Variation in Performance and Resistance to Parasitism of Plutella xylostella Populations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects and Plants
2.2. Experimental Design
2.3. Statistical Analysis
3. Results
3.1. Survival and Performance of Healthy Moths
3.2. Survival and Performance of Parasitized Caterpillars
3.3. Correlation Analyses
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Mattson, W.J. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 1980, 11, 119–161. [Google Scholar] [CrossRef]
- Elser, J.J.; Fagan, W.F.; Denno, R.F.; Dobberfuhl, D.R.; Folarin, A.; Huberty, A.; Interlandi, S.; Kilham, S.S.; McCauley, E.; Schulz, K.L.; et al. Nutritional constraints in terrestrial and freshwater food webs. Nature 2000, 408, 578–580. [Google Scholar] [CrossRef] [PubMed]
- Schoonhoven, L.M.; van Loon, J.J.A.; Dicke, M. Insect-Plant Biology, 2nd ed.; Oxford University Press: Oxford, UK, 2005; p. 401. [Google Scholar]
- Vrieling, K.; Smit, W.; Van Der Meijden, E.; Meijden, E. Tritrophic interactions between aphids (Aphis jacobaeae Schrank), ant species, Tyria jacobaeae L., and Senecio jacobaea L. lead to maintenance of genetic variation in pyrrolizidine alkaloid concentration. Oecologia 1991, 86, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Jones, L.E.; Ellner, S.P.; Fussmann, G.F.; Hairston, N.G.; Jr, N.G.H. Rapid evolution drives ecological dynamics in a predator-prey system. Nature 2003, 424, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Moczek, A.P. Phenotypic plasticity and diversity in insects. Philos. Trans. R. Soc. B Boil. Sci. 2010, 365, 593–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, S.J.; Sword, G.A.; Lo, N. Polyphenism in insects. Curr. Biol. 2011, 21, R738–R749. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, P.R.; Raven, P.H. Butterflies and plants: a study in coevolution. Evolution 1964, 18, 586–608. [Google Scholar] [CrossRef]
- Bernays, E.; Graham, M. On the evolution of host specificity in phytophagous arthropods. Ecology 1988, 69, 886–892. [Google Scholar] [CrossRef]
- Loxdale, H.D.; Lushai, G.; Harvey, J.A. The evolutionary improbability of ‘generalism’ in nature, with special reference to insects. Boil. J. Linn. Soc. 2011, 103, 1–18. [Google Scholar] [CrossRef]
- Strand, M.R.; Pech, L.L. Immunological Basis for Compatibility in Parasitoid-Host Relationships. Annu. Rev. Èntomol. 1995, 40, 31–56. [Google Scholar] [CrossRef]
- Price, P.W.; Bouton, C.E.; Gross, P.; McPheron, B.A.; Thompson, J.N.; Weis, A.E. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 1980, 11, 41–65. [Google Scholar] [CrossRef]
- Kraaijeveld, A.R.; Van Alphen, J.J.M.; Godfray, H.C.J. The coevolution of host resistance and parasitoid virulence. Parasitology 1998, 116, S29–S45. [Google Scholar] [CrossRef] [PubMed]
- Stireman, J.O.; Nason, J.D.; Heard, S.B.; Seehawer, J.M. Cascading host-associated genetic differentiation in parasitoids of phytophagous insects. Proc. R. Soc. Lond. B Biol. Sci. 2006, 273, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Furlong, M.J.; Wright, D.J.; Dosdall, L.M. Diamondback moth ecology and management: problems, progress, and prospects. Annu. Rev. Èntomol. 2013, 58, 517–541. [Google Scholar] [CrossRef] [PubMed]
- Ratzka, A.; Vogel, H.; Kliebenstein, D.J.; Mitchell-Olds, T.; Kroymann, J. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. USA 2002, 99, 11223–11228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAOSTAT. Food and Agricultural Data; FAOSTAT: Rome, Italy, 2019. [Google Scholar]
- Reynolds, D.R.; Smith, A.D.; Riley, J.R.; Pedgley, D.E.; Chapman, J.W.; Woiwod, I.P. High-altitude migration of the diamondback moth Plutella xylostella to the U.K.: A study using radar, aerial netting, and ground trapping. Ecol. Èntomol. 2002, 27, 641–650. [Google Scholar]
- Endersby, N.M.; McKechnie, S.W.; Ridland, P.M.; Weeks, A.R. Microsatellites reveal a lack of structure in australian populations of the diamondback moth, Plutella xylostella (L.). Mol. Ecol. 2006, 15, 107–118. [Google Scholar] [CrossRef]
