Use of Electric Discharge for Simultaneous Control of Weeds and Houseflies Emerging from Soil
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Species
2.2. Test Insects
2.3. Assay of Soil Electric Conductivity
2.4. Exposure of Plant Shoots to Arc Discharge and Construction of an Electrostatic Weed Eradicator (EWE)
2.5. Exposure of Flies to Arc Discharge and Construction of an Electrostatic Insect Eradicator (EIE)
2.6. Combination of the EIE with the EWE to Control Weeds and Flies Simultaneously
2.7. Statistical Analysis
3. Results and Discussion
3.1. Soil Electric Conductivity Is a Basic Requirement for Electric Discharge Treatment of Plant Shoots
3.2. Flies Can Be Controlled by an Identical Electric-Field-Based Technique
3.3. Weeds and Houseflies Can Be Simultaneously Controlled Using Electric Discharge Exposure Techniques
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Russell, J.B.; Jarvis, G.N. Practical mechanisms for interrupting the oral-fecal lifecycle of Escherichia coli. Mol. Microbiol. Biotechnol. 2001, 3, 265–272. [Google Scholar]
- Ahmad, A.; Nagaraja, T.G.; Zurek, L. Transmission of Escherichia coli O157:H7 to cattle by house flies. Prev. Vet. Med. 2007, 80, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.J.; Zurek, L. Association of Escherichia coli O157:H7 with houseflies on a cattle farm. Appl. Environ. Microbiol. 2004, 70, 7578–7580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, A.; Cho, S.; Scheftel, J.; Jawahir, S.; Smith, K.; Diez-Gonzalez, F. Soil survival of Escherichia coli O157:H7 acquired by a child from garden soil recently fertilized with cattle manure. J. Appl. Microbiol. 2006, 101, 429–436. [Google Scholar] [CrossRef]
- Matsuda, Y.; Ikeda, H.; Moriura, N.; Tanaka, N.; Shimizu, K.; Oichi, W.; Nonomura, T.; Kakutani, K.; Kusakari, S.; Higashi, K.; et al. A new spore precipitator with polarized dielectric insulators for physical control of tomato powdery mildew. Phytopathology 2006, 96, 967–974. [Google Scholar] [CrossRef]
- Tanaka, N.; Matsuda, Y.; Kato, E.; Kokabe, K.; Furukawa, T.; Nonomura, T.; Honda, K.; Kusakari, S.; Imura, T.; Kimbara, J.; et al. An electric dipolar screen with oppositely polarized insulators for excluding whiteflies from greenhouses. Crop Prot. 2008, 27, 215–221. [Google Scholar] [CrossRef]
- Matsuda, Y.; Nonomura, T.; Kakutani, K.; Takikawa, Y.; Kimbara, J.; Kasaishi, Y.; Kusakari, S.; Toyoda, H. A newly devised electric field screen for avoidance and capture of cigarette beetles and vinegar flies. Crop Prot. 2011, 30, 155–162. [Google Scholar] [CrossRef]
- Nonomura, T.; Matsuda, Y.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. An electric field strongly deters whiteflies from entering window-open greenhouses in an electrostatic insect exclusion strategy. Eur. J. Plant Pathol. 2012, 134, 661–670. [Google Scholar] [CrossRef]
