A Comparison of Adult Mosquito Trapping Methods to Assess Potential West Nile Virus Mosquito Vectors in Greece during the Onset of the 2018 Transmission Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mosquito Collections
2.2. DNA/RNA Extraction and cDNA Synthesis
2.3. Molecular Identification of Species
2.4. WNV Screening
2.5. WNV Case Mapping
2.6. Statistical Analysis
3. Results
3.1. Mosquito Species Abundance and Diversity
3.2. Species Trap Comparison
3.3. Molecular Identification of Species
3.4. WNV Infection Rates in Field Mosquitoes
3.5. WNV Reported Cases
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hubalek, Z.; Halouzka, J. West Nile fever—A reemerging mosquito-borne viral disease in Europe. Emerg. Infect. Dis. 1999, 5, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Hubalek, Z. Mosquito-borne viruses in Europe. Parasitol. Res. 2008, 103, S29–S43. [Google Scholar] [CrossRef]
- Brustolin, M.; Talavera, S.; Santamaria, C.; Rivas, R.; Pujol, N.; Aranda, C.; Marques, E.; Valle, M.; Verdun, M.; Pages, N.; et al. Culex pipiens and Stegomyia albopicta (=Aedes albopictus) populations as vectors for lineage 1 and 2 West Nile virus in Europe. Med. Vet. Entomol. 2016, 30, 166–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, E.B.; Komar, N.; Nasci, R.S.; Montgomery, S.P.; O’Leary, D.R.; Campbell, G.L. Epidemiology and transmission dynamics of West Nile virus disease. Emerg. Infect. Dis. 2005, 11, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Vilibic-Cavlek, T.; Savic, V.; Petrovic, T.; Toplak, I.; Barbic, L.; Petric, D.; Tabain, I.; Hrnjakovic-Cvjetkovic, I.; Bogdanic, M.; Klobucar, A.; et al. Emerging trends in the epidemiology of West Nile and Usutu virus infections in Southern Europe. Front. Vet. Sci. 2019, 6, 437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciota, A.T. West Nile virus and its vectors. Curr. Opin. Insect. Sci. 2017, 22, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Kramer, L.D.; Ciota, A.T.; Kilpatrick, A.M. Introduction, spread, and establishment of West Nile virus in the Americas. J. Med. Entomol. 2019, 56, 1448–1455. [Google Scholar] [CrossRef]
- Vogels, C.B.F.; Hartemink, N.; Koenraadt, C.J.M. Modelling West Nile virus transmission risk in Europe: Effect of temperature and mosquito biotypes on the basic reproduction number. Sci. Rep. 2017, 7, 5022. [Google Scholar] [CrossRef]
- Hayes, E.B.; Sejvar, J.J.; Zaki, S.R.; Lanciotti, R.S.; Bode, A.V.; Campbell, G.L. Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg. Infect. Dis. 2005, 11, 1174–1179. [Google Scholar] [CrossRef]
- Custer, B.; Busch, M.P.; Marfin, A.A.; Petersen, L.R. The cost-effectiveness of screening the U.S. blood supply for West Nile virus. Ann. Intern. Med. 2005, 143, 486–492. [Google Scholar] [CrossRef]
- Korves, C.T.; Goldie, S.J.; Murray, M.B. Cost-effectiveness of alternative blood-screening strategies for West Nile virus in the United States. PLoS Med. 2006, 3, e21. [Google Scholar] [CrossRef] [PubMed]
- Bowen, R.A.; Bosco-Lauth, A.; Syvrud, K.; Thomas, A.; Meinert, T.R.; Ludlow, D.R.; Cook, C.; Salt, J.; Ons, E. Protection of horses from West Nile virus Lineage 2 challenge following immunization with a whole, inactivated WNV lineage 1 vaccine. Vaccine 2014, 32, 5455–5459. [Google Scholar] [CrossRef]
