U.; Chavalittumrong, P.; Boonruad, T.; Wongsinkongman, P.; Bansidhi, J.; Mulla, M.S. Field evaluation of deet, repel care, and three plant based essential oil repellents against mosquitoes, black flies (Diptera: Simuliidae) and land leeches (Arhynchobdellida: Haemadipsidae) in Thailand. J. Am. Mosq. Control Assoc. 2006, 22, 306–313. [Google Scholar] [CrossRef]
- Lee, H.S.; Shin, W.K.; Song, C.; Cho, K.Y.; Ahn, Y.J. Insecticidal activities of ar-Turmerone identified in Curcuma longa rhizome against Nilaparvata lugens (Homoptera: Delphacidae) and Plutella xylostella (Lepidoptera: Yponomeutidae). J. Asia-Pac. Entomol. 2001, 4, 181–185. [Google Scholar] [CrossRef]
- Ogendo, J.O.; Kostyukovsky, M.; Ravid, U.; Matasyoh, J.C.; Deng, A.L.; Omolo, E.O.; Kariuki, S.T.; Shaaya, E. Bioactivity of Ocimum gratissimum L. oil and two of its constituents against five insect pests attacking stored food products. J. Stored Prod. Res. 2008, 44, 328–344. [Google Scholar] [CrossRef]
- Bedini, S.; Flamini, G.; Cosci, F.; Ascrizzi, R.; Echeverria, M.C.; Guidi, L.; Landi, M.; Lucchi, A.; Conti, B. Artemisia spp. essential oils against the disease-carrying blowfly Calliphora vomitoria. Parasit Vectors 2017, 10, 80. [Google Scholar] [CrossRef]
- Chaaban, A.; Santos, V.M.C.S.; Gomes, E.N.; Martins, C.E.N.; Amaral, W.D.; Deschamps, C.; Molento, M.B. Chemical composition of Piper gaudichaudianum essential oil and its bioactivity against Lucilia cuprina (Diptera: Calliphoridae). J. Essent Oil Res. 2018, 30, 159–166. [Google Scholar] [CrossRef]
- Isman, M. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef]
- Pavela, R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 2015, 114, 3835–3853. [Google Scholar] [CrossRef]
- Silva, S.; Rodrigues da Cunha, J.P.A.; Malfitano de Carvalho, S.; Zandonadi, C.H.S.; Martins, R.C.; Chang, R. Ocimum basilicum essential oil combined with deltamethrin to improve the management of Spodoptera frugiperda. Cienc. Agrotec. 2017, 41, 665–675. [Google Scholar] [CrossRef]
- Fazolin, M.; Estrela, J.L.V.; Medeiros, A.F.M.; da Silva, I.M.; Gomes, L.P.; Silva, M.S.F. Synergistic potential of dillapiole-rich essential oil with synthetic pyrethroid insecticides against fall armyworm. Cienc. Rural 2016, 46, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Mohan, L.; Sharma, P.; Srivastava, C.N. Combination larvicidal action of Solanum xanthocarpum extract and certain synthetic insecticides against filarial vector, Culex quinquefasciatus (Say). Southeast Asian J. Trop. Med. Public Health 2010, 41, 311–319. [Google Scholar]
- Bunchu, N.; Sukontason, K.L.; Olson, J.K.; Kurahashi, H.; Sukontason, K. Behavioral responses of Chrysomya megacephala to natural products. Parasitol. Res. 2008, 102, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Champakaew, D.; Junkum, A.; Chaithong, U.; Jitpakdi, A.; Riyong, D.; Sanghong, R.; Intirach, J.; Muangmoon, R.; Chansang, A.; Tuetun, B.; et al. Angelica sinensis (Umbelliferae) with proven repellent properties against Aedes aegypti, the primary dengue fever vector in Thailand. Parasitol. Res. 2015, 114, 2187–2198. [Google Scholar] [CrossRef] [PubMed]
