Susceptibility of Fall Armyworms (Spodoptera frugiperda J.E.) from Mexico and Puerto Rico to Bt Proteins
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Field and Laboratory Fall Armyworm Populations
2.2. Insect Rearing
2.3. Bt Proteins
2.4. Bioassays
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dew, J.A. Fall army worm. J. Econ. Entomol. 1913, 6, 361–366. [Google Scholar] [CrossRef]
- Casmuz, A.; Juarez, M.L.; Socias, M.G.; Murua, M.G.; Prieto, S.; Medina, S.; Willink, E.; Gastaminza, G. Review of the host plants of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Rev. Soc. Entomol. Arge. 2017, 69, 3–4. [Google Scholar]
- Buntin, G.D.; Lee, R.D.; Wilson, D.M.; McPherson, R.M. Evaluation of YieldGard transgenic resistance for control of fall armyworm and corn earworm (Lepidoptera: Noctuidae) on corn. Fla. Entomol. 2001, 84, 37–42. [Google Scholar] [CrossRef]
- Rodríguez-del-Bosque, L.A.; Cantú-Almaguer, M.A.; Reyes-Méndez, C.A. Corn hybrids and planting dates affect yield losses by Helicoverpa zea and Spodoptera frugiperda (Lepidoptera: Noctuidae) feeding on ears in Mexico. J. Entomol. Sci. 2012, 47, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Nagoshi, R.N.; Meagher, R.L.; Hay-Roe, M. Inferring the annual migration patterns of fall armyworm (Lepidoptera: Noctuidae) in the United States from mitochondrial haplotypes. Ecol. Evol. 2012, 2, 1458–1467. [Google Scholar] [CrossRef] [PubMed]
- Goergen, G.; Kumar, P.L.; Sankung, S.B.; Togola, A.; Tamò, M. First Report of Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 2016, 11, e0165632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization of the United Nations. Fall Armyworm. Available online: http://www.fao.org/fall-armyworm/monitoring-tools/faw-map/en/ (accessed on 27 June 2020).
- Nagoshi, R.N.; Htain, N.N.; Boughton, D.; Zhang, L.; Xiao, Y.; Nagoshi, B.Y.; Mota-Sanchez, D. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 2020, 10, 1421. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.J.; Nguyen, S.N.; Abo-Elghar, G.E. Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (JE Smith). Pestic. Biochem. Phys. 2003, 77, 1–11. [Google Scholar] [CrossRef]
- Belay, D.K.; Huckaba, R.M.; Foster, J.E. Susceptibility of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), at Santa Isabel, Puerto Rico, to different insecticides. Fla. Entomol. 2012, 95, 476–478. [Google Scholar] [CrossRef]
- Zhu, Y.C.; Blanco, C.A.; Portilla, M.; Adamczyk, J.; Luttrell, R.; Huang, F. Evidence of multiple/cross resistance to Bt and organophosphate insecticides in Puerto Rico population of the fall armyworm, Spodoptera frugiperda. Pestic. Biochem. Phys. 2015, 122, 15–21. [Google Scholar] [CrossRef]
- Gutiérrez-Moreno, R.; Mota-Sanchez, D.; Blanco, C.A.; Whalon, M.E.; Terán-Santofimio, H.; Rodriguez-Maciel, J.C.; DiFonzo, C. Field-Evolved Resistance of the Fall Armyworm (Lepidoptera: Noctuidae) to Synthetic Insecticides in Puerto Rico and Mexico. J. Econ. Entomol. 2019, 112, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Blanco, C.A.; Portilla, M.; Jurat-Fuentes, J.L.; Sánchez, J.F.; Viteri, D.; Vega-Aquino, P.; Terán-Vargas, A.P. Susceptibility of isofamilies of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Cry1Ac and Cry1Fa proteins of Bacillus thuringiensis. Southwest. Entomol. 2010, 35, 409–415. [Google Scholar] [CrossRef]
- Storer, N.P.; Babcock, J.M.; Schlenz, M.; Meade, T.; Thompson, G.D.; Bing, J.W.; Huckaba, R.M. Discovery and characterization of field resistance to Bt Maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 2010, 103, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Storer, N.P.; Kubiszak, M.E.; King, J.E.; Thompson, G.D.; Santos, A.C. Status of resistance to Bt maize in Spodoptera frugiperda: Lessons from Puerto Rico. J. Invertebr. Pathol. 2012, 110, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, O.; Sorgatto, R.J.; Barbosa, A.D.; Domingues, F.A.; Dourado, P.M.; Carvalho, R.A.; Martinelli, S.; Head, G.P.; Omoto, C. Low susceptibility of Spodoptera cosmioides, Spodoptera eridania and Spodoptera frugiperda (Lepidoptera: Noctuidae) to genetically-modified soybean expressing Cry1Ac protein. Crop Prot. 2014, 58, 33–40. [Google Scholar] [CrossRef]