- Long, M.T.; Gibbs, E.P.; Mellencamp, M.W.; Bowen, R.A.; Seino, K.K.; Zhang, S.; Beachboard, S.E.; Humphrey, P.P. Efficacy, duration, and onset of immunogenicity of a West Nile virus vaccine, live Flavivirus chimera, in horses with a clinical disease challenge model. Equine. Vet. J. 2007, 39, 491–497. [Google Scholar] [CrossRef]
- Smithburn, K.C.; Hughes, T.P.; Burke, A.W.; Paul, J.H. A neurotropic virus isolated from the blood of a native of Uganda1. Am. J. Trop. Med. Hyg. 1940, s1-20, 471–492. [Google Scholar] [CrossRef]
- Gubler, D.J. the continuing spread of West Nile virus in the Western Hemisphere. Clin. Infect. Dis. 2007, 45, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Grubaugh, N.D.; Ebel, G.D. Dynamics of West Nile virus evolution in mosquito vectors. Curr. Opin. Virol. 2016, 21, 132–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colpitts, T.M.; Conway, M.J.; Montgomery, R.R.; Fikrig, E. West Nile virus: Biology, transmission, and human infection. Clin. Microbiol. Rev. 2012, 25, 635–648. [Google Scholar] [CrossRef] [Green Version]
- Petersen, L.R.; Marfin, A.A. West Nile virus: A primer for the clinician. Ann. Intern. Med. 2002, 137, 173–179. [Google Scholar] [CrossRef]
- Tantely, M.L.; Goodman, S.M.; Rakotondranaivo, T.; Boyer, S. Review of West Nile virus circulation and outbreak risk in Madagascar: Entomological and ornithological perspectives. Parasite 2016, 23, 49. [Google Scholar] [CrossRef] [Green Version]
- Levine, R.S.; Mead, D.G.; Kitron, U.D. Limited spillover to humans from West Nile Virus viremic birds in Atlanta, Georgia. Vector Borne Zoonotic Dis. 2013, 13, 812–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jourdain, E.; Schuffenecker, I.; Korimbocus, J.; Reynard, S.; Murri, S.; Kayser, Y.; Gauthier-Clerc, M.; Sabatier, P.; Zeller, H.G. West Nile virus in wild resident birds, Southern France, 2004. Vector Borne Zoonotic Dis. 2007, 7, 448–452. [Google Scholar] [CrossRef]
- Linke, S.; Niedrig, M.; Kaiser, A.; Ellerbrok, H.; Muller, K.; Muller, T.; Conraths, F.J.; Muhle, R.U.; Schmidt, D.; Koppen, U.; et al. Serologic evidence of West Nile virus infections in wild birds captured in Germany. Am. J. Trop. Med. Hyg. 2007, 77, 358–364. [Google Scholar] [CrossRef]
- Figuerola, J.; Soriguer, R.; Rojo, G.; Gomez Tejedor, C.; Jimenez-Clavero, M.A. Seroconversion in wild birds and local circulation of West Nile virus, Spain. Emerg. Infect. Dis. 2007, 13, 1915–1917. [Google Scholar] [CrossRef]
- Calzolari, M.; Gaibani, P.; Bellini, R.; Defilippo, F.; Pierro, A.; Albieri, A.; Maioli, G.; Luppi, A.; Rossini, G.; Balzani, A.; et al. Mosquito, bird and human surveillance of West Nile and Usutu viruses in Emilia-Romagna Region (Italy) in 2010. PLoS ONE 2012, 7, e38058. [Google Scholar] [CrossRef] [Green Version]
- Sambri, V.; Capobianchi, M.R.; Cavrini, F.; Charrel, R.; Donoso-Mantke, O.; Escadafal, C.; Franco, L.; Gaibani, P.; Gould, E.A.; Niedrig, M.; et al. Diagnosis of West Nile virus human infections: Overview and proposal of diagnostic protocols considering the results of external quality assessment studies. Viruses 2013, 5, 2329–2348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, T.F.; Popovici, F.; Cernescu, C.; Campbell, G.L.; Nedelcu, N.I. West Nile encephalitis epidemic in southeastern Romania. Lancet 1998, 352, 767–771. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Weekly Updates: 2018 West Nile Fever Transmission Season. Available online: https://ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/disease-data-ecdc (accessed on 15 April 2020).
