Changes in the Honeybee Antioxidant System after 12 h of Exposure to Electromagnetic Field Frequency of 50 Hz and Variable Intensity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Research Material
2.2. Hemolymph Analyses
2.3. Exposure to the Electromagnetic Field
2.4. Data Evaluation
3. Results
3.1. Superoxide Dismutase Activity (SOD)
3.2. Catalase Activity (CAT)
3.3. Total Antioxidant Potential (FRAP)
4. Discussion
4.1. Superoxide Dismutase Activity (SOD)
4.2. Catalase Activity (CAT)
4.3. Total Antioxidant Potential (FRAP)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ollerton, J.; Winfree, R.; Tarrant, S. How many flowering plants are pollinated by animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Klein, A.-M.; Vaissière, E.B.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2006, 274, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Gallai, N.; Salles, J.-M.; Settele, J.; Vaissière, B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Van Engelsdorp, D.; Underwood, R.M.; Hayes, J. An Estimate of Managed Colony Losses in the Winter of 2006–2007: A Report Commissioned by the Apiary Inspectors of America. Am. Bee J. 2007, 147, 599–630. [Google Scholar]
- Panagopoulos, D.J.; Johansson, O.; Carlo, G.L. Real versus Simulated Mobile Phone Exposures in Experimental Studies. BioMed Res. Int. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Fragopoulou, A.F.; Koussoulakos, S.L.; Margaritis, L.H. Cranial and postcranial skeletal variations induced in mouse embryos by mobile phone radiation Pathophysio. Pathophysiology 2010, 17, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Gotz, M.; Rapp, M.; Dostert, K. Power line channel characteristics and their effect on communication system design. IEEE Commun. Mag. 2004, 42, 78–86. [Google Scholar] [CrossRef]
- Maslanyj, M.; Simpson, J.; Roman, E.; Schüz, J. Power frequency magnetic fields and risk of childhood leukaemia: Misclassification of exposure from the use of the ‘distance from power line’ exposure surrogate. Bioelectromagnetics 2009, 30, 183–188. [Google Scholar] [CrossRef]
- Milutinov, M.; Juhas, A.; Prša, M. Electromagnetic Field Underneath Overhead High Voltage Power Line. In Proceedings of the 4th International Conference on Engineering Technologies—ICET, Terengganu, Malaysia, 6–7 July 2019. [Google Scholar]
- Paś, J. Linie napowietrzne wysokich napięć—Środowisko elektromagnetyczne a ograniczenia w użytkowaniu terenów. Bull. Mil. Univ. Technol. 2014, 63, 49–61. [Google Scholar] [CrossRef]
- Ross, J.B.; Huh, D.; Noble, L.B.; Tavazoie, S.F. Identification of molecular determinants of primary and metastatic tumour re-initiation in breast cancer. Nat. Cell Biol. 2015, 17, 651–664. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.-C.; Zhang, F.; Adamantidis, A.; Stuber, G.D.; Bonci, A.; De Lecea, L.; Deisseroth, K. Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning. Science 2009, 324, 1080–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisi, A.; Foletti, A.; Ledda, M.; De Carlo, F.; Giuliani, L.; D’Emilia, E.; Grimaldi, S. Resonance as a Tool to Transfer Information to Living Systems: The Effect of 7 Hz Calcium Ion Energy Resonance on Human Epithelial Cells (HaCaT) Differentiation. In Proceedings of the Electromagnetics Research Symposium, Cambridge, MA, USA, 2–6 July 2008; pp. 902–906. [Google Scholar]
