Diurnal Flight Activity of House Flies (Musca domestica) is Influenced by Sex, Time of Day, and Environmental Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Analysis
2.1.1. Flight Activity by Time of Day
2.1.2. Effect of Environmental Variables on House Fly Flight Activity
3. Results
3.1. Flight Activity by Time of Day
3.2. Effect of Environmental Variables on Flight Activity
4. Discussion
4.1. Diurnal Flight Activity
4.2. Flight Activity Predicted by Environmental Variables
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thomas, G.D.; Skoda, S.R. Rural Flies in the Urban Environment? In Proceedings of the Annual Meeting of the Entomological Society of America, San Antonio, TX, USA, 10 December 1989; pp. 1–66. [Google Scholar]
- Adams, J. Vector: Filth fly. In Poultry Training Manual; Clemson University: Clemson, SC, USA, 2003. [Google Scholar]
- Lole, M.J. Nuisance flies and landfill activities: An investigation at a west midlands landfill site. Waste Manag. Res. 2005, 23, 420–428. [Google Scholar] [CrossRef]
- Kobayashi, M.; Sasaki, T.; Saito, N.; Tamura, K.; Suzuki, K.; Watanabe, H.; Agui, N. Houseflies: Not simple mechanical vectors of enterohemorrhagic Escherichia coli O157: H7. Am. J. Trop. Med. Hyg. 1999, 61, 625–629. [Google Scholar] [CrossRef]
- Graczyk, T.K.; Knight, R.; Gilman, R.H.; Cranfield, M.R. The role of non-biting flies in the epidemiology of human infectious diseases. Microbes Infect. 2001, 3, 231–235. [Google Scholar] [CrossRef]
- Pitkin, A.; Deen, J.; Otake, S.; Moon, R.; Dee, S. Further assessment of houseflies (Musca domestica) as vectors for the mechanical transport and transmission of porcine reproductive and respiratory syndrome virus under field conditions. Can. J. Vet. Res. 2009, 73, 91–96. [Google Scholar] [PubMed]
- Pugh, D.G.; Hu, X.P.; Blagburn, B. Habronemiasis: Biology, signs, and diagnosis, and treatment and prevention of the nematodes and vector flies. J. Equine Vet. Sci. 2014, 34, 241–248. [Google Scholar] [CrossRef]
- West, L.S. The Housefly, Its Natural History, Medical Importance and Control; Comstock Publishing Co.: Ithaca, NY, USA, 1951. [Google Scholar]
- Tsutsumi, C. Studies on the behavior of the housefly, Musca domestica L. I. The behavior and activity patterns under experimental conditions with special reference to the nighttime resting habit. Jpn. J. Med. Sci. Biol. 1966, 19, 155–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, M.V. Diurnal Variations in Abundance of the Housefly Musca Domestica in a Tropical Village. Oikos 1981, 36, 374–375. [Google Scholar] [CrossRef] [Green Version]
- Shinoda, O.; Ando, T. Diurnal rhythm of flies. Bot. Zool. 1935, 3, 117–121. [Google Scholar]
- Semakula, L.M.; Taylor, R.A.J.; Pitts, C.W. Flight behavior of Musca domestica and Stomoxys calcitrans (Diptera: Muscidae) in a Kansas dairy barn. J. Med. Entomol. 1989, 26, 501–509. [Google Scholar] [CrossRef]
- Parker, A.H. Studies on the diurnal rhythms of the housefly, “Musca domestica” L., in a dry tropical environment. Acta Trop. 1962, 19, 97–119. [Google Scholar] [CrossRef]
- Taylor, L.R. Analysis of the effect of temperature on insects in flight. J. Anim. Ecol. 1963, 99–117. [Google Scholar] [CrossRef]
- Murvosh, C.M.; Thaggard, C.W. Ecological studies of the house fly. Ann. Entomol. Soc. Am. 1966, 59, 533–547. [Google Scholar] [CrossRef] [PubMed]
