Integrated Pest Management (IPM) for Small-Scale Farms in Developed Economies: Challenges and Opportunities
Abstract
:1. Introduction
2. The Small Farm Sector in Developed Economies
3. Challenges in Increasing the Adoption of IPM on Small Farms
3.1. Lack of Knowledge and Appropriate Research/Technical Support
3.2. Availability of Scale-Appropriate Pest Management Inputs
3.3. Lack of Visibility and Political ‘Voice’
4. Opportunities: Factors Favoring Adoption and Development of IPM on Small Farms
4.1. On-Farm Biodiversity
4.2. Pest Detection and Response Times
4.3. Scale-Appropriate IPM Tactics
4.3.1. Pest Exclusion
Crop Covers
Photoselective Netting
Barrier Fences
Insecticidal Nets
Fruit Bagging
4.3.2. Mating Disruption and Mass Trapping
4.3.3. Sanitation
4.4. Opportunities for on-Farm Education and Participatory Research
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Stern, V.; Smith, R.; van den Bosch, R.; Hagen, K. The integration of chemical and biological control of the spotted alfalfa aphid: The integrated control concept. Hilgardia 1959, 29, 81–101. [Google Scholar] [CrossRef] [Green Version]
- European Commission, Eurostat. Farm Structure Survey 2016. News Release. 28 June 2018. Available online: https://ec.europa.eu/eurostat/documents/2995521/9028470/5-28062018-AP-EN.pdf/8d97f49b-81c0-4f87-bdde-03fe8c3b8ec2 (accessed on 4 June 2019).
- USDA-ERS Farming and Farm Income. 2018. Available online: https://www.ers.usda.gov/data-products/ag-and-food-statistics-charting-the-essentials/farming-and-farm-income/ (accessed on 4 March 2019).
- Ricciardi, V.; Ramankutty, N.; Mehrabi, Z.; Jarvis, L.; Chookolingo, B. How much of the world’s food do smallholders produce? Glob. Food Sec. 2018, 17, 64–72. [Google Scholar] [CrossRef]
- European Commission. What is a Small Farm? EU Agricultural Economic Brief No. 2. Available online: https://ec.europa.eu/agriculture/sites/agriculture/files/rural-area-economics/briefs/pdf/02_en.pdf (accessed on 4 March 2019).
- Sutherland, L.-A.; Madureira, L.; Dirimanova, V.; Bogusz, M.; Kania, J.; Vinohradnik, K.; Creaney, R.; Duckett, D.; Koehnen, T.; Knierim, A. New knowledge networks of small-scale farmers in Europe’s periphery. Land Use Policy 2017, 63, 428–439. [Google Scholar] [CrossRef]
- USDA-ERS. Farm Economy: Farm Household Well-being: Glossary. Available online: https://www.ers.usda.gov/topics/farm-economy/farm-household-well-being/glossary/ (accessed on 1 March 2019).
- USDA-NASS. Small Farms. ACH12-34. 2016. Available online: https://www.nass.usda.gov/Publications/Highlights/2016/SmallFamilyFarms.pdf (accessed on 4 March 2019).
- USDA-NASS. Farms and Farmland. ACH12-13. 2014. Available online: https://www.nass.usda.gov/Publications/Highlights/2014/Highlights_Farms_and_Farmland.pdf (accessed on 4 March 2019).
- Hazell, P.; Poulton, C.; Wiggins, S.; Dorward, A. The future of small farms: Trajectories and policy priorities. World Dev. 2010, 38, 1349–1361. [Google Scholar] [CrossRef]
- Hazell, P. Five big questions about five hundred million small farms. In Proceedings of the IFAD Conference on New Directions for Smallholder Agriculture, Rome, Italy, 24–25 January 2011. [Google Scholar]
- Graeub, B.E.; Chappell, M.J.; Wittman, H.; Ledermann, S.; Bezner Kerr, R.; Gemmill-Herren, B. The state of family farms in the world. World Dev. 2016, 87, 1–15. [Google Scholar] [CrossRef]
- Lowder, S.K.; Skoet, J.; Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef]
- D’Souza, G.; Ikerdey, J. Small farms and sustainable development: Is small more sustainable? J. Agric. Appl. Econ. 1996, 28, 73–83. [Google Scholar] [CrossRef]
- USDA-NASS. Women Farmers. ACH12-12. 2014. Available online: https://www.nass.usda.gov/Publications/Highlights/2014/Highlights_Women_Farmers.pdf (accessed on 4 March 2019).
- USDA-NASS. Hispanic Farmers. ACH12-11. 2014. Available online: https://www.nass.usda.gov/Publications/Highlights/2014/Highlights_Hispanic_Farmers.pdf (accessed on 4 March 2019).
