Preliminary Evaluation of a Granite Rock Dust Product for Pest Herbivore Management in Field Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Lily Plot
3.2. Cabbage Plot
3.3. Squash Plot
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kumar, S.; Singh, A. Biopesticides: Present status and the future prospects. J. Fertil. Pestic. 2015, 6, 100–129. [Google Scholar] [CrossRef]
- Chandler, D.; Bailey, A.S.; Tatchell, G.M.; Davidson, G.; Greaves, J.; Grant, W.P. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1987–1998. [Google Scholar] [CrossRef]
- Dubey, N.K.; Kumar, A.; Singh, P.; Shukla, R. Exploitation of natural compounds in eco-friendly management of plant pests. In Recent Developments in Management of Plant Diseases; Gisi, U., Chet, I., Gullino, M.L., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 181–198. [Google Scholar]
- Dreistadt, S.H. Integrated Pest Management for Floriculture and Nurseries; University of California Agriculture and Natural Resources: Davis, CA, USA, 2001; Volume 3402. [Google Scholar]
- Regnault-Roger, C. Trends for commercialization of biocontrol agent (biopesticide) products. In Plant Defense: Biological Control; Merillon, J.M., Ramawat, K.G., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 139–160. [Google Scholar]
- Benelli, G.; Pavela, R.; Maggi, F.; Petrelli, R.; Nicoletti, M. Commentary: Making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J. Clust. Sci. 2017, 28, 3–10. [Google Scholar] [CrossRef]
- Singh, D. Advances in Plant Biopesticides; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Vincent, C.; Hallman, G.; Panneton, B.; Fleurat-Lessard, F. Management of agricultural insects with physical control methods. Annu. Rev. Entomol. 2003, 48, 261–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Nikolic, M.; Bélanger, R.; Gong, H.; Song, A. Effect of silicon on crop growth, yield and quality. In Silicon in Agriculture; Liang, Y., Nikolic, M., Bélanger, R., Gong, H., Song, A., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 209–223. [Google Scholar]
- Debnath, N.; Das, S.; Patra, P.; Mitra, S.; Goswami, A. Toxicological evaluation of entomotoxic silica nanoparticle. Toxicol. Environ. Chem. 2012, 94, 944–951. [Google Scholar] [CrossRef]
- Sabbour, M.M. Entomotoxicity assay of two nanoparticle materials 1-(Al2O3 and TiO2) against Sitophilus oryzae under laboratory and store conditions in Egypt. J. Nov. Appl. Sci. 2012, 1, 103–108. [Google Scholar]
- Ziaee, M.; Ebadollahi, A.; Wakil, W. Integrating inert dusts with other technologies in stored products protection. Toxin Rev. 2019, 1–16. [Google Scholar] [CrossRef]
- Guntzer, F.; Keller, C.; Meunier, J.D. Benefits of plant silicon for crops: A review. Agron. Sustain. Dev. 2012, 32, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Massey, F.P.; Hartley, S.E. Physical defences wear you down: Progressive and irreversible impacts of silica on insect herbivores. J. Anim. Ecol. 2009, 78, 281–291. [Google Scholar] [CrossRef]
- Faraone, N.; MacPherson, S.; Hillier, N.K. Evaluation of repellent and insecticidal properties of a novel granite dust product in crop protection. J. Pest Sci. 2018, 91, 1345–1352. [Google Scholar] [CrossRef]
- Moraes, J.C.; Goussain, M.M.; Basagli, M.A.B.; Carvalho, G.A.; Ecole, C.C.; Sampaio, M.V. Silicon influence on the tritrophic interaction: Wheat plants, the greenbug Schizaphis graminum (Rondani) (Hemiptera: Aphididae), and its natural enemies, Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) and Aphidius colemani Viereck (Hymenoptera: Aphidiidae). Neotrop. Entomol. 2004, 33, 619–624. [Google Scholar]
- Faraone, N.; Evans, R.; LeBlanc, J.; Hillier, N.K. Soil and foliar application of rock dust as natural control agent for two-spotted spider mites on tomato plants. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Glemser, E.; McFadden-Smith, W.; Parent, J.P. Evaluation of Compounds for Repellency of the Multicoloured Asian Lady Beetle (Coleoptera: Coccinellidae) in Vineyards. Can. Entomol. 2020, in press. [Google Scholar]
- Epstein, E. Silicon: Its manifold roles in plants. Ann. Appl. Biol. 2009, 155, 155–160. [Google Scholar] [CrossRef]
- Reynolds, O.L.; Keeping, M.G.; Meyer, J.H. Silicon-augmented resistance of plants to herbivorous insects: A review. Ann. Appl. Biol. 2009, 155, 171–186. [Google Scholar] [CrossRef]
- Reynolds, O.L.; Padula, M.; Zeng, R.; Gurr, G.M. Silicon: Potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Front. Plant Sci. 2016, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Miyake, Y.; Takahashi, E. Effect of silicon on the growth and fruit production of strawberry plants in a solution culture. Soil Sci. Plant Nutr. 1986, 32, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.P.; Ayyappath, R.; Kirkwyland, J.J. Yield response of pumpkin and winter squash to simulated cucumber beetle (Coleoptera: Chrysomelidae) feeding injury. J. Econ. Entomol. 2000, 93, 136–140. [Google Scholar] [CrossRef]
- Bruton, B.D.; Mitchell, F.; Fletcher, J.; Pair, S.D.; Wayadande, A.; Melcher, U.; Brady, J.; Bextine, B.; Popham, T.W. Serratia marcescens, a phloem-colonizing, squash bug-transmitted bacterium: Causal agent of cucurbit yellow vine disease. Plant Dis. 2003, 87, 937–944. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardized measurement of plant functional traits worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Stevenson, D.; Eller, F.J.; Wang, L.; Jane, J.L.; Wang, T.; Inglett, G.E. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. J. Agric. Food Chem. 2007, 55, 4005–4013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- RStudio Team. RStudio: Integrated Development for R; RStudio: Boston, MA, USA, 2018; Available online: https://www.rstudio.com (accessed on 9 December 2020).