- Dakshinamurty, S. The common House-fly, Musca domestica, L., and its behaviour to temperature and humidity. Bull. Entomol. Res. 1948, 39, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Lewis, T.; Dibley, G.C. Air movement near windbreaks and a hypothesis of the mechanism of the accumulation of airborne insects. Ann. Appl. Biol. 1970, 66, 477–484. [Google Scholar] [CrossRef]
- Taylor, L.R. Insect migration, flight periodicity and the boundary layer. J. Anim. Ecol. 1974, 43, 225–238. [Google Scholar] [CrossRef]
- Lysyk, T.; Moon, R.D. Sampling arthropods in livestock management systems. In Handbook of Sampling Methods for Arthropods in Agriculture; CRC Press: Boca Raton, FL, USA, 1994; pp. 515–538. ISBN 978-0-8493-2923-4. [Google Scholar]
- Stevenson, D.; Cocke, J. Integrated pest management of flies in Texas Dairies. Tex. FARMER Collect. 2000, 17, 12–97. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Pinheiro, B.D.; DebRoy, S.; Sarkar, D. Linear and nonlinear mixed effects models. R Package Version 2018, 3, 57. [Google Scholar]
- Crawley, M.J. The R Book, 2nd ed.; Wiley: Chichester, UK, 2013; ISBN 978-0-470-97392-9. [Google Scholar]
- Wilkins, A.S. To lag or not to lag? Re-evaluating the use of lagged dependent variables in regression analysis. Political Sci. Res. Methods 2018, 6, 393–411. [Google Scholar] [CrossRef]
- Luke, S.G. Evaluating significance in linear mixed-effects models in R. Behav. Res. Methods 2017, 49, 1494–1502. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.-S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- Lefcheck, J.S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 2016, 7, 573–579. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R. Least-squares means: The R package lsmeans. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Chabora, P.C.; Shukis, A.A. The automated recording of insect activity: The house fly. Ann. Entomol. Soc. Am. 1979, 72, 287–290. [Google Scholar] [CrossRef]
- Krafsur, E.S. Age composition and seasonal phenology of house-fly (Diptera: Muscidae) populations. J. Med. Entomol. 1985, 22, 515–523. [Google Scholar] [CrossRef]
- Pickens, L.G.; Morgan, N.O.; Hartsock, J.G.; Smith, J. Dispersal patterns and populations of the house fly affected by sanitation and weather in rural maryland2. J. Econ. Entomol. 1967, 60, 1250–1255. [Google Scholar] [CrossRef]
- Ragland, S.S.; Sohal, R.S. Mating behavior, physical activity and aging in the housefly, Musca domestica. Exp. Gerontol. 1973, 8, 135–145. [Google Scholar] [CrossRef]
- Black, W.C.; Krafsur, E.S. Use of sticky traps to investigate seasonal trends in the spatial distribution of house flies and stable flies (Diptera: Muscidae). J. Med. Entomol. 1985, 22, 550–557. [Google Scholar] [CrossRef]
- Murvosh, C.M.; Fye, R.L.; Labrecque, G.C. Studies on the mating behavior of the house fly, Musca domestica L. Ohio J. Sci. 1964, 64, 264–271. [Google Scholar]
- Schou, T.M.; Faurby, S.; Kjærsgaard, A.; Pertoldi, C.; Loeschcke, V.; Hald, B.; Bahrndorff, S. Temperature and population density effects on locomotor activity of Musca domestica (Diptera: Muscidae). Environ. Entomol. 2013, 42, 1322–1328. [Google Scholar] [CrossRef] [Green Version]
- Lewis, T.; Taylor, L.R. Diurnal periodicity of flight by insects. Trans. R. Entomol. Soc. Lond. 1965, 116, 393–435. [Google Scholar] [CrossRef]