- USDA-NASS. American Indian Farmers. ACH12-8. 2014. Available online: https://www.nass.usda.gov/Publications/Highlights/2014/Highlights_American_Indian_Farmers.pdf (accessed on 4 March 2019).
- USDA-NASS. Black Farmers. ACH12-10. 2014. Available online: https://www.nass.usda.gov/Publications/Highlights/2014/Highlights_Black_Farmers.pdf (accessed on 4 March 2019).
- USDA-NASS. 2012 Census of Agriculture. Characteristics of all Farms and Farms with Organic Sales. 2012. Available online: https://www.nass.usda.gov/Publications/AgCensus/2012/Online_Resources/Special_OrganicsTabulation/organictab.pdf (accessed on 4 March 2019).
- Piñero, J.C.; Keay, J. Farming practices, knowledge, and use of integrated pest management by commercial fruit and vegetable growers in Missouri. J. Integr. Pest Manag. 2018, 9, 21. [Google Scholar] [CrossRef]
- Grasswitz, T.R. IPM needs assessment survey for small-scale farmers in New Mexico. Unpublished data. 2012. [Google Scholar]
- Eurostat. Small and large farms in the EU—Statistics from the farm structure survey. Revised December. 2018. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Small_and_large_farms_in_the_EU_-_statistics_from_the_farm_structure_survey (accessed on 5 March 2019).
- Ostrom, M.; Cha, B.; Flores, M. Creating access to land grant resources for multicultural and disadvantaged farmers. J. Agric. Food Syst. Community Dev. 2010, 1, 89–105. [Google Scholar] [CrossRef]
- Opitz, I.; Berges, R.; Piorr, A.; Krikser, T. Contributing to food security in urban areas: Differences between urban agriculture and peri-urban agriculture in the global north. Agric. Hum. Values 2016, 33, 341–358. [Google Scholar] [CrossRef]
- Surls, R.; Feenstra, G.; Golden, S.; Galt, R.; Hardesty, S.; Napawan, C.; Wilen, C. Gearing up to support urban farming in California: Preliminary results of a needs assessment. Renew. Agric. Food Syst. 2014, 30, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Oberholtzer, L.; Dimitri, C.; Pressman, A. Urban agriculture in the United States: Baseline findings of a nationwide survey. ATTRA Sustainable Agriculture. IP527. National Center for Appropriate Technology. 2016, p. 12. Available online: https://attra.ncat.org/attra-pub/download.php?id=558 (accessed on 5 March 2019).
- Reynolds, K.A. Expanding technical assistance for urban agriculture: Best practices for extension services in California and beyond. J. Agric. Food Syst. Community Dev. 2011, 1, 197–216. [Google Scholar] [CrossRef]
- Labarthe, P.; Laurent, C. Privatization of agricultural extension services in the EU: Towards a lack of adequate knowledge for small-scale farms? Food Policy 2013, 38, 240–252. [Google Scholar] [CrossRef]
- Pearson, L.J.; Pearson, L.; Pearson, C.J. Sustainable urban agriculture: Stock-take and opportunities. Int. J. Agric. Sustain. 2010, 8, 7–19. [Google Scholar] [CrossRef]
- Piñero, J.C.; Quinn, J.; Byers, P.; Miller, P.; Baker, T.; Trinklein, D. Knowledge and use of integrated pest management by underserved producers in Missouri and the role of Extension. J. Ext. 2015, 53, 11. Available online: https://joe.org/joe/2015june/rb3.php (accessed on 25 March 2019).
- Garforth, C.; Angell, B.; Archer, J.; Green, K. Fragmentation or creative diversity? Options in the provision of land management advisory services. Land Use Policy 2003, 20, 323–333. [Google Scholar] [CrossRef]
- Quarcoo, F.; Bonsi, C.; Tackie, D.N.O.; Hill, W.A.; Wall, G.; Hunter, G. Economies of scale in integrated pest management in vegetable and fruit production. Prof. Agric. Work. J. 2017, 5, 53–68. Available online: http://tuspubs.tuskegee.edu/pawj/vol5/iss1/7 (accessed on 25 March 2019).