- WHO. Resistance of Vectors of Diseases to Pesticides. Wld. Hlth. Org. Tech. Rep. Ser. 1980, 655, 1–82. [Google Scholar]
- Finney, D. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- Kalyansundaram, D.P. Larvicidal and synergistic activity of plant extracts for mosquito control. Indian J. Med. Res. 1985, 82, 19–21. [Google Scholar]
- Wade, A.; Lin, C.H.; Kurkul, C.; Regan, E.R.; Johnson, R.M. Combined toxicity of insecticides and fungicides applied to california almond orchards to honey bee larvae and adults. Insects 2019, 10, 20. [Google Scholar] [CrossRef]
- Tadei, R.; Domingues, C.E.C.; Malaquias, J.B.; Camilo, E.V.; Malaspina, O.; Silva-Zacarin, E.C.M. Late effect of larval co-exposure to the insecticide clothianidin and fungicide pyraclostrobin in Africanized Apis mellifera. Sci. Rep. 2019, 9, 3277. [Google Scholar] [CrossRef] [PubMed]
- Wink, M.S.D. Carrier-mediated uptake of pyrrolizidine alkaloids in larvae of the aposematic and alkaloid exploiting moth, Creatonotos. Naturwissenschaften 1988, 75, 524–525. [Google Scholar] [CrossRef]
- Tchimene, M.K.; Owu, M.; Kuete, V. Monoterpenes and related compounds from the medicinal plants of Africa. In Pharmacology and Chemistry; Kuete, V., Ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Rice, P.J.; Coats, J.R. Insecticidal properties of several monoterpenoids to the house fly (Diptera: Muscidae), red flour beetle (Coleoptera: Tenebtionidae), and southern corn rootworm (Coleoptera: Chrycomelidae). J. Econ. Entomol. 1994, 87, 1172–1179. [Google Scholar] [CrossRef] [PubMed]
- Tak, J.H.; Isman, M.B. Enhanced cuticular penetration as the mechanism for synergy of insecticidal constituents of rosemary essential oil in Trichoplusia ni. Sci. Rep. 2015, 5, 12690. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R. Insecticidal properties of several essential oils on the house fly (Musca domestica L.). Phytother. Res. 2008, 22, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Tong, F.; Bloomquist, J.R. Plant essential oils affect the toxicities of carbaryl and permethrin against Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2013, 50, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Aboukhalid, K.; Al Faiz, C.; Douaik, A.; Bakha, M.; Kursa, K.; Agacka-Moldoch, M.; Lamiri, A. Influence of environmental factors on essential oil variability in Origanum compactum Benth. growing wild in Morocco. Chem Biodivers. 2017, 14. [Google Scholar] [CrossRef]
- Sun, Y.P.; Johnson, E.R. Synergistic and antagonistic actions of insecticide-synergist combinations and their mode of action. J. Agric. Food Chem. 1960, 8, 261–266. [Google Scholar] [CrossRef]
