Novel Mitochondrial DNA Lineage Found among Ochlerotatus communis (De Geer, 1776) of the Nordic-Baltic Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Morphological Identification
2.2. DNA Extraction
2.3. DNA Markers
2.4. Primers
2.5. Polymerase Chain Reaction (PCR) and Sequencing
2.6. Sequence Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
ID | Site No. | Morphologically Determined Species | Country of Origin | GenBank COI Acc. Num. | GenBank ND5 Acc. Num. | GenBank ITS2 Acc. Num. | Upload Year |
---|---|---|---|---|---|---|---|
15004012 | 1 | Oc. hexodontus | Estonia | MT149916 | MT150197 | MT150247 | 2020 |
15004015 | 1 | Oc. cataphylla | Estonia | MT149946 | MT150204 | MT150252 | 2020 |
15005002 | 1 | Oc. punctor | Estonia | MT149917 | MT150196 | - | 2020 |
15005005 | 1 | Oc. punctor | Estonia | MT149918 | - | - | 2020 |
15005007 | 1 | Oc. hexodontus | Estonia | MT149919 | MT150198 | - | 2020 |
15005008 | 1 | Oc. cataphylla | Estonia | MT149920 | MT150205 | MT150253 | 2020 |
15005010 | 1 | Oc. cataphylla | Estonia | MT149921 | MT150206 | MT150254 | 2020 |
15005012 | 1 | Oc. communis | Estonia | MT149922 | MT150192 | MT150230 | 2020 |
15009025 | 2 | Oc. cataphylla | Estonia | MT149923 | MT150207 | MT150255 | 2020 |
15009026 | 2 | Oc. cataphylla | Estonia | MT149924 | MT150208 | - | 2020 |
15009027 | 2 | Oc. communis | Estonia | MT149925 | MT150184 | MT150221 | 2020 |
15009028 | 2 | Oc. punctor | Estonia | MT149926 | MT150195 | MT150243 | 2020 |
15009030 | 2 | Oc. sp. | Estonia | MT149927 | MT150171 | MT150234 | 2020 |
15009031 | 2 | Oc. sp. | Estonia | MT149928 | MT150172 | MT150235 | 2020 |
15009036 | 2 | Oc. hexodontus | Estonia | MT149929 | MT150199 | MT150248 | 2020 |
15010004 | 2 | Oc. communis | Estonia | MT149930 | MT150185 | MT150222 | 2020 |
15013001 | 1 | Oc. cataphylla | Estonia | MT149931 | MT150209 | MT150256 | 2020 |
15013003 | 1 | Oc. cataphylla | Estonia | MT149932 | MT150210 | MT150257 | 2020 |
15013004 | 1 | Oc. communis | Estonia | MT149933 | MT150183 | MT150220 | 2020 |
15013005 | 1 | Oc. cataphylla | Estonia | MT149934 | MT150211 | MT150258 | 2020 |
15013006 | 1 | Oc. punctor | Estonia | MT149935 | MT150194 | - | 2020 |
15013015 | 1 | Oc. cataphylla | Estonia | MT149936 | MT150212 | MT150259 | 2020 |
15016024 | 3 | Oc. communis | Estonia | MT149937 | MT150182 | MT150219 | 2020 |
15016030 | 3 | Oc. communis | Estonia | MT149938 | MT150181 | MT150218 | 2020 |
15016041 | 3 | Oc. hexodontus | Estonia | MT149939 | MT150200 | MT150249 | 2020 |
15018001 | 4 | Oc. hexodontus | Estonia | MT149940 | - | MT150245 | 2020 |
15018007 | 4 | Oc. communis | Estonia | MT149941 | MT150186 | MT150223 | 2020 |
15018008 | 4 | Oc. hexodontus | Estonia | MT149942 | - | MT150246 | 2020 |
15018011 | 4 | Oc. punctor | Estonia | MT149943 | - | MT150244 | 2020 |
15020002 | 3 | Oc. cataphylla | Estonia | MT149944 | MT150213 | MT150260 | 2020 |
15032002 | 4 | Oc. cataphylla | Estonia | MT149945 | MT150214 | MT150261 | 2020 |
16008001 | 6 | Oc. cataphylla | Estonia | MT149947 | MT150215 | MT150262 | 2020 |
16079095 | 5 | Oc. sp. | Estonia | MT149948 | MT150173 | MT150236 | 2020 |
16079097 | 5 | Oc. sp. | Estonia | MT149949 | MT150169 | MT150232 | 2020 |
16079102 | 5 | Oc. communis | Estonia | MT149950 | - | MT150224 | 2020 |
16079110 | 5 | Oc. sp. | Estonia | MT149951 | MT150170 | MT150233 | 2020 |