- Phillips, O.L.; Malhi, Y.; Higuchi, N.; Laurance, W.F.; Núñez, P.V.; Vásquez, R.M.; Laurance, S.G.; Ferreira, L.V.; Stern, M.; Brown, S.; et al. Changes in the Carbon Balance of Tropical Forests: Evidence from Long-Term Plots. Science 1998, 282, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Walcott, C.; Green, R.P. Orientation of Homing Pigeons Altered by a Change in the Direction of an Applied Magnetic Field. Science 1974, 184, 180–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Pomerai, D.; Daniells, C.; David, H.; Allan, J.; Duce, I.; Mutwakil, M.; Thomas, D.; Sewell, P.; Tattersall, J.; Jones, D.; et al. Non-thermal heat-shock response to microwaves. Nat. Cell Biol. 2000, 405, 417–418. [Google Scholar] [CrossRef] [PubMed]
- Liboff, A.; Jenrow, K. Physical mechanisms in neuroelectromagnetic therapies. Neurorehabilitation 2002, 17, 9–22. [Google Scholar] [CrossRef]
- Severini, M.; Bosco, L.; Alilla, R.; Loy, M.; Bonori, M.; Giuliani, L.; Bedini, A.; Giliberti, C.; Palomba, R.; Pesolillo, S.; et al. Metamorphosis delay in Xenopus laevis (Daudin) tadpoles exposed to a 50 Hz weak magneticfield. Int. J. Radiat. Biol. 2010, 86, 37–46. [Google Scholar] [CrossRef]
- Schmidt-Zachmann, M.S.; Knecht, S.; Krämer, A. Molecular Characterization of a Novel, Widespread Nuclear Protein That Colocalizes with Spliceosome Components. Mol. Biol. Cell 1998, 9, 143–160. [Google Scholar] [CrossRef] [Green Version]
- Junkersdorf, B.; Bauer, H.; Gutzeit, H.O. Electromagnetic fields enhance the stress response at elevated temperatures in the nematodeCaenorhabditis elegans. Bioelectromagnetics 2000, 21, 100–106. [Google Scholar] [CrossRef]
- De Pomerai, D.I.; Dawe, A.; Djerbib, L.; Allan, J.; Brunt, G.; Daniells, C. Growth and maturation of the nematode Caenorhabditis elegans following exposure to weak microwave fields. Enzym. Microb. Technol. 2002, 30, 73–79. [Google Scholar] [CrossRef]
- Kullnick, U. Do weak, low pulsed frequency, high-frequency electromagnetic or magnetic fields alter the basic bioelectrical parameters of nerve cells in vineyard snails (Helix pomatia L.)? I. Electromagnetic fields. Bioelectrochem. Bioenerg. 1995, 37, 39–45. [Google Scholar] [CrossRef]
- Ossenkopp, K.P.; Kavaliers, M.; Lipa, S. Increased mortality in land snails (Cepaeanemoralis) exposed to powerline (60-Hz) magnetic fields and effects of the light-dark cycle. Neurosci. Lett. 1990, 114, 89–94. [Google Scholar] [CrossRef]
- Gherardini, L.; Ciuti, G.; Tognarelli, S.; Cinti, C. Searching for the Perfect Wave: The Effect of Radiofrequency Electromagnetic Fields on Cells. Int. J. Mol. Sci. 2014, 15, 5366–5387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberts, B.; Johnson, A.; Lewis, J.; Morgan, D.; Raff, M.; Roberts, K.; Walter, P. Membrane Transport of Small Molecules and the Electrical Properties of Membranes. In Molecular Biology of the Cell; Informa UK Limited: London, UK, 2017; pp. 597–640. [Google Scholar]
- Ozmen, I.; Nazıroğlu, M.; Alici, H.A.; Sahin, F.; Cengiz, M.; Eren, I. Spinal Morphine Administration Reduces the Fatty Acid Contents in Spinal Cord and Brain by Increasing Oxidative Stress. Neurochem. Res. 2006, 32, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Di Loreto, S.; Falone, S.; Caracciolo, V.; Sebastiani, P.; D’Alessandro, A.; Mirabilio, A.; Zimmitti, V.; Amicarelli, F. Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons. J. Cell. Physiol. 2009, 219, 334–343. [Google Scholar] [CrossRef]