- Chansang, A.; Champakaew, D.; Junkum, A.; Jitpakdi, A.; Amornlerdpison, D.; Aldred, AK.; Riyong, D.; Wannasan, A.; Intirach, J.; Muangmoon, R.; et al. Synergy in the adulticidal efficacy of essential oils for the improvement of permethrin toxicity against Aedes aegypti L. (Diptera: Culicidae). Parasit Vectors 2018, 11, 417. [Google Scholar] [CrossRef] [PubMed]
- Soderlund, D.M.; Bloomquist, J.R. Neurotoxic actions of pyrethroid insecticides. Annu. Rev. Entomol. 1989, 34, 77–96. [Google Scholar] [CrossRef] [PubMed]
- Faraone, N.; Hillier, N.K.; Cutler, G.C. Plant essential oils synergize and antagonize toxicity of different conventional insecticides against Myzus persicae (Hemiptera: Aphididae). PLoS ONE. 2015, 10, e0127774. [Google Scholar] [CrossRef]
- Mohan, L.; Sharma, P.; Srivastava, C.N. Comparative efficacy of Solanum xanthocarpum extracts alone and in combination with a synthetic pyrethroid, cypermethrin against malaria vector, Anopheles stephensi. Southeast Asian J. Trop. Med. Public Health 2007, 38, 256–260. [Google Scholar]
- Mansour, S.; Bakr, R.F.A.; Hamouda, L.S.; Mohamed, R.I. Toxic and synergistic properties of several botanical extracts against larval and adult stages of the mosquito, Anopheles pharoensis. Biopestic. Int. 2010, 6, 129–145. [Google Scholar]
- Maurya, P.; Sharma, P.; Mohan, L.; Verma, M.M.; Srivastava, C.N. Larvicidal efficacy of Ocimum basilicum extracts and its synergistic effect with neonicotinoid in the management of Anopheles stephensi. Asian Pac. J. Trop. Dis. 2012, 2, 110–116. [Google Scholar] [CrossRef]
Combination [insecticides-EOs (LD25)] | Concentration of Permethrin (µg/Fly) | Concentration of Deltamethrin (µg/Fly) |
---|---|---|
C. megacephala | ||
Insecticide-C. longa | 0.010–0.016 | 0.010–0.060 |
Insecticide-B. rotunda | 0.040–0.200 | 0.010–0.080 |
Insecticide-O. gratissimum | 0.040–0.240 | 0.012–0.040 |
C. rufifacies | ||
Insecticide-C. longa | 0.004–0.013 | 0.001–0.005 |
Insecticide-B. rotunda | 0.005–0.035 | 0.003–0.015 |
Insecticide-O. gratissimum | 0.020–0.060 | 0.002–0.030 |
L. cuprina | ||
Insecticide-C. longa | 0.004–0.013 | 0.001–0.003 |
Insecticide-B. rotunda | 0.002–0.015 | 0.001–0.005 |
Insecticide-O. gratissimum | 0.010–0.020 | 0.002–0.015 |
M. domestica | ||
Insecticide-C. longa | 0.004–0.020 | 0.002–0.025 |
Insecticide-B. rotunda | 0.020–0.160 | 0.005–0.080 |
Insecticide-O. gratissimum | 0.002–0.030 | 0.002–0.030 |
Botanical Name Species | Name | Part Used | Physical Characteristic | % Yield | ||
---|---|---|---|---|---|---|
Odor | Color | Density | ||||
Family: Zingiberaceae Curcuma longa | turmeric | rhizome | ginger-like | light yellow | 0.94 | 0.57 |
Boesenbergia rotunda | finger root | rhizome | ginger-like | pale yellow | 0.92 | 5.98 |
Family: Lamiaceae | ||||||
Ocimum gratissimum | clove basil | seed | herb-like | light yellow | 0.93 | 2.15 |
Family: Rutaceae | ||||||
Citrus hystrix | kaffir lime | peel of fruit | orange-like | light yellow | 0.86 | 6.00 |
Zanthoxylum limonella | szetchwan-peper | fruit | orange-like | pale yellow | 0.86 | 5.72 |
No. | Constituents | Percentage Composition (%) | ||||||