- Labarthe, P. Extension services and multifunctional agriculture. Lessons learnt from the French and Dutch contexts and approaches. J. Environ. Manag. 2009, 90, 193–202. [Google Scholar] [CrossRef]
- Ortiz, O.; Garrett, K.A.; Heath, J.J.; Orrego, R.; Nelson, R.J. Management of potato late blight in the Peruvian Highlands: Evaluating the benefits of farmer field schools and farmer participatory research. Plant. Dis. 2004, 88, 565–571. [Google Scholar] [CrossRef]
- Pretty, J.; Pervez-Bharucha, Z. Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects 2015, 6, 152–182. [Google Scholar] [CrossRef]
- Waters-Bayer, A.; Kristjanson, P.; Wettasinha, C.; van Veldhuizen, L.; Quiroga, G.; Swaans, K.; Douthwaite, B. Exploring the impact of farmer-led research supported by civil society organizations. Agric. Food Secur. 2015, 4, 1–7. [Google Scholar] [CrossRef]
- Grasswitz, T.R.; Yao, S. Efficacy of pheromonal control of peachtree borer (Synanthedon exitiosa (Say)) in small-scale orchards. J. Appl. Entomol. 2016, 140, 669–676. [Google Scholar] [CrossRef]
- Goodman, D. The theory of diversity-stability relationships in ecology. Q. Rev. Biol. 1975, 50, 237–266. [Google Scholar] [CrossRef]
- Ratnadass, A.; Fernandes, P.; Avelino, J.; Habib, R. Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Agron. Sustain. Dev. 2012, 32, 273–303. [Google Scholar] [CrossRef]
- Lundgren, J.G.; Fausti, S.W. Trading biodiversity for pest problems. Sci. Adv. 2015, 1, e1500558. Available online: http://advances.sciencemag.org/content/advances/1/6/e1500558.full.pdf (accessed on 25 March 2019). [CrossRef] [PubMed] [Green Version]
- Andow, D.A. Vegetational diversity and arthropod population response. Ann. Rev. Entomol. 1991, 36, 561–586. [Google Scholar] [CrossRef]
- Potting, R.P.J.; Perry, J.N.; Powell, W. Insect behavioural ecology and other factors affecting the control efficacy of agro-ecosystem diversification strategies. Ecol. Model. 2005, 182, 199–216. [Google Scholar] [CrossRef]
- González-Chang, M.; Tiwari, S.; Sharma, S.; Wratten, S.D. Habitat management for pest management: Limitations and prospects. Ann. Entomol. Soc. Am. 2019, XX, 1–16. [Google Scholar] [CrossRef]
- Ichinose, K.; Reddy, G.V.; Shrestha, G.; Sharma, A.; Okada, Y.; Yoshida, M.; Sakai, T. Interplanting different varieties of a sweet potato crop to reduce damage by oligophagous insect pests. Ann. Entomol. Soc. Am. 2019, 1–7. [Google Scholar] [CrossRef]
- Finch, S.; Collier, R.H. Host-plant selection by insects—A theory based on ‘appropriate/inappropriate landings’ by pest insects of cruciferous plants. Entomol. Exp. Appl. 2000, 96, 91–102. [Google Scholar] [CrossRef]
- Morley, K.; Finch, S.; Collier, R.H. Companion planting–behaviour of the cabbage root fly on host plants and non-host plants. Entomol. Exp. Appl. 2005, 117, 15–25. [Google Scholar] [CrossRef]
- Chouinard, H.H.; Paterson, T.; Wandschneider, P.R.; Ohier, A.M. Will farmers trade profits for stewardship? Heterogeneous motivations for farm practice selection. Land Econ. 2008, 84, 66–82. [Google Scholar] [CrossRef]
- Garbach, K.; Long, R.F. Determinants of field edge habitat restoration on farms in California’s Sacramento Valley. J. Environ. Manag. 2017, 189, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Piñero, J.C.; Manandhar, R. Effects of increased crop diversity using trap crops, flowering plants, and living mulches on vegetable insect pests. Trends Entomol. 2015, 11, 91–109. [Google Scholar]
- Sarkar, S.; Wang, E.; Wu, S.; Lei, Z. Application of trap cropping as companion plants for the management of agricultural pests: A review. Insects 2018, 9, 128. [Google Scholar] [CrossRef] [PubMed]
- Ben-Issa, R.; Gomez, L.; Gautier, H. Companion plants for aphid pest management. Insects 2017, 8, 112. [Google Scholar] [CrossRef] [PubMed]
- Badenes-Pérez, F.R. Trap crops and insectary plants in the order brassicales. Ann. Entomol. Soc. Am. 2019, 1–12. [Google Scholar] [CrossRef]
- Holden, M.H.; Ellner, S.P.; Lee, D.-H.; Nyrop, J.P.; Sanderson, J.P. Designing an effective trap cropping strategy: The effects of attraction, retention and plant spatial distribution. J. Appl. Ecol. 2012, 49, 715–722. [Google Scholar] [CrossRef]
- Pair, S.D. Evaluation of systemically treated squash trap plants and attracticidal baits for early-season control of striped and spotted cucumber beetles (Coleoptera: Chrysomelidae) and squash bug (Hemiptera: Coreidae) in cucurbit crops. J. Econ. Entomol. 1997, 90, 1307–1314. [Google Scholar] [CrossRef]
- Tavernier, E.M.; Tolomeo, V. Farm typology and sustainable agriculture: Does size matter? J. Sustain. Agric. 2004, 24, 33–46. [Google Scholar] [CrossRef]
- Malézieux, E.; Crozat, Y.; Dupraz, C.; Laurans, M.; Makowski, D.; Ozier-Lafontaine, H.; Rapidel, B.; de Tourdonnet, S.; Valantin-Morison, M. Mixing plant species in cropping systems: Concepts, tools and models. A review. Agron. Sustain. Dev. 2009, 29, 43–62. [Google Scholar] [CrossRef]
- Fernandez-Cornejo, J.; Beach, E.D.; Huang, W.-Y. The adoption of IPM techniques by vegetable growers in Florida, Michigan and Texas. J. Agric. Appl. Econ. 1994, 26, 158–172. [Google Scholar] [CrossRef]
- Commission on Genetic Resources for Food. The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; p. 370. Available online: http://www.fao.org/docrep/013/i1500e/i1500e.pdf (accessed on 15 March 2019).