- Gerry, A.C.; Higginbotham, G.E.; Periera, L.N.; Lam, A.; Shelton, C.R. Evaluation of surveillance methods for monitoring house fly abundance and activity on large commercial dairy operations. J. Econ. Entomol. 2011, 104, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
Female | Male | Temperature (°C) | Humidity (%) | Light Intensity (w/m2) | Wind Speed (m/s) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | Start Time | Coll. Period | Peak Time | Coll. Period | Peak Time | Min | Max | Mean ± SE | Min | Max | Mean ± SE | Min | Max | Mean ± SE | Min | Max | Mean ± SE |
17-Jul-14 | 5:50 | 7 | 12:50 | 7 | 12:50 | 16.72 | 32.28 | 24.66 ± 1.42 | 33.40 | 77.90 | 52.3 ± 3.63 | 0.00 | 978.00 | 427.13 ± 97.81 | 1.10 | 7.60 | 3.2 ± 0.42 |
22-Jul-14 | 5:55 | 5 | 10:55 | 5 | 10:55 | 14.50 | 37.00 | 29.44 ± 1.81 | 20.40 | 77.10 | 39.4 ± 4.17 | 0.00 | 979.00 | 508.69 ± 91.89 | 0.00 | 4.60 | 2.04 ± 0.34 |
24-Jul-14 | 5:56 | 8 | 13:56 | 2 | 7:56 | 17.61 | 44.00 | 35.3 ± 2.21 | 12.60 | 44.90 | 23.81 ± 2.24 | 0.00 | 980.00 | 501.44 ± 92.02 | 0.00 | 5.50 | 2.26 ± 0.44 |
29-Jul-14 | 6:00 | 5 | 11:00 | 2 | 8:00 | 18.50 | 40.00 | 31.65 ± 1.63 | 19.20 | 44.10 | 31.08 ± 1.87 | 0.00 | 864.00 | 409.69 ± 78.07 | 0.00 | 4.10 | 1.84 ± 0.34 |
6-Jul-17 | 5:38 | 13 | 18:38 | 3 | 8:38 | 17.22 | 41.67 | 32.36 ± 1.94 | 26.10 | 63.00 | 44.18 ± 2.21 | 1.00 | 934.50 | 471.41 ± 87.66 | 0.00 | 3.40 | 1.53 ± 0.33 |
2-Aug-17 | 6:00 | 11 | 17:00 | 2 | 8:00 | 25.56 | 35.00 | 31.15 ± 0.78 | 52.80 | 81.70 | 64.39 ± 2.61 | 0.00 | 496.00 | 215.67 ± 46.01 | 0.00 | 3.70 | 1.52 ± 0.42 |
29-Aug-17 | 6:24 | 11 | 17:24 | 1 | 7:24 | 20.70 | 43.80 | 36.83 ± 1.99 | 16.00 | 68.30 | 26.54 ± 4.67 | 2.00 | 847.50 | 387.75 ± 75.93 | 0.00 | 6.60 | 2.47 ± 0.56 |
6-Sep-17 | 6:30 | 3 | 9:30 | 3 | 9:30 | 21.30 | 43.60 | 31.22 ± 1.51 | 18.30 | 80.20 | 40.69 ± 5.15 | 0.50 | 834.00 | 441.46 ± 82.58 | 0.00 | 5.50 | 2.66 ± 0.54 |
14-Sep-17 | 6:35 | 6 | 12:35 | 5 | 11:35 | 12.10 | 25.30 | 20.54 ± 0.99 | 44.50 | 86.50 | 57.47 ± 3.67 | 0.00 | 728.50 | 315.64 ± 61.56 | 0.40 | 5.70 | 2.7 ± 0.43 |
20-Sep-17 | 6:40 | 8 | 14:40 | 5 | 11:40 | 17.40 | 26.70 | 22.35 ± 0.78 | 41.30 | 74.80 | 55.98 ± 2.79 | 0.00 | 666.00 | 311.79 ± 66.22 | 0.80 | 4.30 | 2.16 ± 0.29 |
19-Oct-17 | 7:00 | 3 | 10:00 | 4 | 11:00 | 10.40 | 29.40 | 21.96 ± 1.52 | 35.70 | 87.20 | 51.01 ± 4.5 | 0.00 | 636.00 | 249 ± 59.94 | 0.00 | 3.10 | 1.17 ± 0.29 |
2-Nov-17 | 7:07 | 4 | 11:07 | 4 | 11:07 | 14.40 | 21.10 | 18.3 ± 0.57 | 43.30 | 78.20 | 54.02 ± 3.41 | 0.00 | 574.00 | 253.31 ± 63.5 | 0.00 | 2.90 | 1.4 ± 0.28 |
Dawn | Fixed Effects | Estimate | Standard Error | t Value | Pr (>|t|) | Wald χ2 | p-Value |
---|---|---|---|---|---|---|---|
Initial Model (AIC = 155.78) | |||||||
Intercept | −2.271 | 1.386 | −1.639 | 0.113 | |||
Sex | 0.816 | 1.134 | 0.719 | 0.479 | 42.210 | 0.000 | |
Temperature | 0.176 | 0.051 | 3.428 | 0.002 | 18.220 | 0.000 | |
Light Intensity | 0.005 | 0.002 | 3.018 | 0.006 | 24.590 | 0.000 | |
Relative Humidity | 0.009 | 0.014 | 0.633 | 0.533 | 0.000 | 0.950 | |
Wind Speed | 0.016 | 0.204 | 0.081 | 0.937 | 0.070 | 0.780 | |
Sex X Temperature | 0.057 | 0.037 | 1.513 | 0.142 | 2.290 | 0.130 | |
Sex X Light Intensity | 0.003 | 0.002 | 1.525 | 0.139 | 2.330 | 0.130 | |
Sex X Relative Humidity | −0.019 | 0.012 | −1.580 | 0.126 | 2.500 | 0.110 | |