---|---|---|---|---|---|---|---|---|
RT | BR | CL | CH | OG | ZL | KI | ||
1 | O-cymene | 4.540 | 0.31 | 930 | ||||
2 | α-pinene | 4.670 | 0.09 | 1.84 | 0.16 | 2.5 | 940 | |
3 | camphene | 4.920 | 1.27 | 958 | ||||
4 | β-phellandrene | 5.210 | 0.19 | 978 | ||||
5 | sabinene | 5.230 | 14.01 | 13.07 | 979 | |||
6 | pinene | 5.320 | 5.91 | 985 | ||||
7 | β-pinene | 5.330 | 26.56 | 0.39 | 986 | |||
8 | β-myrcene | 5.400 | 0.1 | 0.94 | 0.25 | 990 | ||
9 | β-cymene | 5.700 | 0.24 | 1.2 | 1011 | |||
10 | 3-carene-2,5-dione | 5.740 | 0.1 | 1014 | ||||
11 | p-cymene | 5.850 | 0.94 | 0.49 | 1022 | |||
12 | p-cymol | 5.960 | 0.24 | 1030 | ||||
13 | O-cymol | 5.970 | 0.21 | 1.62 | 10.65 | 4.72 | 1031 | |
14 | limonene | 6.040 | 0.96 | 0.13 | 1035 | |||
15 | α-limonene | 6.060 | 25.94 | 1037 | ||||
16 | β-ocimene | 6.070 | 0.03 | 1038 | ||||
17 | dipentene | 6.090 | 60.22 | 1039 | ||||
18 | 1,8-cineol | 6.100 | 0.66 | 0.06 | 1040 | |||
19 | norsabinene | 6.110 | 7.11 | 1.88 | 1041 | |||
20 | ocimene | 6.230 | 0.75 | 1049 | ||||
21 | β-ocimene | 6.240 | 1.22 | 1049 | ||||
22 | γ-terpinene | 6.460 | 1.33 | 5.71 | 0.92 | 1064 | ||
23 | α-terpinolen | 6.870 | 0.39 | 0.22 | 1090 | |||
24 | δ-carene | 7.038 | 0.38 | 0.43 | 1111 | |||
25 | isodiprene | 7.044 | 2.4 | 1101 | ||||
26 | rose oxide | 7.210 | 0.92 | 1113 | ||||
27 | p-menthatriene | 7.420 | 0.22 | 1128 | ||||
28 | oxacyclohexane | 7.470 | 0.5 | 1132 | ||||
29 | carvyl acetate | 7.640 | 0.22 | 1144 | ||||
30 | β-citronella | 7.820 | 1.54 | 1156 | ||||
31 | alcanfor | 7.890 | 28.08 | 1161 | ||||
32 | D-camphene | 7.990 | 1.21 | 1167 | ||||
33 | M-cymene | 8.090 | 0.19 | 0.07 | 1174 | |||
34 | 2-carene epoxide | 8.315 | 0.21 | 0.1 | 1188 | |||
35 | γ-terpinen | 8.320 | 2.23 | 1189 | ||||
36 | α-methylstyrene | 8.380 | 0.19 | 1192 | ||||
37 | crypton | 8.420 | 1.45 | 1195 | ||||
38 | norbornene | 8.515 | 0.99 | 0.61 | 1201 | |||
39 | cyclohexadienemethanol | 8.526 | 2.13 | 1202 | ||||
40 | 1,5,8-p-menthatriene | 8.590 | 0.31 | 1207 | ||||
41 | caprylyl acetate | 8.620 | 0.11 | 1209 | ||||
42 | 1,4,8-p-menthatriene | 8.850 | 1.44 | 1226 | ||||
43 | β-citronellol | 8.870 | 2.12 | 1229 | ||||
44 | (E)-carveol | 9.040 | 0.58 | 1239 | ||||
45 | p-mentha-1,5,8-triene | 9.090 | 0.44 | 1243 | ||||
46 | mentha-1,4,8-triene carvone | 9.220 | 1.72 | 1253 | ||||
47 | δ-3-carene | 9.280 | 35.25 | 58.21 | 1257 | |||
48 | citral | 9.510 | 3.07 | 1273 | ||||
49 | γ-phenylbutyric acid | 9.620 | 0.11 | 1280 | ||||
50 | phellandral | 9.730 | 0.46 | 1287 | ||||
51 | (S)-phellandral | 9.740 | 0.22 | 1288 | ||||
52 | 2-undecanone | 9.820 | 1.06 | 1293 | ||||
53 | (E)-beta-ocimene | 9.890 | 0.09 | 1298 | ||||
54 | phenylacetylcarbinol | 9.930 | 8.46 | 1310 | ||||
55 | propanol | 10.380 | 0.07 | 1335 | ||||
56 | citronellol acetate | 10.580 | 0.58 | 1350 | ||||
57 | calamenene | 10.640 | 0.33 | 1355 | ||||
58 | cuminaldehyde | 10.860 | 0.25 | 1371 | ||||
59 | cyclofenchene | 10.950 | 0.71 | 1377 | ||||