- Crawley, M.J. The R Book; John Wiley & Sons: Chichester, West Sussex, UK, 2012. [Google Scholar]
- Halekoh, U.; Højsgaard, S. A Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models—The R package pbkrtest. J. Stat. Softw. 2014, 59, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Lenth, R.V. Least-squares means: The R package lsmeans. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Collins, D.A.; Cook, D.A. Laboratory evaluation of diatomaceous earths, when applied as dry dust and slurries to wooden surfaces, against stored-product insect and mite pests. J. Stored Prod. Res. 2006, 42, 197–206. [Google Scholar] [CrossRef]
- Eroglu, N.; Emekci, M.; Athanassiou, C.G. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 2017, 97, 3487–3499. [Google Scholar] [CrossRef]
- Ma, J.F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr. 2004, 50, 11–18. [Google Scholar] [CrossRef]
- Laing, D.; Gatarayiha, M.; Adandonon, A. Silicon use for pest control in agriculture: A review. Proc. SAST Ass. 2006, 80, 278–286. [Google Scholar]
- Keeping, M.G.; Kvedaras, O.L. Silicon as a plant defense against insect herbivory: Response to Massey, Ennos and Hartley. J. Anim. Ecol. 2008, 77, 631–633. [Google Scholar] [CrossRef]
- Bakhat, H.F.; Bibi, N.; Zia, Z.; Abbas, S.; Hammad, H.M.; Fahad, S.; Ashraf, M.R.; Shah, G.M.; Rabbani, F.; Saeed, S. Silicon mitigates biotic stresses in crop plants: A review. Crop Prot. 2018, 104, 21–34. [Google Scholar] [CrossRef]
- Boyetchko, S.; Pedersen, E.; Punja, Z.; Reddy, M. Formulations of biopesticides. In Biopesticides: Use and Delivery, 1st ed.; Hall, F.R., Menn, J.J., Eds.; Humana Press: Totowa, NJ, USA, 1999; pp. 487–508. [Google Scholar]
- Gan-Mor, S.; Matthews, G.A. Recent developments in sprayers for application of biopesticides—An overview. Biosyst. Eng. 2003, 84, 119–125. [Google Scholar] [CrossRef]
- Bruck, D.J.; Bolda, M.; Tanigoshi, L.; Klick, J.; Kleiber, J.; DeFrancesco, J.; Gerdeman, B.; Spitler, H. Laboratory and field comparisons of insecticides to reduce infestation of Drosophila suzukii in berry crops. Pest Manag. Sci. 2011, 67, 1375–1385. [Google Scholar] [CrossRef] [PubMed]
- Green, J.M.; Beestman, G.B. Recently patented and commercialized formulation and adjuvant technology. Crop Prot. 2007, 26, 320–327. [Google Scholar] [CrossRef]
- Dimetry, N.Z.; Abd El-Salam, A.M.E.; El-Hawary, F.M.A. Importance of plant extract formulations in managing different pests attacking beans in new reclaimed area and under storage conditions. Arch. Phytopathol. Plant Prot. 2010, 43, 700–711. [Google Scholar] [CrossRef]
- Pati, S.; Pal, B.; Badole, S.; Hazra, G.C.; Mandal, B. Effect of silicon fertilization on growth, yield, and nutrient uptake of rice. Commun. Soil Sci. Plan. 2016, 47, 284–290. [Google Scholar] [CrossRef]
- Ahmad, A.; Afzal, M.; Ahmad, A.U.H.; Tahir, M. Effect of foliar application of silicon on yield and quality of rice (Oryza Sativa L). Cercet. Agron. Mold. 2013, 46, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Korndörfer, G.H.; Lepsch, I. Effect of silicon on plant growth and crop yield. In Studies in Plant Science; Datnoff, L.E., Snyder, G.H., Korndorfer, G.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 8, pp. 133–147. [Google Scholar]
- Beerling, D.J.; Leake, J.R.; Long, S.P.; Scholes, J.D.; Ton, J.; Nelson, P.N.; Bird, M.; Kantzas, E.; Taylor, L.L.; Sarkar, B.; et al. Farming with crops and rocks to address global climate, food and soil security. Nat. Plants 2018, 4, 138–147. [Google Scholar] [CrossRef]