- Farias, J.R.; Andow, D.A.; Horikoshi, R.J.; Sorgatto, R.J.; Fresia, P.; dos Santos, A.C.; Omoto, C. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot. 2014, 64, 150–158. [Google Scholar] [CrossRef]
- Omoto, C.; Bernardi, O.; Salmeron, E.; Sorgatto, R.J.; Dourado, P.M.; Crivellari, A.; Carvalho, R.A.; Willse, A.; Martinelli, S.; Head, G.P. Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Manag. Sci. 2016, 72, 1727–1736. [Google Scholar] [CrossRef]
- Huang, F.; Qureshi, J.A.; Meagher, R.L., Jr.; Reisig, D.D.; Head, G.P.; Andow, D.A.; Ni, X.; Kerns, D.; Buntin, G.D.; Niu, Y. Cry1F resistance in fall armyworm Spodoptera frugiperda: Single gene versus pyramided Bt maize. PLoS ONE 2014, 9, e112958. [Google Scholar] [CrossRef] [Green Version]
- Huang, F. F2 screen for resistance to Bacillus thuringiensis Cry2Ab2-maize in field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) from the Southern United States. J. Invertebr. Pathol. 2016, 138, 66–72. [Google Scholar]
- Li, G.; Reisig, D.; Miao, J.; Gould, F.; Huang, F.; Feng, H. Frequency of Cry1F non-recessive resistance alleles in North Carolina field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae). PLoS ONE 2016, 11, e0154492. [Google Scholar] [CrossRef] [Green Version]
- Chandrasena, D.I.; Signorini, A.M.; Abratti, G.; Storer, N.P.; Olaciregui, M.L.; Alves, A.P.; Pilcher, C.D. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F δ-endotoxin in Spodoptera frugiperda populations from Argentina. Pest Manag. Sci. 2018, 74, 746–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, C.A.; Chiaravalle, W.; Dalla-Rizza, M.; Farias, J.R.; García-Degano, M.F.; Gastaminza, G.; Mota-Sánchez, D.; Murúa, M.G.; Omoto, C.; Pieralisi, B.K. Current situation of pests targeted by Bt crops in Latin America. Curr. Opin. Insect Sci. 2016, 15, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Burtet, L.M.; Bernardi, O.; Melo, A.A.; Pes, M.P.; Strahl, T.T.; Guedes, J.V. Managing fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), with Bt maize and insecticides in southern Brazil. Pest Manag. Sci. 2017, 73, 2569–2577. [Google Scholar] [CrossRef] [PubMed]
- Luttrell, R.G.; Wan, L.; Knighten, K. Variation in susceptibility of noctuid (Lepidoptera) larvae attacking cotton and soybean to purified endotoxin proteins and commercial formulations of Bacillus thuringiensis. J. Econ. Entomol. 1999, 92, 21–32. [Google Scholar] [CrossRef]
- Hardke, J.T.; Leonard, B.R.; Huang, F.; Jackson, R.E. Damage and survivorship of fall armyworm (Lepidoptera: Noctuidae) on transgenic field corn expressing Bacillus thuringiensis Cry proteins. Crop Prot. 2011, 30, 168–172. [Google Scholar] [CrossRef]
- Vélez, A.M.; Spencer, T.A.; Alves, A.P.; Crespo, A.L.B.; Siegfried, B.D. Fitness costs of Cry1F resistance in fall armyworm, Spodoptera frugiperda. J. Appl. Entomol. 2014, 138, 315–325. [Google Scholar] [CrossRef]
- Bernardi, D.; Salmeron, E.; Horikoshi, R.J.; Bernardi, O.; Dourado, P.M.; Carvalho, R.A.; Martinelli, S.; Head, G.P.; Omoto, C. Cross-resistance between Cry1 proteins in fall armyworm (Spodoptera frugiperda) may affect the durability of current pyramided Bt maize hybrids in Brazil. PLoS ONE 2015, 10, e0140130. [Google Scholar] [CrossRef] [Green Version]
- Blanco, C.A.; Pellegaud, J.G.; Nava-Camberos, U.; Lugo-Barrera, D.; Vega-Aquino, P.; Coello, J.; Terán-Vargas, A.P.; Vargas-Camplis, J. Maize pests in Mexico and challenges for the adoption of integrated pest management programs. J. Integr. Pest Manag. 2014, 5, E1–E9. [Google Scholar] [CrossRef] [Green Version]