- Kakutani, K.; Matsuda, Y.; Nonomura, T.; Kimbara, J.; Kusakari, S.; Toyoda, H. Practical application of an electric field screen to an exclusion of flying insect pests and airborne conidia from greenhouses with a good air penetration. J. Agric. Sci. 2012, 4, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Takikawa, Y.; Matsuda, Y.; Nonomura, T.; Kakutani, K.; Okada, K.; Shibao, M.; Kusakari, S.; Miyama, K.; Toyoda, H. Exclusion of whiteflies from a plastic hoop greenhouse by a bamboo blind-type electric field screen. J. Agric. Sci. 2020, 12, 50–60. [Google Scholar]
- Takikawa, Y.; Matsuda, Y.; Kakutani, K.; Nonomura, T.; Kusakari, S.; Okada, K.; Kimbara, J.; Osamura, K.; Toyoda, H. Electrostatic insect sweeper for eliminating whiteflies colonizing host plants; a complementary pest control device in an electric field screen-guarded greenhouse. Insects 2015, 6, 442–454. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, H.; Kusakari, S.; Matsuda, Y.; Kakutani, K.; Xu, L.; Nonomura, T.; Takikawa, Y. Practical applications of earth net-free electric field screen. In An Illustrated Manual of Electric Field Screens: Their Structures and Functions; RAEFSS Publishing Department: Nara, Japan, 2019; pp. 69–73. [Google Scholar]
- Otsu, Y.; Matsuda, Y.; Shimizu, H.; Ueki, H.; Mori, H.; Fujiwara, K.; Nakajima, T.; Miwa, A.; Nonomura, T.; Sakuratani, Y.; et al. Biological control of phytophagous ladybird beetles Epilachna vigintioctopunctata (Col., Coccinellidae) by chitinolytic phylloplane bacteria Alcaligenes paradoxus entrapped in alginate beads. J. Appl. Ent. 2003, 127, 441–446. [Google Scholar] [CrossRef]
- Otsu, Y.; Mori, H.; Komuta, K.; Shimizu, H.; Nogawa, S.; Matsuda, Y.; Nonomura, T.; Sakuratani, Y.; Tosa, Y.; Mayama, S.; et al. Suppression of leaf feeding and oviposition of phytophagous ladybird beetles Epilachna vigintioctopunctata (Coleoptera: Coccinellidae) by chitinase gene-transformed phylloplane bacteria and their specific bacteriophages entrapped in alginate gel beads. J. Econ. Entomol. 2003, 96, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Otsu, Y.; Matsuda, Y.; Mori, H.; Ueki, H.; Nakajima, T.; Fujiwara, K.; Matsumoto, M.; Azuma, N.; Kakutani, K.; Nonomura, T.; et al. Stable Phylloplane Colonization by entomopathogenic bacterium Pseudomonas fluorescens KPM-018P and biological control of phytophagous ladybird beetles Epilachna vigintioctopunctata (Coleoptera: Coccinellidae). Biocontrol Sci. Technol. 2004, 14, 427–439. [Google Scholar] [CrossRef]
- Bizzi, C.A.; Barin, J.S.; Hermes, A.L.; Mortari, S.R.; Flores, É.M.M. A fast microwave-assisted procedure for loss on drying determination in saccharides. J. Braz. Chem. Soc. 2011, 22, 376–381. [Google Scholar] [CrossRef] [Green Version]
- Halliday, D.; Resnick, R.; Walker, J. Electric discharge and electric fields. In Fundamentals of Physics; Johnson, S., Ford, E., Eds.; John Wiley & Sons: New York, NY, USA, 2005; pp. 561–604. [Google Scholar]
- Kaiser, K.L. Air breakdown. In Electrostatic Discharge; Taylor & Francis: New York, NY, USA, 2006; pp. 1–102. [Google Scholar]
- Nonomura, T.; Matsuda, Y.; Kakutani, K.; Takikawa, Y.; Toyoda, H. Physical control of powdery mildew (Oidium neolycopersici) on tomato leaves by exposure to corona discharge. Can. J. Plant Pathol. 2008, 30, 517–524. [Google Scholar] [CrossRef]
