Comparative Transcriptome Analysis of Thitarodes Armoricanus in Response to the Entomopathogenic Fungi Paecilomyces Hepiali and Ophiocordyceps Sinensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Insects and Fungi
2.2. Preparation of RNA, Library Construction, and Sequencing
2.3. Mapping and Transcriptome Annotation
2.4. Differentially Expressed Gene Analysis
2.5. Clustering and Enrichment Analysis
2.6. Identification of Immunity or Defense Related Genes from T. armoricanus
2.7. Sequence Analysis and Phylogenetic Analysis
2.8. Quantitative Real-Time PCR
3. Results
3.1. RNA Sequencing Analysis
3.2. Gene Responses to P. hepiali or O. sinensis Infection
3.3. Transcriptional Changes During P. hepiali or O. sinensis infection
3.4. Gene Ontology (GO) and Pathway Analysis of Different Clusters in DEGs
3.5. Expressed Changed from Three Days to 15 Days After O. sinensis Infection
3.6. Immunity or Defense Related Pathways in T. armoricanus
3.7. PRAMP1s in Response to O. sinensis and P. hepiali infection
3.8. Experimental Validation
4. Discussion
4.1. Common Responses in T. armoricanus After P. hepiali or O. sinensis Infection
4.2. Rapid Death of T. armoricanus Larvae Infected by P. hepiali
4.3. Co-Existence of O. sinensis and T. armoricanus
4.4. Conservation of the Insect and Fungus.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zou, Z.; Liu, X.; Zhang, G.R. Revision of taxonomic system of the genus Hepialus (Lepidoptera, Hepialidae) currently adopted in China. J. Hunan Univ. Sci. Technol. 2010, 25, 114–120. [Google Scholar]
- Zhou, X.W.; Li, L.J.; Tian, E.W. Advances in research of the artificial cultivation of Ophiocordyceps sinensis in China. Crit. Rev. Biotechnol. 2014, 34, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Cao, L.; Zhang, Y.; Ye, Y.; Han, R. Laboratory rearing of Thitarodes armoricanus and Thitarodes jianchuanensis (Lepidoptera: Hepialidae), Hosts of the Chinese Medicinal Fungus Ophiocordyceps sinensis (Hypocreales: Ophiocordycipitaceae). J. Econ. Entomol. 2015, 109, 176–181. [Google Scholar] [CrossRef]
- Wang, X.L.; Yao, Y.J. Host insect species of Ophiocordyceps sinensis: A review. ZooKeys 2011, 127, 43–59. [Google Scholar]
- Won, S.Y.; Park, E.H. Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. J. Ethnopharmacol. 2005, 96, 555–561. [Google Scholar] [CrossRef]
- Yue, K.; Ye, M.; Lin, X.; Zhou, Z. The artificial cultivation of medicinal Caterpillar Fungus, Ophiocordyceps sinensis (Ascomycetes): A review. Int. J. Med. Mushrooms 2013, 15, 425–434. [Google Scholar] [CrossRef]
- Holliday, J.; Cleaver, M. Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr.) Link (Ascomycetes). A review. Int. J. Med. Mushrooms 2008, 10, 219–234. [Google Scholar] [CrossRef]
- Yue, K.; Ye, M.; Zhou, Z.J.; Sun, W.; Lin, X. The genus Cordyceps: A chemical and pharmacological review. J. Pharm. Pharmacol. 2013, 65, 474–493. [Google Scholar] [CrossRef]
- Sung, G.H.; Hywel-Jones, N.L.; Sung, J.M.; Luangsa-Ard, J.J.; Shrestha, B.; Spatafora, J.W. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 2007, 57, 5–59. [Google Scholar] [CrossRef] [Green Version]
- Lo, H.C.; Hsieh, C.; Lin, F.Y.; Hsu, T.H. A systematic review of the mysterious caterpillar fungus Ophiocordyceps sinensis in Dong-ChongXiaCao (Dōng Chóng Xià Cǎo) and Related Bioactive Ingredients. J. Tradit. Complement. Med. 2013, 3, 16–32. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, J.; Wang, W.; Zhang, H.; Zhang, X.; Han, C. The chemical constituents and pharmacological actions of Cordyceps sinensis. Evid. Based Complement. Altern. Med. 2015, 2015, 575063. [Google Scholar]
- Jiang, Y.; Yao, Y.J. Names related to Cordyceps sinensis anamorph. Mycotaxon 2002, 84, 245–254. [Google Scholar]
- Stone, R. Last sand for the body snatcher of the Himalayas? Science 2008, 322, 1182. [Google Scholar] [CrossRef]