- Tabashnik, B.E.; Brevault, T.; Carriere, Y. Insect resistance to Bt crops: Lessons from the first billion acres. Nat. Biotechnol. 2013, 31, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Monnerat, R.; Martins, E.; Queiroz, P.; Praca, L.; Soares, C.M. Insect resistance to Bt toxins in Brazil and Latin America. In Bt Resistance: Characterization and Strategies for GM Crops Producing Bacillus Thuringiensis Toxins; Soberón, M., Gao, A., Bravo, A., Eds.; CABI: Wallingford, UK, 2015; pp. 26–35. [Google Scholar]
- Robertson, J.L.; Smith, K.C.; Savin, N.E.; Lavigne, R.J. Effects of dose selection and sample size on the precision of lethal dose estimates in dose–mortality regression. J. Econ. Entomol. 1984, 77, 833–837. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: Cambridge, UK, 1971. [Google Scholar]
- SAS Institute. SAS User’s Guide Version 9.3; SAS Institute Inc.: Cary, NC, USA, 2011; Available online: http://support.sas.com/index.html (accessed on 26 November 2020).
- OriginLab. Origin 8 User Guide; OriginLab Corporation: Northampton, MA, USA, 2007. [Google Scholar]
- Sims, S.B.; Greenplate, J.T.; Stone, T.B.; Caprio, M.A.; Gould, F.L. Monitoring strategies for early detection of Lepidoptera resistance to Bacillus thuringiensis insecticidal proteins. In ACS Symposium Series; ACS Publications: Washington, DC, USA, 1996; Volume 645, pp. 229–242. [Google Scholar]
- Rivero-Borja, M.; Rodríguez-Maciel, J.C.; Urzúa Gutiérrez, J.A.; Silva-Aguayo, G.; Chandrasena, D.I.; Felix-Bermudez, N.C.; Storer, N.P. Baseline of Susceptibility to the Cry1F Protein in Mexican Populations of Fall Armyworm. J. Econ. Entomol. 2020, 113, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Vélez, A.M.; Spencer, T.A.; Alves, A.P.; Moellenbeck, D.; Meagher, R.L.; Chirakkal, H.; Siegfried, B.D. Inheritance of Cry1F resistance, cross-resistance and frequency of resistant alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae). Bull. Entomol. Res. 2013, 103, 700–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vélez, A.M.; Vellichirammal, N.N.; Jurat-Fuentes, J.L.; Siegfried, B.D. Cry1F resistance among Lepidopteran pests: A model for improved resistance management? Curr. Opin. Insect Sci. 2016, 15, 116–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, R.; Hasler, J.; Meagher, R.; Nagoshi, R.; Hietala, L.; Huang, F.; Narva, K.; Jurat-Fuentes, J.L. Mechanism and DNA-based detection of field-evolved resistance to transgenic Bt corn in fall armyworm (Spodoptera frugiperda). Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jakka, S.R.K.; Knight, V.R.; Jurat-Fuentes, J.L. Fitness costs associated with field-evolved resistance to Bt maize in Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Econ. Entomol. 2014, 107, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Kerns, D.L.; Brown, S.; Kurtz, R.; Dennehy, T.; Braxton, B.; Head, G.; Huang, F. Performance and cross-crop resistance of Cry1F-maize selected Spodoptera frugiperda on transgenic Bt cotton: Implications for resistance management. Sci. Rep. 2016, 6, 28059. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Kerns, D.L.; Head, G.; Brown, S.; Huang, F. Susceptibility of Cry1F-maize resistant, heterozygous, and susceptible Spodoptera frugiperda to Bt proteins used in the transgenic cotton. Crop Prot. 2017, 98, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Rodríguez, C.S.; Hernández-Martínez, P.; Van Rie, J.; Escriche, B.; Ferré, J. Shared midgut binding sites for Cry1A. 105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda. PLoS ONE 2013, 8, e68164. [Google Scholar]
- Biosafety Clearing-House. Gene and DNA Sequence. 2014. Available online: https://bch.cbd.int/database/record.shtml?documentid=43771 (accessed on 12 June 2020).
