Creating the Urban Farmer’s Almanac with Citizen Science Data
Abstract
:1. Introduction
2. Urban Insect Management Presents Unique Challenges and Opportunities
3. Urban Insect Management Can Be Facilitated by Citizen Science
3.1. Citizen Science Provides and Organizes Identifications of Insects in the Farm, Neighborhood, and City
3.2. Citizen Science Provides Information on When Insects Will Be Active and Abundant
4. Digital Collaboration Creates Useful Information for Everyone
5. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Our Urbanizing World, Populations Facts; United Nations Department Economic Social Affairs: New York, NY, USA, 2014; Available online: http://www.un.org/en/development/desa/population/publications/pdf/popfacts/PopFacts_2014-3.pdf (accessed on 3 July 2019).
- Brown, D.G.; Johnson, K.M.; Loveland, T.R.; Theobald, D.M. Rural land-use trends in the conterminous United States, 1950–2000. Ecol. Appl. 2005, 15, 1851–1863. [Google Scholar] [CrossRef]
- Zezza, A.; Tasciotti, L. Urban agriculture, poverty, and food security: Empirical evidence from a sample of developing countries. Food Policy 2010, 35, 265–273. [Google Scholar] [CrossRef]
- Mougeot, L.J. Agropolis: The Social, Political, and Environmental Dimensions of Urban Agriculture; IDRC: London, UK, 2005; ISBN 978-1844072323. [Google Scholar]
- Daftary-Steel, S.; Herrera, H.; Porter, C.M. The unattainable trifecta of urban agriculture. J. Agric. Food Syst. Community Dev. 2015, 6, 19–32. [Google Scholar] [CrossRef]
- Diekmann, L.; Bennaton, R.; Schweiger, J.; Smith, C. Involving Extension in urban food systems: An example from California. J. Hum. Sci. Ext. 2017, 5, 70–90. [Google Scholar]
- Hall, D.M.; Camilo, G.R.; Tonietto, R.K.; Ollerton, J.; Ahrné, K.; Arduser, M.; Ascher, J.S.; Baldock, K.C.; Fowler, R.; Frankie, G.; et al. The city as a refuge for insect pollinators. Conserv. Biol. 2017, 31, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Luck, G.W. A review of the relationships between human population density and biodiversity. Biol. Rev. 2007, 82, 607–645. [Google Scholar] [CrossRef] [PubMed]
- McKinney, M.L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 2008, 11, 161–176. [Google Scholar] [CrossRef]
- Hansen, A.J.; Knight, R.L.; Marzluff, J.M.; Powell, S.; Brown, K.; Gude, P.H.; Jones, K. Effects of exurban development on biodiversity: Patterns, mechanisms, and research needs. Ecol. Appl. 2005, 15, 1893–1905. [Google Scholar] [CrossRef]
- Lin, B.B.; Fuller, R.A. Sharing or sparing? How should we grow the world’s cities? J. Appl. Ecol. 2013, 50, 1161–1168. [Google Scholar] [CrossRef]
- Lin, B.B.; Philpott, S.M.; Jha, S. The future of urban agriculture and biodiversity-ecosystem services: Challenges and next steps. Basic Appl. Ecol. 2015, 16, 189–201. [Google Scholar] [CrossRef]
- Wang, J.W.; Poh, C.H.; Tan, C.Y.T.; Lee, V.N.; Jain, A.; Webb, E.L. Building biodiversity: Drivers of bird and butterfly diversity on tropical urban roof gardens. Ecosphere 2017, 8, e01905. [Google Scholar] [CrossRef]
- Alvey, A.A. Promoting and preserving biodiversity in the urban forest. Urban For. Urban Green. 2006, 5, 195–201. [Google Scholar] [CrossRef]
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Dearborn, D.C.; Kark, S. Motivations for conserving urban biodiversity. Conserv. Biol. 2010, 24, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Madden, A.H.; Chamberlin, F.S. Biology of the Tobacco Hornworm in the Southern Cigar-Tobacco District; Technical Bulletin 896; United States Department of Agriculture: Washington, DC, USA, 1945. [Google Scholar]
- Walker, G.P.; Aitken, D.C.G.; O’Connell, N.V.; Smith, D. Using phenology to time insecticide applications for control of California red scale (Homoptera: Diaspididae) on Citrus. J. Econ Entomol. 1990, 83, 189–196. [Google Scholar] [CrossRef]
- Loose, J.L.; Drummond, F.A.; Stubbs, C.; Woods, S.; Hoffmann, S. Conservation and management of native bees in Cranberry. Tech. Bull. Maine Agric. For. Exp. 2005, 191, 1–27. [Google Scholar]
- Larson, J.L.; Redmond, C.T.; Potter, D.A. Assessing insecticide hazard to bumble bees foraging on flowering weeds in treated lawns. PLoS ONE 2013, 86, e66375. [Google Scholar] [CrossRef]
- Nicholls, C.I.; Altieri, M.A. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev. 2013, 33, 257–274. [Google Scholar] [CrossRef]
- Opitz, I.; Berges, R.; Piorr, A.; Krikser, T. Contributing to food security in urban areas: Differences between urban agriculture and peri-urban agriculture in the Global North. Agric. Hum. Values 2016, 33, 341–358. [Google Scholar] [CrossRef]