- Biowatch. Fact Sheet: Household Seed Banks. 2016. Available online: http://www.biowatch.org.za/docs/fs/2016/Household%20seed%20banks%20PRINT%2006102016.pdf (accessed on 15 March 2019).
- McGuire, S.; Sperling, L. Seed systems smallholder farmers use. Food Secur. 2016, 8, 179–195. [Google Scholar] [CrossRef] [Green Version]
- Kell, S.; Rosenfeld, A.; Cunningham, S.; Dobbie, S.; Maxted, N. The benefits of exotic food crops cultivated by small-scale growers in the UK. Renew. Agric. Food Syst. 2018, 33, 569–584. [Google Scholar] [CrossRef]
- Hightower, L.; Brennan, M.A. Local food systems, ethnic entrepreneurs, and social networks. In Proceedings of the 2013 Annual Meeting (No. 149696), Agricultural and Applied Economics Association, Washington, DC, USA, 4–6 August 2013. [Google Scholar]
- Anon. Small Farms Group Finds Invaders, Opportunities and Challenges. The Western Front: Newsletter of the Western IPM Center. 2015. Available online: http://www.icontact-archive.com/GRXUtzWNofP2xXJ2hQvOa2OJcTEgSZn4?w=3 (accessed on 31 March 2019).
- Castle, S.; Naranjo, S.E. Sampling plans, selective insecticides and sustainability: The case for IPM as ‘informed pest management’. Pest Manag. Sci. 2009, 65, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Witkowska, E.; Moorhouse, E.R.; Jukesc, A.; Elliott, M.S.; Collier, R.H. Implementing integrated pest management in commercial crops of radish (Raphanus sativus). Crop. Prot. 2018, 114, 148–154. [Google Scholar] [CrossRef]
- Chouinard, G.; Firlej, A.; Cormier, D. Going beyond sprays and killing agents: Exclusion, sterilization and disruption for insect pest control in pome and stone fruit orchards. Sci. Hortic. 2016, 208, 13–27. [Google Scholar] [CrossRef] [Green Version]
- Manja, K.; Aoun, M. The use of nets for tree fruit crops and their impact on the production: A review. Sci. Hortic. 2019, 246, 110–122. [Google Scholar] [CrossRef]
- Ingwell, L.L.; Kaplan, I. Insect exclusion screens reduce cucumber beetle infestations in high tunnels, increasing cucurbit yield. J. Econ. Entomol. 2019, 1–9. [Google Scholar] [CrossRef]
- Sauphanor, B.; Severac, G.; Maugin, S.; Toubon, J.F.; Capowiez, Y. Exclusion netting may alter reproduction of the codling moth (Cydia pomonella) and prevent associated fruit damage to apple orchards. Entomol. Exp. Appl. 2012, 145, 134–142. [Google Scholar] [CrossRef]
- Wadas, W. Using non-woven polypropylene covers in potato production: A review. J. Cent. Eur. Agric. 2016, 17, 734–748. [Google Scholar] [CrossRef]
- Rekika, D.; Stewart, K.A.; Boivin, G.; Jenni, S. Floating row covers improve germination and reduce carrot weevil infestations in carrot. HortScience 2008, 43, 1619–1622. [Google Scholar] [CrossRef]
- Rekika, D.; Stewart, K.A.; Boivin, G.; Jenni, S. Reduction of insect damage in radish with floating row covers. Int. J. Veg. Sci. 2008, 14, 177–193. [Google Scholar] [CrossRef]
- Arancibia, R.A. Low Tunnels in Vegetable Crops: Beyond Season Extension; Virginia State University Cooperative Extension (Publication No. HORT-291): Petersburg, VA, USA, 2018; p. 6. Available online: https://hortintl.cals.ncsu.edu/sites/default/files/documents/2018june04lowtunnelsinvegetablecrops-beyondseasonextension.pdf (accessed on 30 April 2019).