- Niu, Y.; Head, G.P.; Price, P.A.; Huang, F. Performance of Cry1A. 105-selected fall armyworm (Lepidoptera: Noctuidae) on transgenic maize plants containing single or pyramided Bt genes. Crop Prot. 2016, 88, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Gouffon, C.; Van Vliet, A.; Van Rie, J.; Jansens, S.; Jurat-Fuentes, J.L. Binding sites for Cry2Ae toxin from Bacillus thuringiensis on heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F or Vip3A toxins. Appl. Environ. Microbiol. 2011, 77, 3182–3188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caccia, S.; Hernández-Rodríguez, C.S.; Mahon, R.J.; Downes, S.; James, W.; Bautsoens, N.; Van Rie, J.; Ferre, J. Binding site alteration is responsible for field-isolated resistance to Bacillus thuringiensis Cry2A insecticidal proteins in two Helicoverpa species. PLoS ONE 2010, 5, e9975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagoshi, R.N.; Meagher, R.L.; Jenkins, D.A. Puerto Rico fall armyworm has only limited interactions with those from Brazil or Texas but could have substantial exchanges with Florida populations. J. Econ. Entomol. 2010, 103, 360–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagoshi, R.N.; Fleischer, S.; Meagher, R.L.; Hay-Roe, M.; Khan, A.; Murúa, M.G.; Silvie, P.; Vergara, C.; Westbrook, J. Fall armyworm migration across the Lesser Antilles and the potential for genetic exchanges between North and South American populations. PLoS ONE 2017, 12, e0171743. [Google Scholar]
- Nagoshi, R.N.; Rosas-García, N.M.; Meagher, R.L.; Fleischer, S.J.; Westbrook, J.K.; Sappington, T.W.; Hay-Roe, M.; Thomas, J.M.; Murúa, G.M. Haplotype profile comparisons between Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from Mexico with those from Puerto Rico, South America, and the United States and their implications to migratory behavior. J. Econ. Entomol. 2015, 108, 135–144. [Google Scholar] [CrossRef]
- Nagoshi, R.N.; Goergen, G.; Tounou, K.A.; Agboka, K.; Koffi, D.; Meagher, R.L. Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Matthews, G. The spread of fall armyworm (FAW) Spodotera frugiperda. Outlooks Pest Manag. 2018, 29, 213–214. [Google Scholar] [CrossRef]
- Midega, C.A.; Pittchar, J.O.; Pickett, J.A.; Hailu, G.W.; Khan, Z.R. A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (JE Smith), in maize in East Africa. Crop Prot. 2018, 105, 10–15. [Google Scholar] [CrossRef]
- Tambo, J.A.; Day, R.K.; Lamontagne-Godwin, J.; Silvestri, S.; Beseh, P.K.; Oppong-Mensah, B.; Phiri, N.A.; Matimelo, M. Tackling fall armyworm (Spodoptera frugiperda) outbreak in Africa: An analysis of farmers’ control actions. Int. J. Pest Manag. 2020, 66, 298–310. [Google Scholar] [CrossRef] [Green Version]