- Reynolds, K.A. Expanding technical assistance for urban agriculture: Best practices for extension services in California and beyond. J. Agric. Food Syst. Community Dev. 2011, 1, 197–216. [Google Scholar] [CrossRef]
- Hill, M.P.; Macfadyen, S.; Nash, M.A. Broad spectrum pesticide application alters natural enemy communities and may facilitate secondary pest outbreaks. PeerJ 2017, 5, e4179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olejniczak, M.J.; Spiering, D.J.; Potts, D.L.; Warren, R.J. Urban forests form isolated archipelagos. J. Urban Ecol. 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Fox, J.; Colbert, S.; Hogan, M.; Rabe, M.; Welch, C.; Haught, S. Developing a community-designed healthy urban food system. J. Ext. 2015, 53, 4IAW3. [Google Scholar]
- Lelekacs, J.M.; Bloom, J.D.; Jayaratne, K.S.U.; Leach, B.; Wymore, T.; Mitchell, C. Planning, delivering, and evaluating an Extension in-service training program for developing local food systems: Lessons learned. J. Hum. Sci. Ext. 2016, 4, 1–19. [Google Scholar]
- Armstrong, D. A survey of community gardens in upstate New York: Implications for health promotion and community development. Health Place 2000, 6, 319–327. [Google Scholar] [CrossRef]
- Algert, S.; Diekmann, L.; Gray, L.; Renvall, M. Community and home gardens increase vegetable intake and food security of residents in San Jose, California. Calif. Agric. 2016, 70, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Glover, T.D.; Parry, D.C.; Shinew, K.J. Building relationships, accessing resources: Mobilizing social capital in community garden contexts. J. Leis. Res. 2005, 37, 450–474. [Google Scholar] [CrossRef]
- Vitiello, D.; Wolf-Powers, L. Growing food to grow cities? The potential of agriculture for economic and community development in the urban United States. Community Dev. J. 2014, 49, 508–523. [Google Scholar] [CrossRef]
- Alig, R.J.; Kline, J.D.; Lichtenstein, M. Urbanization on the US landscape: Looking ahead in the 21st century. Landsc. Urban Plan. 2004, 69, 219–234. [Google Scholar] [CrossRef]
- Hodgson, K.; Campbell, M.C.; Bailkey, M. Urban Agriculture: Growing Healthy, Sustainable Places; American Planning Association: Chicago, IL, USA, 2011; ISBN 978-1-932364-91-0. [Google Scholar]
- Ackerman, K.; Conard, M.; Culligan, P.; Plunz, R.; Sutto, M.P.; Whittinghill, L. Sustainable food systems for future cities: The potential of urban agriculture. Econ. Soc. Rev. 2014, 45, 189–206. [Google Scholar]
- Young, J.A.; Jones, K. Urban Extension: Reflections on the past, a look to the future. J. Hum. Sci. Ext. 2017, 5, 145–157. [Google Scholar]
- Tiffany, J.S. Extension in the city: Meeting the challenges of scale. J. Hum. Sci. Ext. 2017, 5, 37–51. [Google Scholar]
- Gaolach, B.; Kern, M.; Sanders, C. Urban Extension: Aligning with the needs of urban audiences through subject-matter centers. J. Hum. Sci. Ext. 2017, 5, 126–144. [Google Scholar]
- Valley, W.; Wittman, H. Beyond feeding the city: The multifunctionality of urban farming in Vancouver, BC. City Cult. Soc. 2019, 16, 36–44. [Google Scholar] [CrossRef]
- Magigi, W. Urbanization and its impacts to food systems and environmental sustainability in urban space: Evidence from urban agriculture livelihoods in Dar es Salaam, Tanzania. J. Environ. Protect. 2013, 4, 1137. [Google Scholar] [CrossRef]
- Kogan, M. Integrated pest management: Historical perspectives and contemporary developments. Annu. Rev. Entomol. 1998, 43, 243–270. [Google Scholar] [CrossRef] [PubMed]
- Bottrell, D.G.; Schoenly, K.G. Integrated pest management for resource-limited farmers: Challenges for achieving ecological, social and economic sustainability. J. Agric. Sci. 2018, 156, 408–426. [Google Scholar] [CrossRef]
- Shirk, J.L.; Ballard, H.L.; Wilderman, C.C.; Phillips, T.; Wiggins, A.; Jordan, R.; McCallie, E.; Minarchek, M.; Lewenstein, B.V.; Krasny, M.E.; et al. Public participation in scientific research: A framework for deliberate design. Ecol. Soc. 2012, 17, 29. [Google Scholar] [CrossRef]
- Sullivan, B.L.; Wood, C.L.; Iliff, M.J.; Bonney, R.E.; Fink, D.; Kelling, S. eBird: A citizen-based bird observation network in the biological sciences. Biol. Conserv. 2009, 142, 2282–2292. [Google Scholar] [CrossRef]
- Prudic, K.L.; Oliver, J.C.; Brown, B.V.; Long, E.C. Comparisons of citizen science data-gathering approaches to evaluate urban butterfly diversity. Insects 2018, 9, 186. [Google Scholar] [CrossRef] [PubMed]
- Prudic, K.L.; McFarland, K.P.; Oliver, J.C.; Hutchinson, R.A.; Long, E.C.; Kerr, J.T.; Larrivée, M. eButterfly: Leveraging massive online citizen science for butterfly conservation. Insects 2017, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- iNaturalist. Org Web Application. Available online: http://www.inaturalist.org (accessed on 30 June 2019).