- Kawase, S.; Uchino, K.; Yasuda, M.; Motoori, S. Netting control of cherry drosophila Drosophila suzukii injurious to blueberry (Vaccinium). Bull. Chiba Prefect. Agric. Res. Cent. Jpn. 2008, 7, 9–15. [Google Scholar]
- Cormier, D.; Veilleux, J.; Firlej, A. Exclusion net to control spotted wing drosophila in blueberry fields. IOBC-WPRS Bull. 2015, 109, 181–184. [Google Scholar]
- Alnajjar, G.; Collins, J.; Drummond, F.A. Behavioral and preventative management of Drosophila suzukii Matsumura (Diptera: Drosophilidae) in Maine wild blueberry (Vaccinium angustifolium Aiton) through attract and kill trapping and insect exclusion-netting. Int. J. Entomol. Nematol. 2017, 3, 051–061. [Google Scholar]
- Riggs, D.I.; Loeb, G.; Hesler, S.; McDermott, L. Using insect netting on existing bird netting support systems to exclude spotted wing drosophila (SWD) from a small scale commercial highbush blueberry planting. NY Fruit Quart. 2016, 24, 9–14. [Google Scholar]
- Leach, H.; Van Timmeren, S.; Isaacs, R. Exclusion netting delays and reduces Drosophila suzukii (Diptera: Drosophilidae) infestation in raspberries. J. Econ. Entomol. 2016, 109, 2151–2158. [Google Scholar] [CrossRef]
- Iglesias, I.; Alegre, S. The effect of anti-hail nets on fruit protection, radiation, temperature, quality and profitability of ‘Mondial Gala’ apples. J. Appl. Hortic. 2006, 8, 91–100. [Google Scholar]
- Tasin, M.; Demaria, D.; Ryne, C.; Cesano, A.; Galliano, A.; Anfora, G.; Ioriatti, C.; Alma, A. Effect of anti-hail nets on Cydia pomonella behavior in apple orchards. Entomol. Exp. Appl. 2008, 129, 32–36. [Google Scholar] [CrossRef]
- Alaphilippe, A.; Capowiez, Y.; Severac, G.; Simon, S.; Saudreau, M.; Caruso, S.; Vergnani, S. Codling moth exclusion netting: An overview of French and Italian experiences. IOBC/WPRS Bull. 2016, 112, 31–35. [Google Scholar]
- Candian, V.; Pansa, M.G.; Briano, R.; Peano, C.; Tedeschi, R.; Tavella, L. Exclusion nets: A promising tool to prevent Halyomorpha halys from damaging nectarines and apples in NW Italy. Bull. Insectol. 2018, 71, 21–30. [Google Scholar]
- Chouinard, G.; Veilleux, J.; Pelletier, F.; Larose, M.; Philion, V.; Cormier, D. Impact of exclusion netting row covers on arthropod presence and crop damage to ‘Honeycrisp’ apple trees in North America: A five-year study. Crop. Prot. 2017, 98, 248–254. [Google Scholar] [CrossRef]
- Brand, G.; Höhn, H.; Kuske, S.; Samitz, J. Management of European cherry fruit fly (Rhagoletis cerasi) with exclusion netting: First results. IOBC/WPRS Bull. 2013, 91, 401–404. [Google Scholar]
- Lloyd, A.; Hamacek, E.; George, A.; Nissen, R.; Waite, G. Evaluation of exclusion netting for insect pest control and fruit quality enhancement in tree crops. Acta Hortic. 2005, 694, 253–258. [Google Scholar] [CrossRef]
- Castellano, S.; Scarascia Mugnozza, G.; Russo, G.; Briassoulis, D.; Mistriotis, A.; Hemming, S.; Waaijenberg, D. Plastic nets in agriculture: A general review of types and applications. Appl. Eng. Agric. 2008, 24, 799–808. [Google Scholar] [CrossRef]
- Mahmood, A.; Hu, Y.; Tanny, J.; Asante, E.A. Effects of shading and insect-proof screens on crop microclimate and production: A review of recent advances. Sci. Hortic. 2018, 241, 241–251. [Google Scholar] [CrossRef]
- Ben-Yakir, D.; Antignus, Y.; Offir, Y.; Shahak, Y. Colored shading nets impede insect invasion and decrease the incidences of insect-transmitted viral diseases in vegetable crops. Entomol. Exp. Appl. 2012, 144, 249–257. [Google Scholar] [CrossRef]
- Živković, I.P.; Kos, T.; Lemić, D.; Cvitković, J.; Jemrić, T.; Fruk, M.; Barić, B. Exclusion nets influence on the abundance of ground beetles (Coleoptera: Carabidae) in apple orchards. Appl. Ecol. Environ. Res. 2018, 16, 3517–3528. [Google Scholar] [CrossRef]
- Barić, B.; Samu, F.; Kos, T.; Lemić, D.; Toth, M.; Živković, I.P. Effect of exclusion nets on spider diversity and composition in IPM apple orchard. IOBC/WPRS Bull. 2018, 13. Available online: https://bib.irb.hr/prikazi-rad?rad=962061 (accessed on 8 April 2019).