- Papa, A. West Nile virus infections in humans—Focus on Greece. J. Clin. Virol. 2013, 58, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Papa, A.; Perperidou, P.; Tzouli, A.; Castilletti, C. West Nile virus—Neutralizing antibodies in humans in Greece. Vector Borne Zoonotic Dis. 2010, 10, 655–658. [Google Scholar] [CrossRef]
- Danis, K.; Papa, A.; Theocharopoulos, G.; Dougas, G.; Athanasiou, M.; Detsis, M.; Baka, A.; Lytras, T.; Mellou, K.; Bonovas, S.; et al. Outbreak of West Nile virus infection in Greece, 2010. Emerg. Infect. Dis. 2011, 17, 1868–1872. [Google Scholar] [CrossRef]
- Hellenic Centre for Disease Control and Prevention (KEELPNO). Available online: https://ecdc.europa.eu/en/hellenic-centre-disease-control-and-prevention-keelpno-epiet (accessed on 15 April 2020).
- Epidemiological Update: West Nile Virus Transmission Season in Europe. 2018. Available online: https://ecdc.europa.eu/en/news-events/epidemiological-update-west-nile-virus-transmission-season-europe-2018 (accessed on 15 April 2020).
- Vogels, C.B.; Goertz, G.P.; Pijlman, G.P.; Koenraadt, C.J. Vector competence of European mosquitoes for West Nile virus. Emerg. Microbes Infect. 2017, 6, e96. [Google Scholar] [CrossRef] [Green Version]
- Jansen, S.; Heitmann, A.; Luhken, R.; Leggewie, M.; Helms, M.; Badusche, M.; Rossini, G.; Schmidt-Chanasit, J.; Tannich, E. Culex torrentium: A Potent vector for the transmission of West Nile Virus in Central Europe. Viruses 2019, 11, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaffner, F.; Versteirt, V.; Medlock, J. Guidelines for the Surveillance of Native Mosquitoes in Europe; ECDC: Sweden, Stockholm, 2014.
- Anderson, J.F.; Main, A.J.; Ferrandino, F.J. Horizontal and Vertical Transmission of West Nile Virus by Aedes vexans (Diptera: Culicidae). J. Med. Entomol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.L.; Fonseca, D.M. Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am. J. Trop. Med. Hyg. 2004, 70, 339–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, N.; Jost, A.; Weitzel, T. The Culex pipiens complex in Europe. J. Am. Mosq. Control. Assoc. 2012, 28, 53–67. [Google Scholar] [CrossRef]
- Hesson, J.C.; Rettich, F.; Merdic, E.; Vignjevic, G.; Ostman, O.; Schafer, M.; Schaffner, F.; Foussadier, R.; Besnard, G.; Medlock, J.; et al. The arbovirus vector Culex torrentium is more prevalent than Culex pipiens in northern and central Europe. Med. Vet. Entomol. 2014, 28, 179–186. [Google Scholar] [CrossRef]
- Kent, R.J.; Harrington, L.C.; Norris, D.E. Genetic differences between Culex pipiens f. molestus and Culex pipiens pipiens (Diptera: Culicidae) in New York. J. Med. Entomol. 2007, 44, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Borstler, J.; Jost, H.; Garms, R.; Kruger, A.; Tannich, E.; Becker, N.; Schmidt-Chanasit, J.; Luhken, R. Host-feeding patterns of mosquito species in Germany. Parasit Vectors 2016, 9, 318. [Google Scholar] [CrossRef] [Green Version]
- Fritz, M.L.; Walker, E.D.; Miller, J.R.; Severson, D.W.; Dworkin, I. Divergent host preferences of above- and below-ground Culex pipiens mosquitoes and their hybrid offspring. Med. Vet. Entomol. 2015, 29, 115–123. [Google Scholar] [CrossRef]