60 | 3-carene-2,5-dione | 10.960 | 0.28 | 1378 | ||||
61 | α-copaene | 11.060 | 2.92 | 1385 | ||||
62 | methyl cinnamate | 11.160 | 15.1 | 1392 | ||||
63 | germacrene D | 11.210 | 1.66 | 1404 | ||||
64 | β-caryophyllen | 11.670 | 0.35 | 1.24 | 0.38 | 1433 | ||
65 | α-methylnaphthalene | 11.950 | 0.6 | 1454 | ||||
66 | α-humulene | 12.140 | 0.34 | 1469 | ||||
67 | α-longipinene | 12.366 | 0.17 | 1486 | ||||
68 | α-curcumene | 12.370 | 7.59 | 1487 | ||||
69 | 1(10),4(14),5-Germacratriene | 12.450 | 0.41 | 0.12 | 1492 | |||
70 | methyl undecyl ketone | 12.490 | 0.22 | 1495 | ||||
71 | α-curcumen | 12.530 | 2.08 | 1499 | ||||
72 | epizonarene | 12.620 | 0.77 | 1506 | ||||
73 | β-bisabolene | 12.700 | 1.05 | 1513 | ||||
74 | δ-cadinene | 12.860 | 3.22 | 1526 | ||||
75 | β-sesquiphellandrene | 12.920 | 4.74 | 1531 | ||||
76 | cadalene | 13.170 | 0.5 | 1553 | ||||
77 | p-mentha-1,4-diene | 13.210 | 0.1 | 1556 | ||||
78 | γ-gurjunene | 13.240 | 0.48 | 1558 | ||||
79 | Ar-curcumene | 13.280 | 0.47 | 1561 | ||||
80 | isolongifolene | 13.640 | 0.25 | 1590 | ||||
81 | 1,3,6,9-decatetraene | 13.720 | 0.24 | 1597 | ||||
82 | α-amorphene | 13.960 | 0.1 | 1618 | ||||
83 | α-cedren | 14.000 | 0.63 | 1621 | ||||
84 | α-cedrene | 14.200 | 0.45 | 1639 | ||||
85 | 2,5-dimethoxy-3-methylnaphthalene | 14.390 | 0.61 | 1655 | ||||
86 | β-selinene | 14.560 | 0.53 | 1670 | ||||
87 | β-turmerone | 14.630 | 51.68 | 1676 | ||||
88 | Ar-tumerone | 14.670 | 2.26 | 1679 | ||||
89 | α-atlantone | 15.800 | 0.89 | 1782 | ||||
Total identified | 96.77 | 74.73 | 93.28 | 92.84 | 100.00 |
Conc. (µg/Fly) | % Mortality | Adulticidal Activity of Five EOs (µg/fly) | ||||
---|---|---|---|---|---|---|
LD25 (LCL–UCL) | LD50 (LCL–UCL) | LD99 (LCL–UCL) | Slope ± SE | χ2 | ||
C. longa | ||||||
23.5 | 2.22 | 61.14 (56.16–65.31) | 77.01 (72.79–81.17) | 170.64 (150.96–202.60) | 6.73 ± 0.62 | 5.01 |
47 | 8.89 | |||||
75.2 | 47.78 | |||||
94 | 64.44 | |||||
122.2 | 95.56 | |||||
B. rotunda | ||||||
46 | 2.22 | 76.93 (67.85–84.24) | 103.59 (96.17–110.55) | 289.07 (244.10–368.95) | 5.23 ± 0.54 | 6.91 |
92 | 35.56 | |||||
119.6 | 71.11 | |||||
147.2 | 81.11 | |||||
184 | 96.67 | |||||
O. gratissimum | ||||||
46.5 | 15.56 | 59.63 (40.76–69.30) | 83.11 (64.74–103.11) | 261.29 (234.82–552.02) | 4.68 ± 0.37 | 10.51 |
65.1 | 32.22 | |||||
93 | 45.56 | |||||
139.5 | 91.11 | |||||
167.4 | 93.33 | |||||
C. hystrix | ||||||
68.8 | 11.11 | 84.51 (78.67–89.79) | 106.87 (101.63–112.00) | 240.13 (214.28–280.38) | 6.62 ± 0.55 | 3.33 |
94.6 | 38.89 | |||||
120.4 | 55.56 | |||||
146.2 | 83.33 | |||||
172 | 93.33 | |||||
Z. limonella | ||||||
215 | 46.67 | 157.28 (116.78–184.16) | 225.50 (196.11–245.15) | 781.20 (607.66–1268.08) | 4.31 ± 0.71 | 0.59 |
258 | 57.78 | |||||
301 | 73.33 | |||||
344 | 78.89 | |||||
387 | 83.33 |
Test Species | EO | Adulticidal Activity of Three EOs (µg/Fly) | ||||
---|---|---|---|---|---|---|
LD25 (LCL–UCL) | LD50 (LCL–UCL) | LD99 (LCL–UCL) | Slope ± SE | χ2 (4 df) | ||