Sex X Wind Speed | 0.066 | 0.189 | 0.349 | 0.730 | 0.120 | 0.730 | |
Best Fit Model (AIC = 129.08) | |||||||
Intercept | −1.982 | 0.801 | −2.476 | 0.014 | |||
Sex | 0.331 | 0.232 | 1.427 | 0.154 | 40.390 | 0.000 | |
Temperature | 0.199 | 0.045 | 4.394 | <0.001 | 19.310 | 0.000 | |
Light Intensity | 0.004 | 0.002 | 2.919 | 0.004 | 35.720 | 0.000 | |
Sex X Light Intensity | 0.006 | 0.002 | 3.010 | 0.003 | 9.060 | 0.000 | |
Midday | |||||||
Initial Model (AIC = 498.47) | |||||||
Intercept | 2.861 | 0.557 | 5.134 | <0.001 | |||
Sex | 0.466 | 0.585 | 0.797 | 0.427 | 5.310 | 0.020 | |
Temperature | −0.026 | 0.011 | −2.277 | 0.024 | 9.670 | 0.000 | |
Light Intensity | 0.001 | 0.000 | 5.359 | <0.001 | 49.220 | 0.000 | |
Relative Humidity | 0.003 | 0.006 | 0.554 | 0.580 | 1.090 | 0.300 | |
Wind Speed | 0.063 | 0.032 | 1.956 | 0.052 | 1.590 | 0.210 | |
Sex X Temperature | −0.009 | 0.011 | −0.818 | 0.415 | 0.670 | 0.410 | |
Sex X Light Intensity | 0.000 | 0.000 | −0.295 | 0.769 | 0.090 | 0.770 | |
Sex X Relative Humidity | 0.004 | 0.006 | 0.625 | 0.533 | 0.390 | 0.530 | |
Sex X Wind Speed | −0.065 | 0.042 | −1.535 | 0.127 | 2.360 | 0.120 | |
Best Fit Model (AIC = 451.88) | |||||||
Intercept | 3.126 | 0.276 | 11.325 | <0.001 | |||
Sex | 0.718 | 0.253 | 2.841 | 0.005 | 5.280 | 0.020 | |
Temperature | −0.024 | 0.008 | −2.980 | 0.003 | 23.370 | 0.000 | |
Light Intensity | 0.001 | 0.000 | 6.907 | <0.001 | 47.710 | 0.000 | |
Sex X Temperature | −0.019 | 0.008 | −2.351 | 0.019 | 5.530 | 0.020 | |
Dusk | |||||||
Initial Model (AIC = 153.29) | |||||||
Intercept | −0.827 | 1.892 | −0.437 | 0.666 | |||
Sex | 1.495 | 2.091 | 0.715 | 0.481 | 0.130 | 0.720 | |
Temperature | 0.093 | 0.045 | 2.050 | 0.051 | 3.220 | 0.070 | |
Light Intensity | 0.001 | 0.011 | 0.072 | 0.943 | 0.140 | 0.710 | |
Relative Humidity | −0.005 | 0.020 | −0.245 | 0.809 | 0.440 | 0.510 | |
Wind Speed | 0.153 | 0.107 | 1.426 | 0.166 | 10.160 | 0.000 | |
Sex X Temperature | −0.050 | 0.050 | −1.001 | 0.326 | 1.000 | 0.320 | |
Sex X Light Intensity | 0.004 | 0.014 | 0.314 | 0.757 | 0.100 | 0.750 | |
Sex X Relative Humidity | −0.012 | 0.022 | −0.532 | 0.600 | 0.280 | 0.590 | |
Sex X Wind Speed | 0.200 | 0.144 | 1.384 | 0.178 | 1.920 | 0.170 | |
Best Fit Model (AIC = 107.53) | |||||||
Intercept | −1.143 | 0.622 | −1.836 | 0.067 | |||
Temperature | 0.091 | 0.023 | 3.978 | <0.001 | 15.830 | 0.000 | |
Wind Speed | 0.246 | 0.060 | 4.080 | <0.001 | 16.650 | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahn, L.K.; Gerry, A.C. Diurnal Flight Activity of House Flies (Musca domestica) is Influenced by Sex, Time of Day, and Environmental Conditions. Insects 2020, 11, 391. https://doi.org/10.3390/insects11060391
Zahn LK, Gerry AC. Diurnal Flight Activity of House Flies (Musca domestica) is Influenced by Sex, Time of Day, and Environmental Conditions. Insects. 2020; 11(6):391. https://doi.org/10.3390/insects11060391
Chicago/Turabian StyleZahn, Levi K., and Alec C. Gerry. 2020. "Diurnal Flight Activity of House Flies (Musca domestica) is Influenced by Sex, Time of Day, and Environmental Conditions" Insects 11, no. 6: 391. https://doi.org/10.3390/insects11060391
APA StyleZahn, L. K., & Gerry, A. C. (2020). Diurnal Flight Activity of House Flies (Musca domestica) is Influenced by Sex, Time of Day, and Environmental Conditions. Insects, 11(6), 391. https://doi.org/10.3390/insects11060391