- Osorio, H.C.; Ze-Ze, L.; Alves, M.J. Host-feeding patterns of Culex pipiens and other potential mosquito vectors (Diptera: Culicidae) of West Nile virus (Flaviviridae) collected in Portugal. J. Med. Entomol. 2012, 49, 717–721. [Google Scholar] [CrossRef]
- Gomes, B.; Kioulos, E.; Papa, A.; Almeida, A.P.; Vontas, J.; Pinto, J. Distribution and hybridization of Culex pipiens forms in Greece during the West Nile virus outbreak of 2010. Infect. Genet. Evol. 2013, 16, 218–225. [Google Scholar] [CrossRef]
- Shaikevich, E.V.; Vinogradova, E.B. The discovery of a hybrid population of mosquitoes of the Culex pipiens L. complex (Diptera, Culicidae) on the Kos Island (Greece) by means of molecular markers. Entomol. Rev. 2014, 94, 35–39. [Google Scholar] [CrossRef]
- Samanidou-Voyadjoglou, A.; Harbach, R.E. Keys to the adult female mosquitoes (Culicidae) of Greece. EMB 2001, 10, 13–20. [Google Scholar]
- Kumar, N.P.; Rajavel, A.R.; Natarajan, R.; Jambulingam, P. DNA barcodes can distinguish species of Indian mosquitoes (Diptera: Culicidae). J. Med. Entomol. 2007, 44, 1–7. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Zittra, C.; Flechl, E.; Kothmayer, M.; Vitecek, S.; Rossiter, H.; Zechmeister, T.; Fuehrer, H.P. Ecological characterization and molecular differentiation of Culex pipiens complex taxa and Culex torrentium in eastern Austria. Parasit Vectors 2016, 9, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahnck, C.M.; Fonseca, D.M. Rapid assay to identify the two genetic forms of Culex (Culex) pipiens L. (Diptera: Culicidae) and hybrid populations. Am. J. Trop. Med. Hyg. 2006, 75, 251–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Linke, S.; Ellerbrok, H.; Niedrig, M.; Nitsche, A.; Pauli, G. Detection of West Nile virus lineages 1 and 2 by real-time PCR. J. Virol. Methods 2007, 146, 355–358. [Google Scholar] [CrossRef]
- Luhken, R.; Pfitzner, W.P.; Borstler, J.; Garms, R.; Huber, K.; Schork, N.; Steinke, S.; Kiel, E.; Becker, N.; Tannich, E.; et al. Field evaluation of four widely used mosquito traps in Central Europe. Parasit Vectors 2014, 7, 268. [Google Scholar] [CrossRef] [Green Version]
- Roiz, D.; Roussel, M.; Munoz, J.; Ruiz, S.; Soriguer, R.; Figuerola, J. Efficacy of mosquito traps for collecting potential West Nile mosquito vectors in a natural Mediterranean wetland. Am. J. Trop. Med. Hyg. 2012, 86, 642–648. [Google Scholar] [CrossRef] [Green Version]
- Meeraus, W.H.; Armistead, J.S.; Arias, J.R. Field comparison of novel and gold standard traps for collecting Aedes albopictus in Northern Virginia. J. Am. Mosq. Control. Assoc. 2008, 24, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Darsie, R.F., Jr.; Samanidou-Voyadjoglou, A. Keys for the identification of the mosquitoes of Greece. J. Am. Mosq. Control Assoc. 1997, 13, 247–254. [Google Scholar] [PubMed]
- Badieritakis, E.; Papachristos, D.; Latinopoulos, D.; Stefopoulou, A.; Kolimenakis, A.; Bithas, K.; Patsoula, E.; Beleri, S.; Maselou, D.; Balatsos, G.; et al. Aedes albopictus (Skuse, 1895) (Diptera: Culicidae) in Greece: 13 years of living with the Asian tiger mosquito. Parasitol. Res. 2018, 117, 453–460. [Google Scholar] [CrossRef]
- Kioulos, I.; Michaelakis, A.; Kioulos, N.; Samanidou-Voyadjoglou, A.; Koliopoulos, G. Mosquito (Diptera: Culicidae) fauna in natural breeding sites of Attica basin, Greece. Hell. Plant Prot. J. 2014, 7, 31–34. [Google Scholar]
