Soil Surface-Trapping of Tomato Leaf-Miner Flies Emerging from Underground Pupae with a Simple Electrostatic Cover of Seedbeds in a Greenhouse
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Construction of the EC
2.3. Insect Capture Assay
2.4. Greenhouse Assay of the Practicality of the EC
3. Results and Discussion
3.1. Functionality of the EC
3.2. Evaluation of the Feasibility of the EC under Greenhouse Conditions
3.3. Simplicity and Durability of the EC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Toyoda, H.; Kusakari, S.; Matsuda, Y.; Kakutani, K.; Xu, L.; Nonomura, T.; Takikawa, Y. A single-charged dipolar electric field screen and capture of insect pests. In An Illustrated Manual of Electric Field Screens: Their Structures and Functions; Toyoda, H., Ed.; RAEFSS Publishing Department: Nara, Japan, 2019; pp. 27–39. [Google Scholar]
- Parkman, P.; Dusky, J.A.; Waddill, V.H. Biological studies of Liriomyza sativae (Diptera: Agromyzidae) on castor bean. Environ. Entomol. 1989, 18, 768–772. [Google Scholar] [CrossRef]
- Tanaka, N.; Matsuda, Y.; Kato, E.; Kokabe, K.; Furukawa, T.; Nonomura, T.; Honda, K.; Kusakari, S.; Imura, T.; Kimbara, J.; et al. An electric dipolar screen with oppositely polarized insulators for excluding whiteflies from greenhouses. Crop Prot. 2008, 27, 215–221. [Google Scholar] [CrossRef]
- Kakutani, K.; Matsuda, Y.; Nonomura, T.; Kimbara, J.; Kusakari, S.; Toyoda, H. Practical application of an electric field screen to an exclusion of flying insect pests and airborne conidia from greenhouses with a good air penetration. J. Agric. Sci. 2012, 4, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Nonomura, T.; Matsuda, Y.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. An electric field strongly deters whiteflies from entering window-open greenhouses in an electrostatic insect exclusion strategy. Eur. J. Plant Pathol. 2012, 134, 661–670. [Google Scholar] [CrossRef]
- Nonomura, T.; Matsuda, Y.; Kakutani, K.; Takikawa, Y.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. Prevention of whitefly entry from a greenhouse entrance by furnishing an airflow-oriented pre-entrance room guarded with electric field screens. J. Agric. Sci. 2014, 6, 172–184. [Google Scholar] [CrossRef] [Green Version]
- Takikawa, Y.; Matsuda, Y.; Nonomura, T.; Kakutani, K.; Okada, K.; Shibao, M.; Kusakari, S.; Miyama, K.; Toyoda, H. Exclusion of whiteflies from a plastic hoop greenhouse by a bamboo blind-type electric field screen. J. Agric. Sci. 2020, 12, 50–60. [Google Scholar]
- Helyer, N.; Brown, K.; Cattlin, N.D. Pest profiles. In A Colour Handbook of Biological Control in Plant Protection; Northcott, J., Ed.; Manson Publishing: London, UK, 2004; pp. 21–41. [Google Scholar]
- Gao, Y.; Reitz, S.R.; Wei, Q.; Yu, W.; Lei, Z. Insecticide-mediated apparent displacement between two invasive species of leafminer fly. PLoS ONE 2012, 7, e36622. [Google Scholar] [CrossRef] [Green Version]
- Hertlein, M.B.; Thompson, G.D.; Subramanyam, B.; Athanassiou, C.G. Spinosad: A new natural product for stored grain protection. Stored Prod. 2011, 47, 131–146. [Google Scholar] [CrossRef]
- Wei, Q.-B.; Lei, Z.-R.; Nauen, R.; Cai, D.-C.; Gao, Y.-L. Abamectin resistance in strains of vegetable leafminer, Liriomyza sativae (Diptera: Agromyzidae) is linked to elevated glutathione S-transferase activity. Insect Sci. 2015, 22, 243–250. [Google Scholar] [CrossRef]
- Askari-Saryazdi, G.; Hejazi, M.J.; Rashidi, M.-R.; Ferguson, S. Incidence and characterization of resistance to fenpropathrin in some Liriomyza sativae (Diptera: Agromyzidae) populations in Iran. J. Econ. Entomol. 2014, 107, 1908–1915. [Google Scholar] [CrossRef]