- Shirai, Y. Temperature tolerance of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae) in tropical and temperate regions of Asia. Bull. Èntomol. Res. 2000, 90, 357–364. [Google Scholar] [CrossRef]
- Mo, J.; Baker, G.; Keller, M.; Roush, R. Local dispersal of the diamondback moth (Plutella xylostella (L.)) (Lepidoptera: Plutellidae). Environ. Èntomol. 2003, 32, 71–79. [Google Scholar] [CrossRef]
- Barbosa, P. Lepidopteran foraging on plants in agroecosysems: Constraints and consequences. In Caterpillars: Ecological and Evolutionary Constraints on Foraging; Stamp, N.E., Casey, T.M., Eds.; Chapman and Hall: New York, NY, USA, 1993; pp. 523–566. [Google Scholar]
- O’Rourke, M.E.; Blitzer, E.J.; Kremen, C.; Chaplin-Kramer, R.; Chaplin-Kramer, R. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 2011, 14, 922–932. [Google Scholar]
- Chen, Y.H.; Gols, R.; Benrey, B. Crop domestication and its impact on naturally selected trophic interactions. Annu. Rev. Èntomol. 2015, 60, 35–58. [Google Scholar] [CrossRef] [PubMed]
- Andow, D.A. Vegetational diversity and arthropod population response. Annu. Rev. Èntomol. 1991, 36, 561–586. [Google Scholar] [CrossRef]
- Root, R.B. Organization of a Plant-arthropod association in simple and diverse habitats: The fauna of collards (Brassica Oleracea). Ecol. Monogr. 1973, 43, 95–124. [Google Scholar] [CrossRef]
- Hairston, N.G.; Ellner, S.P.; Geber, M.A.; Yoshida, T.; Fox, J.A. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 2005, 8, 1114–1127. [Google Scholar] [CrossRef]
- Sarfraz, M.; Keddie, A.B.; Dosdall, L.M. Biological control of the diamondback moth, Plutella xylostella: A review. Biocontrol Sci. Technol. 2005, 15, 763–789. [Google Scholar] [CrossRef]
- Löhr, B.; Gathu, R. Evidence of Adaptation of diamondback moth, Plutella xylostella (L.), to Pea, Pisum sativum L. Int. J. Trop. Insect Sci. 2002, 22, 161–173. [Google Scholar] [CrossRef]
- Bird, K.A.; An, H.; Gazave, E.; Gore, M.A.; Pires, J.C.; Robertson, L.D.; Labate, J.A. Population structure and phylogenetic relationships in a diverse panel of Brassica rapa L. Front. Plant Sci. 2017, 8, 22. [Google Scholar] [CrossRef]
- Henniges-Janssen, K.; Heckel, D.G.; Groot, A.T. Preference of diamondback moth larvae for novel and original host plant after host range expansion. Insects 2014, 5, 793–804. [Google Scholar] [CrossRef]
- Anthony, J.B.; James, G.; John, S.; Jane, H. SAS 9.3; SAS Institute Inc.: Cary, NC, USA, 2016. [Google Scholar]
- Sarfraz, R.M.; Dosdall, L.M.; Keddie, A.B.; Myers, J.H. Larval survival, host plant preferences and developmental responses of the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) on wild brassicaceous species. Èntomol. Sci. 2011, 14, 20–30. [Google Scholar] [CrossRef]
- Talekar, N.S.; Shelton, A.M. Biology, ecology, and management of the diamondback moth. Annu. Rev. Èntomol. 1993, 38, 275–301. [Google Scholar] [CrossRef]
- Nylin, S.; Gotthard, K. Plasticity in life-history traits. Annu. Rev. Entomol. 1998, 43, 63–83. [Google Scholar] [CrossRef] [PubMed]
- Stearns, S.C. The Evolution of Life Histories; Oxford University Press: New York, NY, USA, 1992. [Google Scholar]
- Gols, R.; Bukovinszky, T.; Van Dam, N.M.; Dicke, M.; Bullock, J.M.; Harvey, J.A. Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild brassica populations. J. Chem. Ecol. 2008, 34, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.-J.; Lu, Y.-B.; Zalucki, M.P.; Liu, S.-S. Relationship between adult oviposition preference and larval performance of the diamondback moth, Plutella xylostella. J. Pest Sci. 2012, 85, 247–252. [Google Scholar] [CrossRef]
- Gols, R.; Harvey, J.A. The effect of host developmental stage at parasitism on sex-related size differentiation in a larval endoparasitoid. Ecol. Èntomol. 2009, 34, 755–762. [Google Scholar] [CrossRef]
- Harvey, J.A.; Gols, R. Effects of plant-mediated differences in host quality on the development of two related endoparasitoids with different host-utilization strategies. J. Insect Physiol. 2018, 107, 110–115. [Google Scholar] [CrossRef]
- Huang, F.; Shi, M.; Yang, Y.-Y.; Li, J.-Y.; Chen, X.-X. Changes in hemocytes of Plutella xylostella after parasitism by Diadegma semiclausum. Arch. Insect Biochem. Physiol. 2009, 70, 177–187. [Google Scholar] [CrossRef]