- Bomford, M.K.; Vernon, R.S.; Päts, P. Importance of collection overhangs on the efficacy of exclusion fences for managing cabbage flies (Diptera: Anthomyiidae). Environ. Entomol. 2000, 29, 795–799. [Google Scholar] [CrossRef]
- Blackshaw, R.P.; Vernon, R.S.; Prasad, R. Reduction of Delia radicum attack in field brassicas using a vertical barrier. Entomol. Exp. Appl. 2012, 144, 145–156. [Google Scholar] [CrossRef]
- Wyss, E.; Daniel, C. The effect of exclusion fences on the colonization of broccoli and kohlrabi by the swede midge, Contarinia nasturtii (Diptera: Cecidomyiidae). Mitt. Dtsch. Ges. Allg. Angew. Entomol. 2004, 14, 387–390. [Google Scholar]
- Renkema, J.M.; Evans, B.G.; House, C.; Hallett, R.H. Exclusion fencing inhibits early-season beetle (Coleoptera) activity-density in broccoli. J. Entomol. Soc. Ont. 2016, 147, 15–28. [Google Scholar]
- Dáder, B.; Legarrea, S.; Moreno, A.; Ambros, C.M.; Fereres, A.; Skovmand, O.; Bosselmann, R.; Viñuela, E. Insecticide-treated nets as a new approach to control vegetable pests in protected crops. In Proceedings of the International CIPA Conference 2012 on Plasticulture for a Green Planet, Tel Aviv, Israel, 15–17 May 2012; Volume 1015, pp. 103–111. [Google Scholar]
- Dáder, B.; Legarrea, S.; Moreno, A.; Plaza, M.; Carmo-Sousa, M.; Amor, F.; Viñuela, E.; Fereres, A. Control of insect vectors and plant viruses in protected crops by novel pyrethroid-treated nets. Pest Manag. Sci. 2015, 71, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
- Sabbatini Peverieri, G.; Bortolotti, P.P.; Nannini, R.; Marianelli, L.; Roversi, P.F. Efficacy of long lasting insecticide nets in killing Halyomorpha halys in pear orchards. Outlooks Pest. Manag. 2018, 29, 70–74. [Google Scholar]
- Sharma, R.R.; Reddy, S.V.R.; Jhalegar, M.J. Pre-harvest fruit bagging: A useful approach for plant protection and improved post-harvest fruit quality—A review. J. Hortic. Sci. Biotech. 2014, 89, 101–113. [Google Scholar] [CrossRef]
- Hua, Y.; Yang, B.; Zhou, X.-G.; Zhao, J.; Li, L. A novel progressively delivered fruit bagging apparatus. J. Appl. Hortic. 2016, 18, 123–127. [Google Scholar]
- Zheng, Y.; Qiao, X.; Wang, K.; Dorn, S.; Chen, M. Population genetics affected by pest management using fruit-bagging: A case study with Grapholita molesta in China. Entomol. Exp. Appl. 2015, 156, 117–127. [Google Scholar] [CrossRef]
- Xia, Y.; Huang, J.-H.; Jiang, F.; He, J.-Y.; Pan, X.-B.; Lin, X.-J.; Hu, H.-Q.; Fan, G.-C.; Zhu, S.-F.; Hou, B.-H.; et al. The effectiveness of fruit bagging and culling for risk mitigation of fruit flies affecting citrus in China: A preliminary report. Fla. Entomol. 2019, 102, 79–84. [Google Scholar]
- Tuan, N.M.; Hung, N.T.; Anh, B.L.; Hung, N.Q.; Hung, N.V.; Kien, T.T.; Lien, T.T.; Viet, D.T. Effect of bagging time on fruit yield and quality of red pitaya (Hylocereus spp.) fruit in Vietnam. Int. J. Plant. Soil Sci. 2017, 19, 1–7. [Google Scholar] [CrossRef]
- Bentley, W.J.; Viveros, M. Brown-bagging Granny Smith apples on trees stops codling moth damage. Calif. Agric. 1992, 46, 30–32. [Google Scholar]
- Bessin, R.; Hartman, J. Bagging Apples: Alternative Pest Management for Hobbyists; University of Kentucky Extension Factsheet: Lexington, KY, USA, 2003; p. 2. Available online: https://entomology.ca.uky.edu/ef218 (accessed on 20 April 2019).