- Yang, R.H.; Wang, X.L.; Su, J.H.; Li, Y.; Jiang, S.P.; Gu, F.; Yao, Y.J. Bacterial diversity in native habitats of the medicinal fungus Ophiocordyceps sinensis on Tibetan Plateau as determined using Illumina sequencing data. FEMS Microbiol. Lett. 2015, 362. [Google Scholar] [CrossRef]
- Chengxiang, H.; Guangxing, Q.; Ting, L.; Xinglin, M.; Rui, Z.; Pan, Z.; Zhongyuan, S.; Xijie, G. Differential gene expression in silkworm in response to Beauveria bassiana infection. Gene 2011, 484, 35–41. [Google Scholar] [CrossRef]
- Elvin, C.M.; Vuocolo, T.; Pearson, R.D.; East, I.J.; Riding, G.A.; Eisemann, C.H.; Tellam, R.L. Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae of Lucilia cuprina. cDNA and deduced amino acid sequences. J. Biol. Chem. 1996, 271, 8925–8935. [Google Scholar] [CrossRef] [Green Version]
- Leclerc, V.; Reichhart, J.M. The immune response of Drosophila melanogaster. Immunol. Rev. 2004, 198, 59–71. [Google Scholar] [CrossRef]
- Lemaitre, B.; Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 2007, 25, 697–743. [Google Scholar] [CrossRef] [Green Version]
- Fauvarque, M.O.; Williams, M.J. Drosophila cellular immunity: A story of migration and adhesion. J. Cell Sci. 2011, 124, 1373–1382. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Vilcinskas, A.; Kanost, M.R. Immunity in lepidopteran insects. Adv. Exp. Med. Biol. 2010, 708, 181–204. [Google Scholar]
- Bogus, M.I.; Kedra, E.; Bania, J.; Szczepanik, M.; Czygier, M.; Jablonski, P.; Pasztaleniec, A.; Samborski, J.; Mazgajska, J.; Polanowski, A. Different defense strategies of Dendrolimus pini, Galleria mellonella, and Calliphora vicina against fungal infection. J. Insect Physiol. 2007, 53, 909–922. [Google Scholar] [CrossRef]
- Lu, H.L.; St Leger, R.J. Insect Immunity to Entomopathogenic Fungi. Adv. Genet. 2016, 94, 251–285. [Google Scholar]
- Valanne, S.; Wang, J.H.; Ramet, M. The Drosophila Toll signaling pathway. J. Immunol. 2011, 186, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Myllymaki, H.; Valanne, S.; Ramet, M. The Drosophila imd signaling pathway. J. Immunol. 2014, 192, 3455–3462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baeg, G.H.; Zhou, R.; Perrimon, N. Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila. Genes Dev. 2005, 19, 1861–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramet, M.; Manfruelli, P.; Pearson, A.; Mathey-Prevot, B.; Ezekowitz, R.A. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 2002, 416, 644–648. [Google Scholar] [CrossRef]
- Meng, Q.; Yu, H.Y.; Zhang, H.; Zhu, W.; Wang, M.L.; Zhang, J.H.; Zhou, G.L.; Li, X.; Qin, Q.L.; Hu, S.N. Transcriptomic insight into the immune defenses in the ghost moth, Hepialus xiaojinensis, during an Ophiocordyceps sinensis fungal infection. Insect Biochem. Mol. Biol. 2015, 64, 1–15. [Google Scholar] [CrossRef]
- Li, S.; Zhong, X.; Kan, X.; Gu, L.; Sun, H.; Zhang, G.; Liu, X. De novo transcriptome analysis of Thitarodes jiachaensis before and after infection by the caterpillar fungus, Ophiocordyceps sinensis. Gene 2016, 580, 96–103. [Google Scholar] [CrossRef]
- Wang, M.; Hu, X. Antimicrobial peptide repertoire of Thitarodes armoricanus, a host species of Ophiocordyceps sinensis, predicted based on de novo transcriptome sequencing and analysis. Infect. Genet. Evol. 2017, 54, 238–244. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, J.H.; Zhang, H.; Zhou, G.L.; Ni, R.R.; Zhao, Y.N.; Qin, Q.L.; Zou, Z. Comparative analysis of C-type lectin domain proteins in the ghost moth, Thitarodes xiaojinensis (Lepidoptera: Hepialidae). Insect Sci. 2017, 26, 453–463. [Google Scholar] [CrossRef] [Green Version]
- Rao, Z.; Cao, L.; Qiu, X.; Liu, G.; Zhang, J.; Han, R. Genome of the Chinese ghost moth, a medicinal insect, highlights adaptations to the Tibetan plateau. manuscript in preparation.