- Huang, F. Resistance of the fall armyworm, Spodoptera frugiperda, to transgenic Bacillus thuringiensis Cry1F corn in the America: Lessons and implications for Bt corn IRM in China. Insect Sci. 2020. [Google Scholar] [CrossRef]
- Carriere, Y.; Brown, Z.S.; Downes, S.J.; Gujar, G.; Epstein, G.; Omoto, C.; Storer, N.P.; Mota-Sanchez, D.; Jørgensen, P.S.; Carroll, S.P. Governing evolution: A socioecological comparison of resistance management for insecticidal transgenic Bt crops among four countries. Ambio 2020, 49, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boaventura, D.; Ulrich, J.; Lueke, B.; Bolzan, A.; Okuma, D.; Gutbrod, O.; Geibel, S.; Zeng, Q.; Dourado, P.M.; Martinelli, S.; et al. Molecular characterization of Cry1F resistance in fall armyworm, Spodoptera frugiperda from Brazil. Insect Biochem. Mol. Biol. 2020, 116, 103280. [Google Scholar] [CrossRef] [PubMed]
Population | Bt Protein | Concentration Range (ng/cm2) |
---|---|---|
Susceptible | Cry2Ab2 | 10–1000 |
Cry1A.105 | 10–1000 | |
Cry1F | 7.4–1000 | |
Cry1Ac | 7.4–1300 | |
Jalisco Oaxaca | Cry2Ab2 | 0.7–200 |
Cry1A.105 | 0.02–67 | |
Cry1F | 7.4–1000 | |
Cry1Ac | 7.4–1000 | |
Sinaloa | Cry2Ab2 | 22.2–1300 |
Cry1A.105 | 22.2–1300 | |
Cry1F | 7.4–1000 | |
Cry1Ac | 22.2–1300 | |
Puerto Rico | Cry2Ab2 | 7.4–6000 |
Cry1A.105 | 7.4–6000 | |
Cry1F | 22.2–10,000 | |
Cry1Ac | 22.2–6000 |
Bt Protein | Pop a | n b | LC50 c | 95% FL d | RR50 e | LC90 c | 95% FL d | RR90 e | Slope ± SE f | X2 g |
---|---|---|---|---|---|---|---|---|---|---|
Cry1F | SUS | 338 | 174.4 | 135.7, 222.6 | 1.0 | 849 | 606.6, 1349 | 1.0 | 1.9 ± 0.2 | 0.9 |
SIN | 624 | 29.2 | 22.6, 36.7 | 0.2 | 201 | 145, 309 | 0.2 | 1.5 ± 0.1 | 2.8 | |
JAL | 384 | 42.8 | 29.8, 59.8 | 0.2 | 463 | 275.4, 1015 | 0.5 | 1.2 ± 0.2 | 4.3 | |
OAX | 384 | 26.5 | 0.03, 122 | 0.2 | 502 | 113, 1.92 × 1012 | 0.6 | 1 ± 0.3 | 2.5 | |
PR | 256 | >10,000 | Ne h | ne | >10,000 | ne | ne | ne | ne | |
Cry1Ac | SUS | 770 | 148.2 | 120, 183.2 | 1.0 | 1050 | 750.3, 1635 | 1.0 | 1.5 ± 0.1 | 4.0 |
SIN | 512 | 15.3 | 8, 22 | 0.1 | 78 | 57, 125 | 0.1 | 1.8 ± 0.3 | 0.3 | |
JAL | 380 | 34.2 | 20.5, 52.3 | 0.2 | 817.7 | 397.9, 2781 | 0.8 | 0.9 ± 0.1 | 1.5 | |
OAX | 385 | 188.8 | 132, 280 | 1.3 | 3262 | 1669, 8983 | 3.1 | 1 ± 0.1 | 3.4 | |
PR | 624 | 1815 | 934.5, 5374 | 12.2 | 705,419 | 95,917, >100,000 | 671.8 | 0.5 ± 0.08 | 1.4 | |
Cry1A.105 | SUS | 641 | 201.9 | 150.4, 266.3 | 1 | 859 | 586.6, 1576 | 1 | 2 ± 0.3 | 4.5 |
SIN | 383 | ne | ne | ne | ne | ne | ne | ne | ne | |
JAL | 256 | 4.6 | 3.2, 6.4 | 0.02 | 28.3 | 17.8, 57.5 | 0.03 | 1.6 ± 0.2 | 4.5 | |