- Strand, M.R.; Burke, G.R. Polydnaviruses: Nature’s genetic engineers. Annu. Rev. Virol. 2014, 1, 333–354. [Google Scholar] [CrossRef]
- Etebari, K.; Palfreyman, R.W.; Schlipalius, D.; Nielsen, L.K.; Glatz, R.V.; Asgari, S. Deep sequencing-based transcriptome analysis of Plutella xylostella larvae parasitized by Diadegma semiclausum. BMC Genom. 2011, 12, 446. [Google Scholar] [CrossRef]
- Momanyi, C.; Löhr, B.; Gitonga, L. Biological impact of the exotic parasitoid, diadegma semiclausum (Hellen), of diamondback moth, Plutella xylostella L., in Kenya. Boil. Control 2006, 38, 254–263. [Google Scholar] [CrossRef]
- Dupas, S.; Boscaro, M. Geographic variation and evolution of immunosuppressive genes in a Drosophila parasitoid. Ecography 1999, 22, 284–291. [Google Scholar] [CrossRef]
- Dubuffet, A.; Dupas, S.; Frey, F.; Drezen, J.-M.; Poiriè, M.; Carton, Y.; Poiri, M. Genetic interactions between the parasitoid wasp Leptopilina boulardi and its Drosophila hosts. Heredity 2006, 98, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Wink, M. Evolution of secondary metabolites in legumes (Fabaceae). S. Afr. J. Bot. 2013, 89, 164–175. [Google Scholar] [CrossRef] [Green Version]
- Fahey, J.W.; Zalcmann, A.T.; Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001, 56, 5–51. [Google Scholar] [CrossRef]
- Harvey, J.A. Factors affecting the evolution of development strategies in parasitoid wasps: The importance of functional constraints and incorporating complexity. Èntomol. Exp. Appl. 2005, 117, 1–13. [Google Scholar] [CrossRef]
- Henniges-Janssen, K.; Reineke, A.; Heckel, D.G.; Groot, A.T. Complex inheritance of larval adaptation in Plutella xylostella to a novel host plant. Heredity 2011, 107, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Roßbach, A.; Löhr, B.; Vidal, S. Does a specialist parasitoid adapt to its host on a new host plant? J. Insect Behav. 2006, 19, 479–495. [Google Scholar] [CrossRef]
- Roux, O.; Gevrey, M.; Arvanitakis, L.; Gers, C.; Bordat, D.; Legal, L. ISSR-PCR: Tool for discrimination and genetic structure analysis of Plutella xylostella populations native to different geographical areas. Mol. Phylogenet. Evol. 2007, 43, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, F.; Choi, Y.S.; Kim, I.; Sohn, H.D.; Jin, B.R. Genetic variation in the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae) in China inferred from mitochondrial COI gene sequence. Eur. J. Èntomol. 2006, 103, 605–611. [Google Scholar] [CrossRef]
Variables | P. xyl Sur 1 | D. sem Bio 2_F 3 | D.sem Bio_M 4 | P. xyl Bio_F | P. xyl Bio_M | D. sem Dt 5_F | D. sem Dt_M | P. xyl Dt_F | P. xyl Dt_M |
---|---|---|---|---|---|---|---|---|---|
D. sem–sur | 0.14 | 0.43 | −0.09 | 0.20 | 0.26 | −0.43 | −0.20 | 0.43 | 0.54 |
P. xyl–sur | 0.14 | 0.09 | 0.26 | 0.37 | 0.09 | 0.83 * | 0.14 | 0.37 | |
D. sem Bio_F | 0.83 * | 0.94 ** | 0.89 * | −0.09 | −0.31 | 0.71 | 0.31 | ||
D. sem Bio_M | 0.94 ** | 0.89 * | 0.20 | −0.26 | 0.71 | 0.26 | |||
P. xyl Bio_F | 0.94 ** | 0.14 | −0.20 | 0.77 | 0.37 | ||||
P. xyl Bio_M | −0.09 | −0.03 | 0.83 * | 0.54 | |||||
D. sem Dt_F | −0.09 | 0.03 | −0.09 | ||||||
D. sem Dt_M | −0.31 | 0.03 | |||||||
P. xyl Dt_F | 0.83 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gols, R.; Desurmont, G.A.; Harvey, J.A. Variation in Performance and Resistance to Parasitism of Plutella xylostella Populations. Insects 2019, 10, 293. https://doi.org/10.3390/insects10090293
Gols R, Desurmont GA, Harvey JA. Variation in Performance and Resistance to Parasitism of Plutella xylostella Populations. Insects. 2019; 10(9):293. https://doi.org/10.3390/insects10090293
Chicago/Turabian StyleGols, Rieta, Gaylord A. Desurmont, and Jeffrey A. Harvey. 2019. "Variation in Performance and Resistance to Parasitism of Plutella xylostella Populations" Insects 10, no. 9: 293. https://doi.org/10.3390/insects10090293
APA StyleGols, R., Desurmont, G. A., & Harvey, J. A. (2019). Variation in Performance and Resistance to Parasitism of Plutella xylostella Populations. Insects, 10(9), 293. https://doi.org/10.3390/insects10090293