- Sun, W.; Gan, Y.; Fu, Y.; Lu, D.; Chiang, H. An Incoherent Magnetic Field Inhibited EGF Receptor Clustering and Phosphorylation Induced by a 50-Hz Magnetic Field in Cultured FL Cells. Cell. Physiol. Biochem. 2008, 22, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, S.K.; Devaraj, S.; Yang, T.; Jialal, I. Alpha-tocopherol decreases superoxide anion release in human monocytes under hyperglycemic conditions via inhibition of protein kinase C-alpha. Diabetes 2002, 51, 3049–3054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halliwell, B. Oxidative stress and cancer: Have we moved forward? Biochem. J. 2006, 401, 1–11. [Google Scholar] [CrossRef]
- Farjan, M.; Dmitryjuk, M.; Lipiński, Z.; Biernat-Łopieńska, E.; Żółtowska, K. Supplementation of the honey bee diet with vitamin C: The effect on the antioxidative system ofApis mellifera carnicabrood at different stages. J. Apic. Res. 2012, 51, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Słowińska, M.; Nynca, J.; Wilde, J.; Bąk, B.; Siuda, M.; Ciereszko, A. Total antioxidant capacity of honeybee haemolymph in relation to age and exposure to pesticide, and comparison to antioxidant capacity of seminal plasma. Apidologie 2015, 47, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Mhamdi, A.; Van Breusegem, F. Reactive oxygen species in plant development. Development 2018, 145, dev164376. [Google Scholar] [CrossRef] [Green Version]
- Margotta, J.W.; Roberts, S.P.; Elekonich, M.M. Effects of flight activity and age on oxidative damage in the honey bee, Apis mellifera. J. Exp. Biol. 2018, 221, jeb183228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corona, M.; Robinson, G.E. Genes of the antioxidant system of the honey bee: Annotation and phylogeny. Insect Mol. Biol. 2006, 15, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Strachecka, A.; Olszewski, K.; Paleolog, J. Varroa treatment with bromfenvinphos markedly suppresses honeybee biochemical defence levels. Èntomol. Exp. Appl. 2016, 160, 57–71. [Google Scholar] [CrossRef]
- Migdał, P.; Roman, A.; Strachecka, A.; Murawska, A.; Bieńkowski, P. Changes of selected biochemical parameters of the honeybee under the influence of an electric field at 50 Hz and variable intensities. Apidologie 2020, 1–12. [Google Scholar] [CrossRef]
- Migdał, P.; Murawska, A.; Roman, A. A Modified Standardized Method to Extract and Store Insect Hemolymph with Use of a Glass Capillary. J. Apic. Sci. 2020, 64, 165–168. [Google Scholar] [CrossRef]
- Łoś, A.; Strachecka, A. Fast and Cost-Effective Biochemical Spectrophotometric Analysis of Solution of Insect “Blood” and Body Surface Elution. Sensors 2018, 18, 1494. [Google Scholar] [CrossRef] [Green Version]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2018. Available online: https://www.r-project.org/ (accessed on 13 February 2012).
- Hayyan, M.; Hashim, M.A.; Alnashef, I.M. Superoxide Ion: Generation and Chemical Implications. Chem. Rev. 2016, 116, 3029–3085. [Google Scholar] [CrossRef] [Green Version]
- Strachecka, A.; Olszewski, K.; Paleolog, J.; Borsuk, G.; Bajda, M.; Krauze, M.; Merska, M.; Chobotow, J. Coenzyme Q10 Treatments Influence The Lifespan And Key Biochemical Resistance Systems in the Honeybee, Apis mellifera. Arch. Insect Biochem. Physiol. 2014, 86, 165–179. [Google Scholar] [CrossRef]
- Collins, A.M.; Williams, V.; Evans, J.D. Sperm storage and antioxidative enzyme expression in the honey bee, Apis mellifera. Insect Mol. Biol. 2004, 13, 141–146. [Google Scholar] [CrossRef]