- Jones, E.; Childers, R. Electric current and resistance. In Physics; McGraw-Hill: Boston, MA, USA, 2002; pp. 557–593. [Google Scholar]
- Matsuda, Y.; Takikawa, Y.; Nonomura, T.; Kakutani, K.; Okada, K.; Shibao, M.; Kusakari, S.; Miyama, K.; Toyoda, H. Selective electrostatic eradication of Sitopholus oryzae nesting in stored rice. J. Food Technol. Pres. 2018, 2, 15–20. [Google Scholar]
- Kakutani, K.; Matsuda, Y.; Takikawa, Y.; Nonomura, T.; Okada, K.; Shibao, M.; Kusakari, S.; Miyama, K.; Toyoda, H. Electrocution of mosquitoes by a novel electrostatic window screen to minimize mosquito transmission of Japanese encephalitis viruses. Int. J. Sci. Res. 2018, 7, 47–50. [Google Scholar]
- Fessas, D.; Schiraldi, A. Water properties in wheat flour dough I: Classical thermogravimetry approach. Food Chem. 2001, 72, 237–244. [Google Scholar] [CrossRef]
- Ibekwe, A.M.; Grieve, C.M.; Papiernik, S.K.; Yang, C.-H. Persistence of Escherichia coli O157:H7 on the rhizosphere and phyllosphere of lettuce. Lett. Appl. Microbiol. 2009, 49, 784–790. [Google Scholar] [CrossRef]
- Brandl, M.T. Plant lesions promote the rapid multiplication of Escherichia coli O157:H7 on postharvest lettuce. Appl. Environ. Microbiol. 2008, 74, 5285–5289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; He, Q.; McEvoy, J.L. Effect of storage temperature and duration on the behavior of Escherichia coli O157:H7 on packaged fresh-cut salad containing romaine and Iceberg lettuce. J. Food Sci. 2010, 75, M390–M397. [Google Scholar] [CrossRef] [PubMed]
- Kakutani, K.; Matsuda, Y.; Haneda, K.; Nonomura, T.; Kimbara, J.; Kusakari, S.; Osamura, K.; Toyoda, H. Insects are electrified in an electric field by deprivation of their negative charge. Ann. Appl. Biol. 2012, 160, 250–259. [Google Scholar] [CrossRef]
- Kakutani, K.; Matsuda, Y.; Haneda, K.; Sekoguchi, D.; Nonomura, T.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. An electric field screen prevents captured insects from escaping by depriving bioelectricity generated through insect movements. J. Electrostat. 2012, 70, 207–211. [Google Scholar] [CrossRef]
- Nonomura, T.; Matsuda, Y.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. Electrostatic measurement of dischargeable electricity and bioelectric potentials produced by muscular movements in flies. J. Electrost. 2014, 72, 1–5. [Google Scholar] [CrossRef]
- Takikawa, Y.; Takami, T.; Kakutani, K. Body water-mediated conductivity actualizes the insect-control functions of electric fields in houseflies. Insects 2020, 11, 561. [Google Scholar] [CrossRef]
- Giancoli, D.C. Electric charge and electric field. In Physics, Principles with Applications; Challice, J., Ed.; Pearson Education International: London, UK, 2005; pp. 439–469. [Google Scholar]
- Wegner, H.E. Electrical charging generators. In McGraw-Hill Encyclopedia of Science and Technology, 9th ed.; Geller, E., Moore, K., Weil, J., Eds.; The Lakeside Press: New York, NY, USA, 2002; pp. 42–43. [Google Scholar]
- Kusakari, S.; Okada, K.; Shibao, M.; Toyoda, H. High voltage electric fields have potential to create new physical pest control systems. Insects 2020, 11, 447. [Google Scholar] [CrossRef]