C. megacephala | C. longa | 72.73 (65.23–78.86) | 94.52 (88.28–100.42) | 233.36 (202.72–285.73) | 5.93 ± 0.58 | 4.28 |
C. rufifacies | 112.12 (106.64–116.61) | 129.73 (125.42–134.09) | 214.59 (197.75–240.92) | 10.64 ± 0.99 | 5.95 | |
L. cuprina | 42.30 (37.22–46.89) | 59.83 (54.55–65.36) | 197.89 (164.59–254.67) | 4.48 ± 0.39 | 1.38 | |
M. domestica | 61.14 (56.16–65.31) | 77.01 (72.79–81.17) | 170.64 (150.96–202.60) | 6.73 ± 0.62 | 5.01 | |
C. megacephala | B. rotunda | 165.33 (149.84–178.28) | 207.32 (193.88–220.13) | 452.46 (401.57–534.81) | 6.86 ± 0.65 | 0.54 |
C. rufifacies | 212.20 (202.16–220.80) | 249.73 (241.08–258.85) | 437.93 (400.92–494.40) | 9.54 ± 0.81 | 5.10 | |
L. cuprina | 104.34 (96.92–110.43) | 124.64 (118.64–130.14) | 230.11 (211.41–258.43) | 8.74 ± 0.77 | 1.17 | |
M. domestica | 76.93 (67.85-84.24) | 103.59 (96.17–110.55) | 289.07 (244.99–368.95) | 5.23 ± 0.54 | 6.91 | |
C. megacephala | O. gratissimum | 79.27 (45.90-88.67) | 110.42 (78.94-137.09) | 346.45 (342.05-922.49) | 4.68 ± 0.41 | 12.61 |
C. rufifacies | 140.45 (134.08-146.22) | 166.29 (160.11–173.03) | 297.76 (272.43-335.05) | 9.20 ± 0.71 | 2.63 | |
L. cuprina | 49.07 (42.97-54.39) | 68.50 (62.69–74.04) | 216.48 (185.55–266.79) | 4.66 ± 0.40 | 7.06 | |
M. domestica | 59.63 (40.76-69.30) | 83.11 (64.74–103.11) | 261.29 (234.82–552.02) | 4.68 ± 0.37 | 10.51 |
Test Species | Insecticides | Adulticidal Activity of Insecticides | ||||
---|---|---|---|---|---|---|
LD25 (LCL–UCL) | LD50 (LCL–UCL) | LD99 (LCL–UCL) | Slope ± SE | χ2 (4 df) | ||
C. megacephala | permethrin | 0.029 (0.024–0.033) | 0.050 (0.044–0.056) | 0.330 (0.257–0.460) | 2.83 ± 0.22 | 0.80 |
C. rufifacies | 0.042 (0.036–0.045) | 0.060 (0.055–0.066) | 0.238 (0.200–0.296) | 3.91 ± 0.27 | 6.13 | |
L. cuprina | 0.011 (0.005–0.018) | 0.059 (0.043–0.086) | 17.310 (3.87–343.26) | 0.94 ± 0.14 | 0.30 | |
M. domestica | 0.011 (0.007–0.015) | 0.023 (0.018–0.029) | 0.316 (0.216–0.572) | 2.06 ± 0.24 | 0.94 | |
C. megacephala | deltamethrin | 0.007 (0.004–0.011) | 0.028 (0.021–0.035) | 2.621 (1.038–12.804) | 1.18 ± 0.16 | 2.41 |
C. rufifacies | 0.015 (0.012–0.017) | 0.028 (0.024–0.031) | 0.243 (0.178–0.373) | 2.47 ± 0.21 | 6.00 | |
L. cuprina | 0.004 (0.002–0.005) | 0.009 (0.024–0.031) | 0.133 (0.080–0.310) | 1.95 ± 0.26 | 0.12 | |
M. domestica | 0.037 (0.032–0.042) | 0.060 (0.054–0.068) | 0.317 (0.243–0.457) | 3.23 ± 0.28 | 2.78 |
LD50 of Adulticidal Toxicity (95% LCL–UCL, µg/Fly) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Fly sp. | Per | Per + C. longa (LD25) | Slope ± SE | SF (Effect) | Per + B. rotunda (LD25) | Slope ± SE | SF (Effect) | Per + O. gratissimum (LD25) | Slope ± SE | SF (Effect) |
CM | 0.0500 (0.044–0.056) | 0.0469 (0.0409–0.0539) | 2.29 ± 0.19 | 1.07 (S) | 0.0652 (0.0539–0.0754) | 2.21 ± 0.26 | 0.77 (A) | 0.0739 (0.0624–0.0848) | 2.33 ± 0.23 | 0.68 (A) |
CR | 0.0600 (0.055–0.066) | 0.0093 (0.0086–0.0102) | 3.67 ± 0.40 | 6.56 (S) | 0.0163 (0.0144–0.0183) | 2.51 ± 0.24 | 3.68 (S) | 0.0348 (0.0322–0.0373) | 4.16 ± 0.41 | 1.72 (S) |