- Wang, Y.; Zhang, Y.; Pu, Y.; Zhang, J.; Wang, F. Design of a new fruit tree bagging machine. IOP Conf. Ser. Mater. Sci. Eng. 2018, 452, 042099. [Google Scholar] [CrossRef]
- Grasswitz, T.R.; Fimbres, O. Efficacy of a physical method for control of direct pests of apples and peaches. J. Appl. Entomol. 2013, 137, 790–800. [Google Scholar] [CrossRef]
- Frank, D.L. Evaluation of fruit bagging as a pest management option for direct pests of apple. Insects 2018, 9, 178. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.R.; Pal, R.K.; Sagar, V.R.; Parmanick, K.K.; Paul, V.; Gupta, V.K.; Kumar, K.; Rana, M.R. Impact of pre-harvest fruit-bagging with different coloured bags on peel colour and the incidence of insect pests, disease and storage disorders in ‘Royal Delicious’ apple. J. Hortic. Sci. Biotechnol. 2014, 89, 613–618. [Google Scholar] [CrossRef]
- Leite, G.L.D.; Fialho, A.; Zanuncio, J.C.; Reis, R., Jr.; Da Costa, C.A. Bagging tomato fruits: A viable and economical method of preventing diseases and insect damage in organic production. Fla. Entomol. 2014, 97, 50–60. [Google Scholar] [CrossRef]
- Filgueiras, R.M.C.; Pastori, P.L.; Pereira, F.F.; Coutinho, C.R.; Kassab, S.O.; Bezerra, L.C.M. Agronomical indicators and incidence of insect borers of tomato fruits protected with non-woven fabric bags. Ciência Rural 2017, 47, 1–6. Available online: https://www.redalyc.org/pdf/331/33150458006.pdf (accessed on 20 April 2019). [CrossRef]
- Shi-Lin, T.; Zhen-Hui, G.; Xiao-Hua, D.; Muhammad, S.S.N. Effects of fruit bagging on capsanthin and expression of key genes in the capsanthin biosynthetic pathway during fruit development and ripening of the pepper. Res. J. Biotechnol. 2013, 8, 118–123. [Google Scholar]
- Minter, L.M.; Bessin, R.T. Evaluation of native bees as pollinators of cucurbit crops under floating row covers. Environ. Entomol. 2014, 43, 1354–1363. [Google Scholar] [CrossRef]
- Mukherjee, A.; Knoch, S.; Chouinard, G.; Tavares, J.R.; Dumont, M.-J. Use of bio-based polymers in agricultural exclusion nets: A perspective. Biosyst. Eng. 2019, 80, 121–145. [Google Scholar] [CrossRef]
- Hegazi, E.M.; Khafagi, W.E.; Konstantopoulou, M.A.; Schlyter, F.; Raptopoulos, D.; Shweil, S.; Abd El-Rahman, S.; Atwa, A.; Ali, S.E.; Tawfik, H. Suppression of leopard moth (Lepidoptera: Cossidae) populations in olive trees in Egypt through mating disruption. J. Econ. Entomol. 2010, 103, 1621–1627. [Google Scholar] [CrossRef] [PubMed]
- Samietz, J.; Baur, R.; Hillbur, Y. Potential of synthetic sex pheromone blend for mating disruption of the swede midge, Contarinia nasturtii. J. Chem. Ecol. 2012, 38, 1171–1177. [Google Scholar] [CrossRef] [PubMed]
- Suckling, D.M.; Walker, J.T.S.; Shaw, P.W.; Manning, L.-A.; Lo, P.; Wallis, R.; Bell, V.; Sandanayaka, W.R.M.; Hall, D.R.; Cross, J.V.; et al. Trapping Dasinuera mali (Diptera: Cecidomyiidae) in apples. J. Econ. Entomol. 2007, 100, 745–751. [Google Scholar] [CrossRef]
- Lo, P.L.; Walker, J.T.; Suckling, D.M. Prospects for the control of apple leaf midge Dasineura mali (Diptera: Cecidomyiidae) by mass trapping with pheromone lures. Pest Manag. Sci. 2015, 71, 907–913. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.M.; Suckling, D.M.; Wearing, C.H.; Byers, J.A. Potential of mass trapping for long-term pest management and eradication of invasive species. J. Econ. Entomol. 2006, 99, 1550–1564. [Google Scholar] [CrossRef] [PubMed]
- Piñero, J.C.; Dudenhoeffer, A.P. Mass trapping designs for organic control of the Japanese beetle, Popillia japonica (Coleoptera: Scarabaeidae). Pest Manag. Sci. 2018, 74, 1687–1693. [Google Scholar] [CrossRef] [PubMed]