Plants Used | Kind of Discharge Used for Exposure | Percentage of | ||
---|---|---|---|---|
Injured Shoots III | NE-Shoots IV | RE-shoots V | ||
tomato | Brush-like corona discharge I | 100 | 96.0 ± 2.2 a | 4.0 ± 2.2 a |
soybean | 100 | 95.0 ± 3.5 a | 5.0 ± 3.5 a | |
watermelon | 100 | 94.0 ± 4.2 a | 6.0 ± 4.2 a | |
sunflower | 100 | 93.0 ± 2.7 a | 7.0 ± 2.7 a | |
oat | 100 | 3.0 ± 2.7 b | 97.0 ± 2.7 b | |
barley | 100 | 4.0 ± 2.2 b | 96.0 ± 2.2 b | |
tomato | Arc discharge II | 100 | 97.0 ± 2.7 a | 3.0 ± 2.7 a |
soybean | 100 | 96.0 ± 2.2 a | 4.0 ± 2.2 a | |
watermelon | 100 | 94.0 ± 2.2 a | 6.0 ± 2.2 a | |
sunflower | 100 | 95.0 ± 3.5 a | 5.0 ± 3.5 a | |
oat | 100 | 5.0 ± 3.5 b | 95.0 ± 3.5 b | |
barley | 100 | 4.0 ± 2.2 b | 96.0 ± 2.2 b |
Voltage (kV) Applied | Percentage of Flies Subjected to Arc Discharge | Percentage of Arc Discharge-Exposed Flies | Lethal Rate (%) | Intensity (dB) of Arc Discharge Sound | ||
---|---|---|---|---|---|---|
Dead Instantly II | Alive and then Dead III | Alive III | ||||
1 | 0 | n.d. | n.d. | n.d. | 0 | n.d. IV |
2 | 0 | n.d. | n.d. | n.d. | 0 | n.d. |
3 | 0 | n.d. | n.d. | n.d. | 0 | n.d. |
4 | 0 | n.d. | n.d. | n.d. | 0 | n.d. |
5 | 24.0 ± 9.6 a | 5.0 ± 3.5 a | 0 | 95.0 ± 3.5 a | 5.0 ± 3.5 a | 59.8 ± 5.6 a |
6 | 58.0 ± 9.1 b | 21.0 ± 8.9 b | 28.0 ± 8.4 b | 51.0 ± 2.2 b | 49.0 ± 2.2 b | 73.6 ± 7.9 b |
7 | 94.0 ± 6.5 c | 26.0 ± 2.2 b | 62.0 ± 5.7 c | 12.0 ± 5.7 c | 88.0 ± 5.7 c | 77.1 ± 7.3 b |
8 | 100 d | 39.0 ± 5.5 c | 61.0 ± 5.5 c | 0 | 100 d | 94.5 ± 6.6 c |
9 | 100 d | 41.0 ± 7.4 c | 59.0 ± 7.4 c | 0 | 100 d | 96.5 ± 7.5 c |
10 | 100 d | 43.0 ± 5.7 c | 57.0 ± 5.7 c | 0 | 100 d | 99.9 ± 7.9 c |
Target of Discharge Exposure | Site | Days | Target of Discharge Exposure | Site | Days | ||
---|---|---|---|---|---|---|---|
I w | II x | III y | IV z | ||||
Dicots | A | 5.1 ± 0.7 a | 1.1 ± 0.4 a | Houseflies | A | 5.6 ± 0.5 a | 0.7 ± 0.2 a |
B | 4.8 ± 0.8 a | 1.4 ± 0.5 a | B | 5.4 ± 0.8 a | 0.5 ± 0.3 a | ||
C | 5.2 ± 0.6 a | 1.3 ± 0.5 a | C | 5.9 ± 0.7 a | 0.5 ± 0.2 a | ||
Monocots | A | 4.2 ± 0.5 a | 5.1 ± 0.9 b | ||||
B | 4.5 ± 0.6 a | 6.8 ± 0.8 b | |||||
C | 5.1 ± 0.8 a | 6.3 ± 0.6 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuda, Y.; Shimizu, K.; Sonoda, T.; Takikawa, Y. Use of Electric Discharge for Simultaneous Control of Weeds and Houseflies Emerging from Soil. Insects 2020, 11, 861. https://doi.org/10.3390/insects11120861
Matsuda Y, Shimizu K, Sonoda T, Takikawa Y. Use of Electric Discharge for Simultaneous Control of Weeds and Houseflies Emerging from Soil. Insects. 2020; 11(12):861. https://doi.org/10.3390/insects11120861
Chicago/Turabian StyleMatsuda, Yoshinori, Kunihiko Shimizu, Takahiro Sonoda, and Yoshihiro Takikawa. 2020. "Use of Electric Discharge for Simultaneous Control of Weeds and Houseflies Emerging from Soil" Insects 11, no. 12: 861. https://doi.org/10.3390/insects11120861
APA StyleMatsuda, Y., Shimizu, K., Sonoda, T., & Takikawa, Y. (2020). Use of Electric Discharge for Simultaneous Control of Weeds and Houseflies Emerging from Soil. Insects, 11(12), 861. https://doi.org/10.3390/insects11120861