- Li, C.; Xu, B.; Wang, Y.; Feng, Q.; Yang, W. Effects of dietary crude protein levels on development, antioxidant status, and total midgut protease activity of honey bee (Apis mellifera ligustica). Apidologie 2012, 43, 576–586. [Google Scholar] [CrossRef] [Green Version]
- Nikolić, T.V.; Kojić, D.; Orčić, S.; Batinić, D.; Vukašinović, E.; Blagojević, D.; Purać, J. The impact of sublethal concentrations of Cu, Pb and Cd on honey bee redox status, superoxide dismutase and catalase in laboratory conditions. Chemosphere 2016, 164, 98–105. [Google Scholar] [CrossRef]
- Kıvrak, E.G.; Yurt, K.K.; Kaplan, A.A.; Alkan, I.; Altun, G. Effects of electromagnetic fields exposure on the antioxidant defense system. J. Microsc. Ultrastruct. 2017, 5, 167–176. [Google Scholar] [CrossRef]
- Korayem, A.M.; Khodairy, M.M.; Abdel-Aal, A.A.; El-Sonbaty, A.A.M. The protective strategy of antioxidant enzymes against hydrogen peroxide in honey bee, Apis mellifera during two different seasons. J. Biol. Earth Sci. 2012, 2, B93–B109. [Google Scholar]
- Orčić, S.; Nikolić, T.; Purać, J.; Šikoparija, B.; Blagojević, D.; Vukašinović, E.; Plavša, N.; Stevanović, J.; Kojić, D. Seasonal variation in the activity of selected antioxidant enzymes and malondialdehyde level in worker honey bees. Èntomol. Exp. Appl. 2017, 165, 120–128. [Google Scholar] [CrossRef]
- Chelikani, P.; Fita, I.; Loewen, P.C. Diversity of structures and properties among catalases. Cell. Mol. Life Sci. 2004, 61, 192–208. [Google Scholar] [CrossRef] [PubMed]
- Mockett, R.J.; Bayne, A.-C.V.; Kwong, L.K.; Orr, W.C.; Sohal, R.S. Ectopic expression of catalase in Drosophila mitochondria increases stress resistance but not longevity. Free Radic. Biol. Med. 2003, 34, 207–217. [Google Scholar] [CrossRef]
- Sagona, S.; Betti, L.; Casini, L.; Palego, L.; Giannaccini, G.; Felicioli, A. Antioxidant enzymes activity during age polyethism in Apis mellifera L., 1758. J. Apic. Res. 2020, 1–11. [Google Scholar] [CrossRef]
- Weirich, G.F.; Collins, A.M.; Williams, V.P. Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie 2002, 33, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Strachecka, A.; Chobotow, J.; Paleolog, J.; Łoś, A.; Schulz, M.; Teper, D.; Kucharczyk, H.; Grzybek, M. Insights into the biochemical defence and methylation of the solitary bee Osmia rufa L: A foundation for examining eusociality development. PLoS ONE 2017, 12, e0176539. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migdał, P.; Murawska, A.; Strachecka, A.; Bieńkowski, P.; Roman, A. Changes in the Honeybee Antioxidant System after 12 h of Exposure to Electromagnetic Field Frequency of 50 Hz and Variable Intensity. Insects 2020, 11, 713. https://doi.org/10.3390/insects11100713
Migdał P, Murawska A, Strachecka A, Bieńkowski P, Roman A. Changes in the Honeybee Antioxidant System after 12 h of Exposure to Electromagnetic Field Frequency of 50 Hz and Variable Intensity. Insects. 2020; 11(10):713. https://doi.org/10.3390/insects11100713
Chicago/Turabian StyleMigdał, Paweł, Agnieszka Murawska, Aneta Strachecka, Paweł Bieńkowski, and Adam Roman. 2020. "Changes in the Honeybee Antioxidant System after 12 h of Exposure to Electromagnetic Field Frequency of 50 Hz and Variable Intensity" Insects 11, no. 10: 713. https://doi.org/10.3390/insects11100713
APA StyleMigdał, P., Murawska, A., Strachecka, A., Bieńkowski, P., & Roman, A. (2020). Changes in the Honeybee Antioxidant System after 12 h of Exposure to Electromagnetic Field Frequency of 50 Hz and Variable Intensity. Insects, 11(10), 713. https://doi.org/10.3390/insects11100713