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- De Hoon, M.J.; Imoto, S.; Nolan, J.; Miyano, S. Open source clustering software. Bioinformatics 2004, 20, 1453–1454. [Google Scholar] [CrossRef] [Green Version]
- Morgan, J.F. p Value fetishism and use of the Bonferroni adjustment. Evid. Based Ment. Health 2007, 10, 34–35. [Google Scholar] [CrossRef]
- Ye, J.; Fang, L.; Zheng, H.; Zhang, Y.; Chen, J.; Zhang, Z.; Wang, J.; Li, S.; Li, R.; Bolund, L. WEGO: A web tool for plotting GO annotations. Nucleic Acids Res. 2006, 34, W293–W297. [Google Scholar] [CrossRef]
- Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.Y.; Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 39, W316–W322. [Google Scholar] [CrossRef] [Green Version]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Veillard, F.; Troxler, L.; Reichhart, J.M. Drosophila melanogaster clip-domain serine proteases: Structure, function and regulation. Biochimie 2016, 122, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.; Zhang, H.; Gao, S.; Lercher, M.J.; Chen, W.H.; Hu, S. Evolview v2: An online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Res. 2016, 44, W236–W241. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, 7, RESEARCH0034. [Google Scholar] [CrossRef] [Green Version]
- Cho, W.L.; Fu, Y.C.; Chen, C.C.; Ho, C.M. Cloning and characterization of cDNAs encoding the antibacterial peptide, defensin A, from the mosquito, Aedes aegypti. Insect Biochem. Mol. Biol. 1996, 26, 395–402. [Google Scholar] [CrossRef]
- Cytrynska, M.; Mak, P.; Zdybicka-Barabas, A.; Suder, P.; Jakubowicz, T. Purification and characterization of eight peptides from Galleria mellonella immune hemolymph. Peptides 2007, 28, 533–546. [Google Scholar] [CrossRef]
- Pan, H.; Liu, S.; Tang, D. HPR1, a component of the THO/TREX complex, plays an important role in disease resistance and senescence in Arabidopsis. Plant J. 2012, 69, 831–843. [Google Scholar] [CrossRef]
- Fontenele, M.; Lim, B.; Oliveira, D.; Buffolo, M.; Perlman, D.H.; Schupbach, T.; Araujo, H. Calpain A modulates Toll responses by limited Cactus/IkappaB proteolysis. Mol. Biol. Cell 2013, 24, 2966–2980. [Google Scholar] [CrossRef]
- Misra, S.; Hecht, P.; Maeda, R.; Anderson, K.V. Positive and negative regulation of Easter, a member of the serine protease family that controls dorsal-ventral patterning in the Drosophila embryo. Development 1998, 125, 1261–1267. [Google Scholar]
- Hu, X.; Zhang, Y.J.; Xiao, G.H.; Zheng, P.; Xia, Y.L.; Zhang, X.Y.; Raymond, S.L.; Liu, X.Z.; Wang, C.S. Genome survey uncovers the secrets of sex and lifestyle in caterpillar fungus. Chin. Sci. Bull. 2013, 58, 2846–2854. [Google Scholar] [CrossRef] [Green Version]
- Kanost, M.R.; Jiang, H.; Wang, Y.; Yu, X.Q.; Ma, C.; Zhu, Y. Hemolymph proteinases in immune responses of Manduca sexta. Adv. Exp. Med. Biol. 2001, 484, 319–328. [Google Scholar] [PubMed]
- Jiang, H.; Kanost, M.R. The clip-domain family of serine proteinases in arthropods. Insect Biochem. Mol. Biol. 2000, 30, 95–105. [Google Scholar] [CrossRef]