LC | 0.0590 (0.043–0.086) | 0.0057 (0.0048–0.0065) | 2.29 ± 0.35 | 10.35 (S) | 0.0063 (0.0056–0.0071) | 2.63 ± 0.24 | 9.37 (S) | 0.0108 (0.0091–0.012) | 3.81 ± 0.61 | 5.46 (S) |
MD | 0.0230 (0.018–0.029) | 0.0151 (0.0132–0.018) | 2.39 ± 0.27 | 1.52 (S) | 0.0500 (0.0445–0.0597) | 2.65 ± 0.25 | 0.46 (A) | 0.0105 (0.0084–0.0132) | 1.27 ± 0.15 | 2.19 (S) |
LD50 of Adulticidal Toxicity (95% LCL–UCL, µg/Fly) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Fly sp. | Del | Del + C. longa (LD25) | Slope ± SE | SF (Effect) | Del + B. rotunda (LD25) | Slope ± SE | SF (Effect) | Del + O. gratissimum (LD25) | Slope ± SE | SF (Effect) |
CM | 0.0280 (0.021–0.035) | 0.0176 (0.0145–0.0204) | 2.07 ± 0.25 | 1.59 (S) | 0.0264 (0.0215–0.0316) | 1.58 ± 0.19 | 1.06 (S) | 0.0167 (0.0151–0.0182) | 3.55 ± 0.39 | 1.68 (S) |
CR | 0.0280 (0.024–0.031) | 0.0037 (0.0033–0.0042) | 2.56 ± 0.30 | 7.57 (S) | 0.0095 (0.0087–0.0105) | 3.43 ± 0.33 | 2.95 (S) | 0.0108 (0.0093–0.0127) | 1.97 ± 0.18 | 2.59 (S) |
LC | 0.0090 (0.024–0.031) | 0.0016 (0.0015–0.0018) | 3.47 ± 0.39 | 5.63 (S) | 0.0061 (0.0049–0.0087) | 2.00 ± 0.32 | 1.48 (S) | 0.0056 (0.0045–0.0069) | 1.52 ± 0.21 | 1.61 (S) |
MD | 0.0600 (0.054–0.068) | 0.0090 (0.0075–0.0108) | 1.58 ± 0.17 | 6.67 (S) | 0.0397 (0.0333–0.0489) | 1.81 ± 0.18 | 1.51(S) | 0.0089 (0.0072–0.0109) | 1.41 ± 0.16 | 6.74 (S) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suwannayod, S.; Sukontason, K.L.; Pitasawat, B.; Junkum, A.; Limsopatham, K.; Jones, M.K.; Somboon, P.; Leksomboon, R.; Chareonviriyaphap, T.; Tawatsin, A.; et al. Synergistic Toxicity of Plant Essential Oils Combined with Pyrethroid Insecticides against Blow Flies and the House Fly. Insects 2019, 10, 178. https://doi.org/10.3390/insects10060178
Suwannayod S, Sukontason KL, Pitasawat B, Junkum A, Limsopatham K, Jones MK, Somboon P, Leksomboon R, Chareonviriyaphap T, Tawatsin A, et al. Synergistic Toxicity of Plant Essential Oils Combined with Pyrethroid Insecticides against Blow Flies and the House Fly. Insects. 2019; 10(6):178. https://doi.org/10.3390/insects10060178
Chicago/Turabian StyleSuwannayod, Suttida, Kabkaew L. Sukontason, Benjawan Pitasawat, Anuluck Junkum, Kwankamol Limsopatham, Malcolm K. Jones, Pradya Somboon, Ratana Leksomboon, Theeraphap Chareonviriyaphap, Apiwat Tawatsin, and et al. 2019. "Synergistic Toxicity of Plant Essential Oils Combined with Pyrethroid Insecticides against Blow Flies and the House Fly" Insects 10, no. 6: 178. https://doi.org/10.3390/insects10060178
APA StyleSuwannayod, S., Sukontason, K. L., Pitasawat, B., Junkum, A., Limsopatham, K., Jones, M. K., Somboon, P., Leksomboon, R., Chareonviriyaphap, T., Tawatsin, A., Thavara, U., & Sukontason, K. (2019). Synergistic Toxicity of Plant Essential Oils Combined with Pyrethroid Insecticides against Blow Flies and the House Fly. Insects, 10(6), 178. https://doi.org/10.3390/insects10060178