- Askari-Saryazdi, G.; Hejazi, M.J.; Ferguson, J.S.; Rashidi, M.-R. Selection for chlorpyrifos resistance in Liriomyza sativae Blanchard: Cross-resistance patterns, stability and biochemical mechanisms. Pestic. Biochem. Physiol. 2015, 124, 86–92. [Google Scholar] [CrossRef]
- Berger, M.; Puinean, A.M.; Randall, E.; Zimmer, C.T.; Silva, W.M.; Bielza, P.; Field, L.M.; Hughes, D.; Mellor, I.; Hassani-Pak, K.; et al. Insecticide resistance mediated by an exon skipping event. Mol. Ecol. 2016, 25, 5692–5704. [Google Scholar] [CrossRef]
- Prijono, D.; Robinson, M.; Rauf, A.; Bjorksten, T.; Hoffmann, A.A. Toxicity of chemicals commonly used in Indonesian vegetable crops to Liriomyza huidobrensis populations and the Indonesian parasitoids Hemiptarsenus varicornis, Opius sp., and Gronotoma micromorpha, as well as the Australian parasitoids Hemiptarsenus varicornis and Diglyphus isaea. J. Econ. Entomol. 2004, 97, 1191–1197. [Google Scholar]
- Otsu, Y.; Matsuda, Y.; Shimizu, H.; Ueki, H.; Mori, H.; Fujiwara, K.; Nakajima, T.; Miwa, A.; Nonomura, T.; Sakuratani, Y.; et al. Biological control of phytophagous ladybird beetles Epilachna vigintioctopunctata (Col., Coccinellidae) by chitinolytic phylloplane bacteria Alcaligenes paradoxus entrapped in alginate beads. J. Appl. Entomol. 2003, 127, 441–446. [Google Scholar] [CrossRef]
- Otsu, Y.; Mori, H.; Komuta, K.; Shimizu, H.; Nogawa, S.; Matsuda, Y.; Nonomura, T.; Sakuratani, Y.; Tosa, Y.; Mayama, S.; et al. Suppression of leaf feeding and oviposition of phytophagous ladybird beetles Epilachna vigintioctopunctata (Coleoptera: Coccinellidae) by chitinase gene-transformed phylloplane bacteria and their specific bacteriophages entrapped in alginate gel beads. J. Econ. Entomol. 2003, 96, 555–563. [Google Scholar] [CrossRef]
- Otsu, Y.; Matsuda, Y.; Mori, H.; Ueki, H.; Nakajima, T.; Fujiwara, K.; Matsumoto, M.; Azuma, N.; Kakutani, K.; Nonomura, T.; et al. Stable Phylloplane Colonization by entomopathogenic bacterium Pseudomonas fluorescens KPM-018P and biological control of phytophagous ladybird beetles Epilachna vigintioctopunctata (Coleoptera: Coccinellidae). Biocontrol Sci. Technol. 2004, 14, 427–439. [Google Scholar] [CrossRef]
- Kaspi, R.; Parrella, M.P. Improving the biological control of leafminers (Diptera: Agromyzidae) using the sterile insect technique. J. Econ. Entomol. 2006, 99, 1168–1175. [Google Scholar] [CrossRef]
- Musundire, R.; Chabi-Olaye, A.; Salifu, D.; Krüger, K. Host plant-related parasitism and host feeding activities of Diglyphus isaea (Hymenoptera: Eulophidae) on Liriomyza huidobrensis, Liriomyza sativae, and Liriomyza trifolii (Diptera: Agromyzidae). J. Econ. Entomol. 2012, 105, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, Y.; Ikeda, H.; Moriura, N.; Tanaka, N.; Shimizu, K.; Oichi, W.; Nonomura, T.; Kakutani, K.; Kusakari, S.; Higashi, K.; et al. A new spore precipitator with polarized dielectric insulators for physical control of tomato powdery mildew. Phytopathology 2006, 96, 967–974. [Google Scholar] [CrossRef]
- Shimizu, K.; Matsuda, Y.; Nonomura, T.; Ikeda, H.; Tamura, N.; Kusakari, S.; Kimbara, J.; Toyoda, H. Dual protection of hydroponic tomatoes from rhizosphere pathogens Ralstonia solanacearum and Fusarium oxysporum f. sp. radicis-lycopersici and airborne conidia of Oidium neolycopersici with an ozone-generative electrostatic spore precipitator. Plant Pathol. 2007, 56, 987–997. [Google Scholar] [CrossRef]