- Mavridis, K.; Fotakis, E.A.; Kioulos, I.; Mpellou, S.; Konstantas, S.; Varela, E.; Gewehr, S.; Diamantopoulos, V.; Vontas, J. Detection of West Nile Virus—Lineage 2 in Culex pipiens mosquitoes, associated with disease outbreak in Greece, 2017. Acta Trop. 2018, 182, 64–68. [Google Scholar] [CrossRef]
- Ciota, A.T.; Chin, P.A.; Kramer, L.D. The effect of hybridization of Culex pipiens complex mosquitoes on transmission of West Nile virus. Parasit Vectors 2013, 6, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molaei, G.; Andreadis, T.G.; Armstrong, P.M.; Anderson, J.F.; Vossbrinck, C.R. Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerg. Infect. Dis. 2006, 12, 468–474. [Google Scholar] [CrossRef]
- Balenghien, T.; Vazeille, M.; Grandadam, M.; Schaffner, F.; Zeller, H.; Reiter, P.; Sabatier, P.; Fouque, F.; Bicout, D.J. Vector competence of some French Culex and Aedes mosquitoes for West Nile virus. Vector Borne Zoonotic Dis. 2008, 8, 589–595. [Google Scholar] [CrossRef]
- Mancini, G.; Montarsi, F.; Calzolari, M.; Capelli, G.; Dottori, M.; Ravagnan, S.; Lelli, D.; Chiari, M.; Santilli, A.; Quaglia, M.; et al. Mosquito species involved in the circulation of West Nile and Usutu viruses in Italy. Vet. Ital. 2017, 53, 97–110. [Google Scholar] [CrossRef]
- Paupy, C.; Delatte, H.; Bagny, L.; Corbel, V.; Fontenille, D. Aedes albopictus, an arbovirus vector: From the darkness to the light. Microbes Infect. 2009, 11, 1177–1185. [Google Scholar] [CrossRef]
- Effler, P.V.; Pang, L.; Kitsutani, P.; Vorndam, V.; Nakata, M.; Ayers, T.; Elm, J.; Tom, T.; Reiter, P.; Rigau-Perez, J.G.; et al. Dengue fever, Hawaii, 2001–2002. Emerg. Infect. Dis. 2005, 11, 742–749. [Google Scholar] [CrossRef]
- Ramchurn, S.K.; Moheeput, K.; Goorah, S.S. An analysis of a short-lived outbreak of dengue fever in Mauritius. Euro Surveill. 2009, 14. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.S.; Li, M.Z.; Chong, C.S.; Ng, L.C.; Tan, C.H. Aedes (Stegomyia) albopictus (Skuse): A potential vector of Zika virus in Singapore. PLoS Negl. Trop. Dis. 2013, 7, e2348. [Google Scholar] [CrossRef] [PubMed]
- Grard, G.; Caron, M.; Mombo, I.M.; Nkoghe, D.; Mboui Ondo, S.; Jiolle, D.; Fontenille, D.; Paupy, C.; Leroy, E.M. Zika virus in Gabon (Central Africa)--2007: A new threat from Aedes albopictus? PLoS Negl. Trop. Dis. 2014, 8, e2681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aranda, C.; Martinez, M.J.; Montalvo, T.; Eritja, R.; Navero-Castillejos, J.; Herreros, E.; Marques, E.; Escosa, R.; Corbella, I.; Bigas, E.; et al. Arbovirus surveillance: First dengue virus detection in local Aedes albopictus mosquitoes in Europe, Catalonia, Spain, 2015. Euro Surveill. 2018, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortuna, C.; Remoli, M.E.; Severini, F.; Di Luca, M.; Toma, L.; Fois, F.; Bucci, P.; Boccolini, D.; Romi, R.; Ciufolini, M.G. Evaluation of vector competence for West Nile virus in Italian Stegomyia albopicta (=Aedes albopictus) mosquitoes. Med. Vet. Entomol. 2015, 29, 430–433. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control (ECDC). The European Surveillance System (TESSy). Available online: https://www.ecdc.europa.eu/en/publications-data/european-surveillance-system-tessy (accessed on 25 May 2020).