16079112 | 5 | Oc. sp. | Estonia | MT149952 | MT150174 | MT150237 | 2020 |
16079120 | 5 | Oc. sp. | Estonia | MT149953 | MT150175 | MT150238 | 2020 |
16142001 | 5 | Oc. sp. | Estonia | MT149954 | MT150176 | MT150239 | 2020 |
16142002 | 5 | Oc. sp. | Estonia | MT149955 | MT150177 | MT150240 | 2020 |
16142005 | 5 | Oc. cataphylla | Estonia | MT149969 | MT150216 | MT150263 | 2020 |
16142006 | 5 | Oc. communis | Estonia | MT149956 | MT150187 | MT150225 | 2020 |
16142007 | 5 | Oc. communis | Estonia | MT149957 | MT150188 | MT150226 | 2020 |
16142010 | 5 | Oc. sp. | Estonia | MT149958 | MT150178 | MT150241 | 2020 |
16142013 | 5 | Oc. communis | Estonia | MT149959 | MT150189 | MT150227 | 2020 |
16142016 | 5 | Oc. communis | Estonia | MT149960 | MT150193 | MT150231 | 2020 |
16142023 | 5 | Oc. sp. | Estonia | MT149961 | MT150179 | MT150242 | 2020 |
16142040 | 5 | An. messeae | Estonia | MT149962 | MT150217 | MT150264 | 2020 |
16149001 | 1 | Oc. communis | Estonia | MT149963 | MT150190 | MT150228 | 2020 |
16149003 | 1 | Oc. hexodontus | Estonia | MT149964 | MT150202 | MT150250 | 2020 |
16149004 | 1 | Oc. punctor | Estonia | MT149965 | MT150203 | - | 2020 |
16149006 | 1 | Oc. communis | Estonia | MT149966 | MT150191 | MT150229 | 2020 |
16149007 | 1 | Oc. hexodontus | Estonia | MT149967 | MT150201 | MT150251 | 2020 |
16149009 | 1 | Oc. sp. | Estonia | MT149968 | - | - | 2020 |
H2_GB1960-1936R | - | N/A | Sweden | - | - | - | - |
hitta_myggan_14 | - | N/A | Sweden | - | - | - | - |
Species | Country of Origin | GenBank COI Acc. Num. | GenBank ND5 Acc. Num. | GenBank ITS2 Acc. Num. | Upload Year |
---|---|---|---|---|---|
Oc. tahoensis | USA | JX259677 | - | - | 2012 |
Oc. churchillensis | USA | MG242480 | - | - | 2018 |
Oc. tahoensis | Canada | JF868962 | - | - | 2018 |
Oc. communis | Canada | JF868933 | - | - | 2018 |
Oc. punctor | Belgium | KM258280 | - | - | 2015 |
Oc. hexodontus | Canada | KR697054 | - | - | 2018 |
Oc. cataphylla | Sweden | KP942759 | - | - | 2018 |
Oc. tahoensis | Canada | KM648357 | - | - | 2019 |
Oc. tahoensis | Canada | KM628572 | - | - | 2019 |
Oc. churchillensis | Canada | KC713604 | - | - | 2013 |
Oc. tahoensis | Canada | MF825642 | - | - | 2018 |
Oc. tahoensis | Canada | KM645852 | - | - | 2019 |
Oc. tahoensis | Canada | KM639864 | - | - | 2019 |
Oc. churchillensis | Canada | KC713602 | - | - | 2013 |
Oc. churchillensis | Canada | KC713603 | - | - | 2013 |
Oc. churchillensis | Canada | KC713601 | - | - | 2013 |
Oc. communis | Canada | - | - | KF535022 | 2013 |
Oc. churchillensis | Canada | - | - | KF535013 | 2013 |
Oc. churchillensis | USA | - | - | MG232613 | 2018 |
Oc. punctor | Canada | - | - | KF535072 | 2013 |
Oc. hexodontus | Canada | - | - | KF535039 | 2013 |
Oc. abserratus | Canada | - | - | KF535026 | 2013 |
References
- Brust, R.A.; Munstermann, L.E. Morphological and Genetic Characterization of the Aedes (Ochlerotatus) communis Complex (Diptera: Culicidae) in North America. Ann. Entomol. Soc. Am. 1992, 85, 1–10. [Google Scholar] [CrossRef]
- Becker, N.; Petric, D.; Zgomba, M.; Boase, C.; Madon, M.; Dahl, C.; Kaiser, A. Mosquitoes and Their Control, 2nd ed.; Springer Science & Business Media: Heidelberg, Germany, 2010. [Google Scholar]