- Jones, E.; Childers, R. Electric charge and electric field. In Physics, 3rd ed.; Jones, B., Childers, S., Eds.; McGraw-Hill: Boston, MA, USA, 2002; pp. 495–525. [Google Scholar]
- Kakutani, K.; Matsuda, Y.; Haneda, K.; Nonomura, T.; Kimbara, J.; Kusakari, S.; Osamura, K.; Toyoda, H. Insects are electrified in an electric field by deprivation of their negative charge. Ann. Appl. Biol. 2012, 160, 250–259. [Google Scholar] [CrossRef]
- Kakutani, K.; Matsuda, Y.; Haneda, K.; Sekoguchi, D.; Nonomura, T.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. An electric field screen prevents captured insects from escaping by depriving bioelectricity generated through insect movements. J. Electrostat. 2012, 70, 207–211. [Google Scholar] [CrossRef]
- Matsuda, Y.; Kakutani, K.; Nonomura, T.; Kimbara, J.; Kusakari, S.; Osamura, K.; Toyoda, H. An oppositely charged insect exclusion screen with gap-free multiple electric fields. J. Appl. Phys. 2012, 112, 116103. [Google Scholar] [CrossRef] [Green Version]
- Nonomura, T.; Matsuda, Y.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. Electrostatic measurement of dischargeable electricity and bioelectric potentials produced by muscular movements in flies. J. Electrostat. 2014, 72, 1–5. [Google Scholar] [CrossRef]
- Takikawa, Y.; Takami, T.; Kakutani, K. Body water-mediated conductivity actualizes the insect-control functions of electric fields in houseflies. Insects 2020, 11, 561. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y.; Nonomura, T.; Kakutani, K.; Takikawa, Y.; Kimbara, J.; Kasaishi, Y.; Kusakari, S.; Toyoda, H. A newly devised electric field screen for avoidance and capture of cigarette beetles and vinegar flies. Crop Prot. 2011, 30, 155–162. [Google Scholar] [CrossRef]
- Wegner, H.E. Electrical charging generators. In McGraw-Hill Encyclopedia of Science and Technology, 9th ed.; Geller, E., Moore, K., Weil, J., Eds.; The Lakeside Press: New York, NY, USA, 2002; pp. 42–43. [Google Scholar]
- Kusakari, S.; Okada, K.; Shibao, M.; Toyoda, H. High voltage electric fields have potential to create new physical pest control systems. Insects 2020, 11, 447. [Google Scholar] [CrossRef]
Experiment | Charging of W-ECs at −5.5 kV | Charging of S-EC at −4 kV | Number of Flies | Number of Plants Infested b | Number of Total Leaves Infested b | |
---|---|---|---|---|---|---|
Captured with W-ECs | Captured with S-EC | |||||
1 | yes | yes | 1.6 ± 0.2 | 20 | 0 | 0 |
2 | no | yes | 0 | 20 | 1.5 ± 0.3 v | 4.0 ± 0.2 v |
3 | yes | no | 1.4 ± 0.3 | 0 | 8.8 ± 0.4 w | 66.0 ± 0.5 w |
4 | no | no | 0 | 0 | 9.2 ± 0.2 w | 96.0 ± 0.6 x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nonomura, T.; Toyoda, H. Soil Surface-Trapping of Tomato Leaf-Miner Flies Emerging from Underground Pupae with a Simple Electrostatic Cover of Seedbeds in a Greenhouse. Insects 2020, 11, 878. https://doi.org/10.3390/insects11120878
Nonomura T, Toyoda H. Soil Surface-Trapping of Tomato Leaf-Miner Flies Emerging from Underground Pupae with a Simple Electrostatic Cover of Seedbeds in a Greenhouse. Insects. 2020; 11(12):878. https://doi.org/10.3390/insects11120878
Chicago/Turabian StyleNonomura, Teruo, and Hideyoshi Toyoda. 2020. "Soil Surface-Trapping of Tomato Leaf-Miner Flies Emerging from Underground Pupae with a Simple Electrostatic Cover of Seedbeds in a Greenhouse" Insects 11, no. 12: 878. https://doi.org/10.3390/insects11120878
APA StyleNonomura, T., & Toyoda, H. (2020). Soil Surface-Trapping of Tomato Leaf-Miner Flies Emerging from Underground Pupae with a Simple Electrostatic Cover of Seedbeds in a Greenhouse. Insects, 11(12), 878. https://doi.org/10.3390/insects11120878