OAX | 560 | 14.5 | 3.4, 139.7 | 0.07 | 164.4 | 37.8, >100,000 | 0.2 | 1.2 ± 0.3 | 5.8 | |
PR | 303 | 273.8 | 172.5, 442.8 | 1.4 | 3234 | 1542, 12,547 | 3.8 | 1.2 ± 0.2 | 1.4 | |
Cry2Ab2 | SUS | 640 | 173.2 | 130.8, 214.1 | 1 | 469 | 373.5, 649.9 | 1 | 3 ± 0.4 | 5 |
SIN | 381 | ne | ne | ne | ne | ne | ne | ne | ne | |
JAL | 256 | 49.7 | 30.3, 94 | 0.2 | 1040 | 398.9, 5369 | 2.7 | 0.9 ± 0.1 | 3.2 | |
OAX | 410 | 13.3 | 3.1, 165.5 | 0.1 | 1762 | 150.3, >100,000 | 4.6 | 0.6 ± 0.2 | 2.4 | |
PR | 253 | 119.2 | 68.5, 187 | 0.5 | 2092 | 1091, 6065 | 5.5 | 1 ± 0.2 | 0.4 |
Bt Protein | Pop a | n b | EC50 c | SE d | 95% CI e |
---|---|---|---|---|---|
Cry1F | SUS | 338 | 11 | 1.3 | 8.2, 13.4 |
SIN | 624 | 16 | 1.4 | 12.5, 18.7 | |
JAL | 384 | 5 | 1.2 | 2.3, 7.4 | |
OAX | 384 | 7 | 0.8 | 5.2, 8.8 | |
PR | 256 | >10,000 | ne | ne | |
Cry1Ac | SUS | 770 | 5 | 1.1 | 2.4, 6.9 |
SIN | 512 | 23 | 0.2 | 22.1, 23.5 | |
JAL | 380 | 1.6 | 0.6 | 0.4, 2.8 | |
OAX | 385 | 3 | 0.6 | 1.5, 4 | |
PR | 624 | 68 | 10.8 | 43, 92 | |
Cry1A.105 | SUS | 641 | 31 | 5 | 19.6, 42.8 |
SIN | 383 | ne | ne | ne | |
JAL | 256 | 1.3 | 0.2 | 0.9, 1.8 | |
OAX | 560 | 1.4 | 0.3 | 0.8, 2.2 | |
PR | 303 | 73.1 | 9.3 | 51.7, 94.4 | |
Cry2Ab2 | SUS | 640 | 111 | 27 | 52.4, 169.6 |
SIN | 381 | ne | ne | ne | |
JAL | 256 | 5.4 | 1.4 | 2.3, 8.5 | |
OAX | 410 | 1.1 | 0.2 | 0.7, 1.6 | |
PR | 253 | 24.7 | 5.8 | 11.7, 37.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez-Moreno, R.; Mota-Sanchez, D.; Blanco, C.A.; Chandrasena, D.; Difonzo, C.; Conner, J.; Head, G.; Berman, K.; Wise, J. Susceptibility of Fall Armyworms (Spodoptera frugiperda J.E.) from Mexico and Puerto Rico to Bt Proteins. Insects 2020, 11, 831. https://doi.org/10.3390/insects11120831
Gutierrez-Moreno R, Mota-Sanchez D, Blanco CA, Chandrasena D, Difonzo C, Conner J, Head G, Berman K, Wise J. Susceptibility of Fall Armyworms (Spodoptera frugiperda J.E.) from Mexico and Puerto Rico to Bt Proteins. Insects. 2020; 11(12):831. https://doi.org/10.3390/insects11120831
Chicago/Turabian StyleGutierrez-Moreno, Rebeca, David Mota-Sanchez, Carlos A. Blanco, Desmi Chandrasena, Christina Difonzo, Jeffrey Conner, Graham Head, Kristina Berman, and John Wise. 2020. "Susceptibility of Fall Armyworms (Spodoptera frugiperda J.E.) from Mexico and Puerto Rico to Bt Proteins" Insects 11, no. 12: 831. https://doi.org/10.3390/insects11120831
APA StyleGutierrez-Moreno, R., Mota-Sanchez, D., Blanco, C. A., Chandrasena, D., Difonzo, C., Conner, J., Head, G., Berman, K., & Wise, J. (2020). Susceptibility of Fall Armyworms (Spodoptera frugiperda J.E.) from Mexico and Puerto Rico to Bt Proteins. Insects, 11(12), 831. https://doi.org/10.3390/insects11120831