- Posthumus, E.; Crimmins, T. Nature’s Notebook: A tool for education and research. Bull. Ecol. Soc. Am. 2011, 92, 185–187. [Google Scholar] [CrossRef]
- Danks, H.V. Museum collections: Fundamental values and modern problems. Collect. Forum 1991, 7, 95–111. [Google Scholar]
- Seek Smartphone Application. Available online: https://www.inaturalist.org/pages/seek_app (accessed on 30 June 2019).
- Van Horn, G.; Mac Aodha, O.; Song, Y.; Cui, Y.; Sun, C.; Shepard, A.; Adam, H.; Perona, P.; Belongie, S. The iNaturalist species classification and detection dataset. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8769–8778. [Google Scholar]
- Herms, D.A. Using degree-days and plant phenology to predict pest activity. In IPM (Integrated Pest Management) of Midwest Landscapes; University of Minnesota Agriculture Experiment Station: St. Paul, MN, USA, 2004; pp. 49–59. [Google Scholar]
- USA National Phenology Network Forecast. Available online: http://www.usanpn.org/data/forecasts (accessed on 15 July 2019).
- USA National Phenology Network Pest Patrol Campaign. Available online: http://www.usanpn.org/nn/pestpatrol (accessed on 15 July 2019).
- USA National Phenology Network Nectar Connectors Campaign. Available online: http://www.usanpn.org/nn/nectarconnectors (accessed on 15 July 2019).
- Meineke, E.K.; Dunn, R.R.; Sexton, J.O.; Frank, S.D. Urban warming drives insect pest abundance on street trees. PLoS ONE 2013, 8, e59687. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, A.L.; Youngsteadt, E.; Frank, S.D. Wild bee abundance declines with urban warming, regardless of floral density. Urban Ecosyst. 2018, 2, 419–428. [Google Scholar] [CrossRef]
- Bates, A.J.; Sadler, J.P.; Fairbrass, A.J.; Falk, S.J.; Hale, J.D.; Matthews, T.J. Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS ONE 2011, 6, e23459. [Google Scholar] [CrossRef] [PubMed]
- Banaszak-Cibicka, W.; Żmihorski, M. Wild bees along an urban gradient: Winners and losers. J. Insect Conserv. 2012, 16, 331–343. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Schneider, A. The footprint of urban climates on vegetation phenology. Geophys. Res. Lett. 2004, 31, L12209. [Google Scholar] [CrossRef]
- Lahr, E.C.; Dunn, R.R.; Frank, S.D. Getting ahead of the curve: Cities as surrogates for global change. Proc. R. Soc. B Boil. Sci. 2018, 285, 20180643. [Google Scholar] [CrossRef]
- Hunter, M. Using ecological theory to guide urban planting design an adaptation strategy for climate change. Landsc. J. 2011, 30, 173–193. [Google Scholar] [CrossRef]
- Hunter, M.R.; Hunter, M.D. Designing for conservation of insects in the built environment. Insect Conserv. Divers. 2008, 1, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Global Biodiversity Information Facility Website. Available online: https://www.gbif.org (accessed on 30 June 2019).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prudic, K.L.; Wilson, J.K.; Toshack, M.C.; Gerst, K.L.; Rosemartin, A.; Crimmins, T.M.; Oliver, J.C. Creating the Urban Farmer’s Almanac with Citizen Science Data. Insects 2019, 10, 294. https://doi.org/10.3390/insects10090294
Prudic KL, Wilson JK, Toshack MC, Gerst KL, Rosemartin A, Crimmins TM, Oliver JC. Creating the Urban Farmer’s Almanac with Citizen Science Data. Insects. 2019; 10(9):294. https://doi.org/10.3390/insects10090294
Chicago/Turabian StylePrudic, Kathleen L., J. Keaton Wilson, Michelle C. Toshack, Katharine L. Gerst, Alyssa Rosemartin, Theresa M. Crimmins, and Jeffrey C. Oliver. 2019. "Creating the Urban Farmer’s Almanac with Citizen Science Data" Insects 10, no. 9: 294. https://doi.org/10.3390/insects10090294
APA StylePrudic, K. L., Wilson, J. K., Toshack, M. C., Gerst, K. L., Rosemartin, A., Crimmins, T. M., & Oliver, J. C. (2019). Creating the Urban Farmer’s Almanac with Citizen Science Data. Insects, 10(9), 294. https://doi.org/10.3390/insects10090294