- European Centre for Disease Prevention and Control. European Network for Sharing Data on the Geographic Distribution of Arthropod Vectors, Transmitting Human and Animal Disease Agents (VectorNet). Available online: https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/vector-net (accessed on 25 May 2020).
Region/Regional Unit | Sampling Location | Species/Complex | Mosquitoes Collected | |||||
---|---|---|---|---|---|---|---|---|
Females | Males | Total | % of Total Per Site | |||||
Non-Blood-Fed | Blood-Fed | Gravid | ||||||
Attica/Palaio Faliro | Rema Pikrodafnis | Cx. pipiens complex | 68 | 6 | 3 | 1 | 78 | 55.7 |
Ae. albopictus | 17 | 0 | 0 | 33 | 50 | 35.7 | ||
Cs. longiareolata | 1 | 1 | 0 | 7 | 9 | 6.4 | ||
Unidentified | 3 | 0 | 0 | 0 | 3 | 2.1 | ||
Dimarchio | Cx. pipiens complex | 47 | 1 | 0 | 0 | 48 | 64.9 | |
Ae. albopictus | 8 | 0 | 0 | 5 | 13 | 17.6 | ||
Cs. longiareolata | 0 | 1 | 0 | 12 | 13 | 17.6 | ||
KAPI | Cx. pipiens complex | 106 | 2 | 2 | 8 | 118 | 84.3 | |
Ae. albopictus | 4 | 1 | 0 | 9 | 14 | 10.0 | ||
Cs. longiareolata | 2 | 1 | 0 | 4 | 7 | 5.0 | ||
Unidentified | 1 | 0 | 0 | 0 | 1 | 0.7 | ||
Peloponnese/Argolida | Agia Triada | Cx. pipiens complex | 101 | 2 | 3 | 9 | 115 | 54.0 |
Ae. albopictus | 1 | 0 | 0 | 0 | 1 | 0.5 | ||
Cs. longiareolata | 31 | 0 | 0 | 64 | 95 | 44.6 | ||
Ae. caspius | 1 | 0 | 0 | 0 | 1 | 0.5 | ||
An. maculipennis complex | 0 | 0 | 0 | 1 | 1 | 0.5 | ||
Nea Tirintha | Cx. pipiens complex | 140 | 3 | 0 | 4 | 147 | 49.0 | |
Cs. longiareolata | 14 | 1 | 0 | 23 | 38 | 12.7 | ||
Ae. caspius | 91 | 2 | 0 | 1 | 94 | 31.3 | ||
An. maculipennis complex | 13 | 3 | 0 | 0 | 16 | 5.3 | ||
Unidentified | 5 | 0 | 0 | 0 | 5 | 1.7 | ||
Dalamanara | Cx. pipiens complex | 153 | 4 | 1 | 0 | 158 | 81.0 | |
Ae. albopictus | 1 | 0 | 0 | 0 | 1 | 0.5 | ||
Cs. longiareolata | 5 | 0 | 0 | 4 | 9 | 4.6 | ||
Ae. caspius | 22 | 0 | 0 | 0 | 22 | 11.3 | ||
An. maculipennis complex | 2 | 0 | 0 | 0 | 2 | 1.0 | ||
Unidentified | 3 | 0 | 0 | 0 | 3 | 1.5 | ||
Total collected | 840 | 28 | 9 | 185 | 1062 | – |
Region/Regional Unit | Trap Comparison 1 | U-Value | Z-Score | p-Value |
---|---|---|---|---|
Attica/Palaio Faliro | BG vs. CDC | 258.0 | 1.834 | 0.07 |
BG vs EVS | 218.5 | 2.517 | 0.01 | |
CDC vs. EVS | 342.5 | 0.372 | 0.71 | |
Peloponnese/ Argolida | BG vs. CDC | 40.0 | 2.256 | 0.02 |