- Chen, W.; Yao, X.; Cai, K.; Chen, J. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol. Trace Element Res. 2011, 142, 67–76. [Google Scholar] [CrossRef]
- Keeping, M.G.; Kvedaras, O.L.; Bruton, A.G. Epidermal silicon in sugarcane: Cultivar differences and role in resistance to sugarcane borer Eldana saccharina. Environ. Exp. Bot. 2009, 66, 54–60. [Google Scholar] [CrossRef]
- Nestby, R.; Lieten, F.; Pivot, D.; Lacroix, C.R.; Tagliavini, M. Influence of mineral nutrients on strawberry fruit quality and their accumulation in plant organs: A review. Int. J. Fruit Sci. 2005, 5, 139–156. [Google Scholar] [CrossRef]
- Li, H.; Zhu, Y.; Hu, Y.; Han, W.; Gong, H. Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiol. Plant. 2015, 37, 71. [Google Scholar] [CrossRef]
- Toresano-Sánchez, F.; Valverde-García, A.; Camacho-Ferre, F. Effect of the application of silicon hydroxide on yield and quality of cherry tomato. J. Plant Nutr. 2012, 35, 567–590. [Google Scholar] [CrossRef]
- Mitani, N.; Ma, J.F. Uptake system of silicon in different plant species. J. Exp. Bot. 2005, 56, 1255–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatment | ID | Description |
---|---|---|
Water | W | Control |
Dust | D | Dry dust powder, mixture of granite dusts |
Dust with water | DW | Dry dust powder mixed with water at 250 g/L |
Insectigone® | I | Diatomaceous earth-based insecticidal dry powder |
Treatment | Herbivory Damage % (±SEM) ‡ | ||
---|---|---|---|
Z | p | ||
W | 31.59 (±2.71) | - | - |
D | 0.05 (±0.05) | −4.94 | <0.0001 |
DW | 11.51 (±4.26) | −1.95 | 0.04 |
I | 11.59 (±4.56) | −1.94 | 0.03 |
Treatment | Dry Mass (g) (±SEM) ‡ | ||
---|---|---|---|
Z | p | ||
W | 46.67 (±8.19) | - | - |
D | 76.82 (±16.59) | −1.58 | 0.07 |
DW | 45.71 (±5.77) | 0.268 | 0.394 |
I | 138.90 (±23.47) | −3.468 | <0.001 |
Treatment | Leaf Width (cm) (±SEM) ‡ | Leaf Length (cm) (±SEM) * | ||||
---|---|---|---|---|---|---|
Z | p | t | p | |||
W | 13.77 (±0.60) | - | - | 19.58 (±0.71) | - | - |
D | 14.58 (±0.40) | −1.031 | 0.227 | 18.84 (±0.50) | −0.893 | 0.746 |
DW | 12.23 (±0.45) | 2.251 | 0.02 | 17.02 (±0.57) | −3.146 | 0.012 |
I | 14.05 (±0.43) | −0.483 | 0.315 | 17.74 (±0.47) | −2.253 | 0.127 |
Treatment | Dry Mass (g) (±SEM) ‡ | ||
---|---|---|---|
Z | p | ||
W | 159.55 (±28.64) | - | - |
D | 406.58 (±25.09) | −2.967 | <0.01 |
DW | 302.38 (±39.20) | −1.815 | 0.05 |
I | 437.06 (±49.15) | −3.458 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faraone, N.; Hillier, N.K. Preliminary Evaluation of a Granite Rock Dust Product for Pest Herbivore Management in Field Conditions. Insects 2020, 11, 877. https://doi.org/10.3390/insects11120877
Faraone N, Hillier NK. Preliminary Evaluation of a Granite Rock Dust Product for Pest Herbivore Management in Field Conditions. Insects. 2020; 11(12):877. https://doi.org/10.3390/insects11120877
Chicago/Turabian StyleFaraone, Nicoletta, and N. Kirk Hillier. 2020. "Preliminary Evaluation of a Granite Rock Dust Product for Pest Herbivore Management in Field Conditions" Insects 11, no. 12: 877. https://doi.org/10.3390/insects11120877
APA StyleFaraone, N., & Hillier, N. K. (2020). Preliminary Evaluation of a Granite Rock Dust Product for Pest Herbivore Management in Field Conditions. Insects, 11(12), 877. https://doi.org/10.3390/insects11120877