- Mulinari, S.; Hacker, U.; Castillejo-Lopez, C. Expression and regulation of Spatzle-processing enzyme in Drosophila. FEBS Lett. 2006, 580, 5406–5410. [Google Scholar] [CrossRef] [Green Version]
- Jang, I.H.; Chosa, N.; Kim, S.H.; Nam, H.J.; Lemaitre, B.; Ochiai, M.; Kambris, Z.; Brun, S.; Hashimoto, C.; Ashida, M. A Spatzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev. Cell 2006, 10, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Gottar, M.; Gobert, V.; Matskevich, A.A.; Reichhart, J.M.; Wang, C.; Butt, T.M.; Belvin, M.; Hoffmann, J.A.; Ferrandon, D. Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 2006, 127, 1425–1437. [Google Scholar] [CrossRef] [Green Version]
- El Chamy, L.; Leclerc, V.; Caldelari, I.; Reichhart, J.M. Sensing of ‘danger signals’ and pathogen-associated molecular patterns defines binary signaling pathways ‘upstream’ of Toll. Nat. Immunol. 2008, 9, 1165–1170. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.; Giordano, H.; DeLotto, R. Mutational analysis of the Drosophila snake protease: An essential role for domains within the proenzyme polypeptide chain. Genetics 1994, 136, 1355–1365. [Google Scholar]
- Smith, C.L.; DeLotto, R. Ventralizing signal determined by protease activation in Drosophila embryogenesis. Nature 1994, 368, 548–551. [Google Scholar] [CrossRef]
- Monwan, W.; Amparyup, P.; Tassanakajon, A. A snake-like serine proteinase (PmSnake) activates prophenoloxidase-activating system in black tiger shrimp Penaeus monodon. Dev. Comp. Immunol. 2017, 67, 229–238. [Google Scholar] [CrossRef]
- Zhao, H.; Lovett, B.; Fang, W. Genetically Engineering Entomopathogenic Fungi. Adv. Genet. 2016, 94, 137–163. [Google Scholar] [PubMed]
- De Bekker, C.; Ohm, R.A.; Loreto, R.G.; Sebastian, A.; Albert, I.; Merrow, M.; Brachmann, A.; Hughes, D.P. Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genom. 2015, 16, 620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, K.; Lefebvre, C.; Coderre, T.J. Antinociceptive effects following intrathecal pretreatment with selective metabotropic glutamate receptor compounds in a rat model of neuropathic pain. Pharmacol. Biochem. Behav. 2002, 73, 411–418. [Google Scholar] [CrossRef]
- Lorden, J.F.; Caudle, A. Behavioral and endocrinological effects of single injections of monosodium glutamate in the mouse. Neurobehav. Toxicol. Teratol. 1986, 8, 509–519. [Google Scholar] [PubMed]
- Wichadakul, D.; Kobmoo, N.; Ingsriswang, S.; Tangphatsornruang, S.; Chantasingh, D.; Luangsa-ard, J.J.; Eurwilaichitr, L. Insights from the genome of Ophiocordyceps polyrhachis-furcata to pathogenicity and host specificity in insect fungi. BMC Genom. 2015, 16, 881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, X.; Gu, L.; Li, S.S.; Kan, X.T.; Zhang, G.R.; Liu, X. Transcriptome analysis of Ophiocordyceps sinensis before and after infection of Thitarodes larvae. Fungal Biol. 2016, 120, 819–826. [Google Scholar] [CrossRef]
- Hopping, K.A.; Chignell, S.M.; Lambin, E.F. The demise of caterpillar fungus in the Himalayan region due to climate change and overharvesting. Proc. Natl. Acad. Sci. USA 2018, 115, 11489–11494. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, Q.; Li, W.; Li, Q.; Qian, Z.; Liu, X.; Dong, C. A breakthrough in the artificial cultivation of Chinese cordyceps on a large-scale and its impact on science, the economy, and industry. Crit. Rev. Biotechnol. 2019, 39, 181–191. [Google Scholar] [CrossRef]