BG vs EVS | 32.0 | 2.667 | 0.01 | |
CDC vs. EVS | 76.5 | 0.385 | 0.70 |
Specimen Code | Sampling Location | Morphological Identification | CO1 Gene Fragment (Reference) | GenBank Accession Number |
---|---|---|---|---|
AT1 | Agia Triada | Cx. pipiens | [49] | MN005042 |
RP1 | Rema Pikrodafnis | Cx. pipiens | [49] | MN005043 |
DI1 | Dimarchio | Cx. pipiens | [49] | MN005044 |
DA1 | Dalamanara | Cx. pipiens | [49] | MN005045 |
KA1 | Kapi | Cx. pipiens | [49] | MN005046 |
NT1 | Nea Tirintha | Cx. pipiens | [49] | MN005047 |
RP2 | Rema Pikrodafnis | Cs. longiareolata | [48] | MN005048 |
DA2 | Dalamanara | Cs. longiareolata | [48] | MN005049 |
AT2 | Agia Triada | Cs. longiareolata | [48] | MN005050 |
NT2 | Nea Tirintha | Ae. caspius | [47] | MN005051 |
AT3 | Agia Triada | Ae. caspius | [47] | MN005052 |
DA3 | Dalamanara | Ae. caspius | [47] | MN005053 |
DI2 | Dimarchio | Ae. albopictus | [48] | MN005054 |
AT4 | Agia Triada | Ae. albopictus | [48] | MN005055 |
RP3 | Rema Pikrodafnis | Ae. albopictus | [48] | MN005056 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bisia, M.; Jeffries, C.L.; Lytra, I.; Michaelakis, A.; Walker, T. A Comparison of Adult Mosquito Trapping Methods to Assess Potential West Nile Virus Mosquito Vectors in Greece during the Onset of the 2018 Transmission Season. Insects 2020, 11, 329. https://doi.org/10.3390/insects11060329
Bisia M, Jeffries CL, Lytra I, Michaelakis A, Walker T. A Comparison of Adult Mosquito Trapping Methods to Assess Potential West Nile Virus Mosquito Vectors in Greece during the Onset of the 2018 Transmission Season. Insects. 2020; 11(6):329. https://doi.org/10.3390/insects11060329
Chicago/Turabian StyleBisia, Marina, Claire L. Jeffries, Ioanna Lytra, Antonios Michaelakis, and Thomas Walker. 2020. "A Comparison of Adult Mosquito Trapping Methods to Assess Potential West Nile Virus Mosquito Vectors in Greece during the Onset of the 2018 Transmission Season" Insects 11, no. 6: 329. https://doi.org/10.3390/insects11060329
APA StyleBisia, M., Jeffries, C. L., Lytra, I., Michaelakis, A., & Walker, T. (2020). A Comparison of Adult Mosquito Trapping Methods to Assess Potential West Nile Virus Mosquito Vectors in Greece during the Onset of the 2018 Transmission Season. Insects, 11(6), 329. https://doi.org/10.3390/insects11060329