- Piñero, J.C.; Shivers, T.; Byers, P.L.; Johnson, H.-Y. Insect-based compost and vermicompost production, quality and performance. Renew. Agric. Food Syst. 2018, 1–7. [Google Scholar] [CrossRef]
- Haye, T.; Girod, P.; Cuthbertson, A.G.S.; Wang, X.G.; Daane, K.M.; Hoelmer, K.A.; Baroffio, C.; Zhang, J.P.; Desneux, N. Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world. J. Pest. Sci. 2016, 89, 643–651. [Google Scholar] [CrossRef]
- Leach, H.; Moses, J.; Hanson, E.; Fanning, P.; Isaacs, R. Rapid harvest schedules and fruit removal as non-chemical approaches for managing spotted wing Drosophila. J. Pest. Sci. 2018, 91, 219–226. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs Population Divison. 2018 Revision of World Urbanization Prospects. Available online: https://population.un.org/wup/ (accessed on 22 April 2019).
- Smeds, P.; Jeronen, E.; Kurppa, S. Farm education and the value of learning in an authentic learning environment. Int. J. Sci. Environ. Ed. 2015, 10, 381–404. [Google Scholar]
- Horne, P.A.; Page, J.; Nicholson, C. When will integrated pest management strategies be adopted? Example of the development and implementation of integrated pest management strategies in cropping systems in Victoria. Aust. J. Exp. Agric. 2008, 48, 1601–1607. [Google Scholar] [CrossRef]
- Horrocks, A.; Horne, P.A.; Davidson, M.M. Demonstrating an integrated pest management strategy in forage- and seed-brassica crops using a collaborative approach. N. Z. Plant Prot. 2018, 71, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Sadof, C.S.; O’Neil, R.J.; Heraux, F.M.; Wiedenmann, R.N. Reducing insecticide use in home gardens: Effects of training and volunteer research on adoption of biological control. HortTechnology 2004, 14, 149–154. [Google Scholar] [CrossRef]
- Pineda, A.; Kaplan, I.; Bezemer, T.M. Steering soil microbiomes to suppress aboveground insect pests. Trends Plant Sci. 2017, 22, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.C.; Biere, A.; Sugio, A. The promises and challenges of research on plant–insect–microbe interactions. Insect Sci. 2017, 24, 904–909. [Google Scholar] [CrossRef]
- Rashid, M.; Chung, Y.R. Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes. Front. Plant Sci. 2017, 20, 1816. Available online: https://www.frontiersin.org/articles/10.3389/fpls.2017.01816/full (accessed on 2 June 2019). [CrossRef] [PubMed]
- Anon. Oz weeding, transportation and harvest assistance robot. Naio Technologies France. 2019. Available online: https://www.naio-technologies.com/wp-content/uploads/2019/04/brochure-OZ-ENGLISH-HD.pdf (accessed on 6 May 2019).
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grasswitz, T.R. Integrated Pest Management (IPM) for Small-Scale Farms in Developed Economies: Challenges and Opportunities. Insects 2019, 10, 179. https://doi.org/10.3390/insects10060179
Grasswitz TR. Integrated Pest Management (IPM) for Small-Scale Farms in Developed Economies: Challenges and Opportunities. Insects. 2019; 10(6):179. https://doi.org/10.3390/insects10060179
Chicago/Turabian StyleGrasswitz, Tessa R. 2019. "Integrated Pest Management (IPM) for Small-Scale Farms in Developed Economies: Challenges and Opportunities" Insects 10, no. 6: 179. https://doi.org/10.3390/insects10060179
APA StyleGrasswitz, T. R. (2019). Integrated Pest Management (IPM) for Small-Scale Farms in Developed Economies: Challenges and Opportunities. Insects, 10(6), 179. https://doi.org/10.3390/insects10060179