Cluster | Number of DEGs | Expression Pattern | ||
---|---|---|---|---|
PH3d | OS3d | OS15d | ||
Cluster 1 | 402 | Down | Down | All Pattern |
Cluster 2a | 409 | Down | Up/Unchanged | All Pattern |
Cluster 2b | 657 | Up/Unchanged | Down | All Pattern |
Cluster 3a | 89 | Unchanged | Unchanged | Down |
Cluster 3b | 185 | Unchanged | Unchanged | Up |
Cluster 4a | 433 | Up | Unchanged | All Pattern |
Cluster 4b | 765 | Unchanged | Up | All Pattern |
Cluster 5 | 166 | Up | Up | All Pattern |
# | Immune Related Pathways | 3 d | 15 d | ||||||
---|---|---|---|---|---|---|---|---|---|
UP | Down | Up | Down | ||||||
C | PH | OS | C | PH | OS | OS | OS | ||
1 | Humoral immune response | 18 | 50 | 23 | 5 | 10 | 14 | 42 | 8 |
Pathogen recognition | 3 | 19 | 5 | 3 | 2 | 5 | 7 | 5 | |
Signal modulation and transduction | 5 | 29 | 4 | 1 | 2 | 8 | 12 | 2 | |
Toll pathway genes | 4 | 26 | 4 | 1 | 2 | 7 | 9 | 2 | |
IMD pathway genes | 1 | 1 | 0 | 0 | 0 | 1 | 3 | 0 | |
JAK/STAT pathway | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | |
JNK pathway | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Pathogen elimination | 10 | 2 | 14 | 1 | 6 | 1 | 23 | 1 | |
2 | Apoptosis | 0 | 1 | 1 | 4 | 2 | 1 | 1 | 0 |
3 | Autophagy | 1 | 3 | 4 | 7 | 4 | 10 | 5 | 6 |
4 | Coagulation | 0 | 0 | 2 | 10 | 1 | 0 | 1 | 2 |
5 | Encapsulation | 1 | 0 | 0 | 3 | 1 | 0 | 0 | 0 |
6 | Melanization | 1 | 3 | 0 | 3 | 1 | 1 | 0 | 0 |
7 | Phagocytosis | 0 | 1 | 3 | 0 | 1 | 0 | 1 | 0 |
8 | Removal of superoxide radicals | 4 | 2 | 4 | 1 | 0 | 2 | 1 | 1 |
9 | Small Regulatory RNA pathway | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
10 | Others | 0 | 5 | 6 | 1 | 3 | 4 | 2 | 1 |
Total | 25 | 66 | 43 | 31 | 23 | 33 | 53 | 18 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, Z.; Cao, L.; Wu, H.; Qiu, X.; Liu, G.; Han, R. Comparative Transcriptome Analysis of Thitarodes Armoricanus in Response to the Entomopathogenic Fungi Paecilomyces Hepiali and Ophiocordyceps Sinensis. Insects 2020, 11, 4. https://doi.org/10.3390/insects11010004
Rao Z, Cao L, Wu H, Qiu X, Liu G, Han R. Comparative Transcriptome Analysis of Thitarodes Armoricanus in Response to the Entomopathogenic Fungi Paecilomyces Hepiali and Ophiocordyceps Sinensis. Insects. 2020; 11(1):4. https://doi.org/10.3390/insects11010004
Chicago/Turabian StyleRao, Zhongchen, Li Cao, Hua Wu, Xuehong Qiu, Guiqing Liu, and Richou Han. 2020. "Comparative Transcriptome Analysis of Thitarodes Armoricanus in Response to the Entomopathogenic Fungi Paecilomyces Hepiali and Ophiocordyceps Sinensis" Insects 11, no. 1: 4. https://doi.org/10.3390/insects11010004
APA StyleRao, Z., Cao, L., Wu, H., Qiu, X., Liu, G., & Han, R. (2020). Comparative Transcriptome Analysis of Thitarodes Armoricanus in Response to the Entomopathogenic Fungi Paecilomyces Hepiali and Ophiocordyceps Sinensis. Insects, 11(1), 4. https://doi.org/10.3390/insects11010004