- Namin, H.H.; Iranpour, M.; Sharanowski, B.J. Phylogenetics and Molecular Identification of the Ochlerotatus communis Complex (Diptera: Culicidae) Using DNA Barcoding and Polymerase Chain Reaction-Restriction Fragment Length Polymorphism. Can. Entomol. 2013, 146, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Ellis, R.A.; Brust, R.A. Sibling Species Delimitation in the Aedes communis (Degeer) Aggregate (Diptera: Culicidae). Can. J. Zool. 1973, 51, 915–959. [Google Scholar] [CrossRef]
- Andreadis, T.G.; Anderson, J.F.; Armstrong, P.M.; Main, A.J. Isolations of Jamestown Canyon Virus (Bunyaviridae: Orthobunyavirus) from Field-Collected Mosquitoes (Diptera: Culicidae) in Connecticut, USA: A ten-year analysis, 1997–2006. Vector-Borne Zoonotic Dis. 2008, 8, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Andreeva, Y.V.; Khrabrova, N.V.; Simakova, A.V.; Sibataeva, A.M.; Sibataev, A.K. Species Diversity of Blood-Sucking Mosquitoes (Diptera: Culicidae) in Tomsk Region. Int. J. Environ. Stud. 2017, 74, 782–789. [Google Scholar] [CrossRef]
- Tingström, O.; Wesula Lwande, O.; Näslund, J.; Spyckerelle, I.; Engdahl, C.; Von Schoenberg, P.; Ahlm, C.; Evander, M.; Bucht, G. Detection of Sindbis and Inkoo Virus RNA in Genetically Typed Mosquito Larvae Sampled in Northern Sweden. Vector-Borne Zoonotic Dis. 2016, 16, 461–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaikevich, E.; Bogacheva, A.; Ganushkina, L. Dirofilaria and Wolbachia in Mosquitoes (Diptera: Culicidae) in Central European Russia and on the Black Sea Coast. Parasite 2019, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melaun, C.; Zotzmann, S.; Santaella, V.G.; Werblow, A.; Zumkowski-Xylander, H.; Kraiczy, P.; Klimpel, S. Occurrence of Borrelia burgdorferi s.l. in Different Genera of Mosquitoes (Culicidae) in Central Europe. Ticks Tick-borne Dis. 2016, 7, 256–263. [Google Scholar] [CrossRef]
- Hernández-Triana, L.M.; Brugman, V.A.; Nikolova, N.I.; Ruiz-Arrondo, I.; Barrero, E.; Thorne, L.; de Marco, M.F.; Krüger, A.; Lumley, S.; Johnson, N.; et al. DNA Barcoding of British Mosquitoes (Diptera, Culicidae) to Support Species Identification, Discovery of Cryptic Genetic Diversity and Monitoring Invasive Species. ZooKeys 2019, 832, 57–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francy, D.B.; Jaenson, T.G.T.; Lundstrom, J.O.; Schildt, E.B.; Espmark, A.; Henriksson, B.; Niklasson, B. Ecologic Studies of Mosquitoes and Birds as Hosts of Ockelbo Virus in Sweden and Isolation of Inkoo and Batai Viruses from Mosquitoes. Am. J. Trop. Med. Hyg. 1989, 41, 355–363. [Google Scholar] [CrossRef]
- Lundström, J.O.; Andersson, A.-C.C.; Bäckman, S.; Schäfer, M.L.; Forsman, M.; Thelaus, J. Transstadial Transmission of Francisella tularensis holarctica in Mosquitoes, Sweden. Emerg. Infect. Dis. 2011, 17, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Melbarde-Gorkusa, I.; Abolins, A.; Strumfa, I.; Martinsons, A.; Gardovskis, J. Human Dirofilariasis in Latvia—The First Case in Surgical Practice. Acta Chir. Latv. 2011, 11, 172–174. [Google Scholar] [CrossRef]
- Lvov, S.D.; Pogorely Yu., A.; Skvortsova, T.M. Isolation of Tahyna Bunyavirus in the Arctic. Vopr. Virusol. 1985, 30, 736–740. [Google Scholar]
- McLean, D.M.; Clarke, A.M.; Goddard, E.J.; Manes, A.S.; Montalbetti, C.A.; Pearson, R.E. California Encephalitis Virus Endemicity in the Yukon Territory, 1972. J. Hyg. 1973, 71, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Beebe, N.W. DNA Barcoding Mosquitoes: Advice for Potential Prospectors. Parasitol. 2018, 145, 622–633. [Google Scholar] [CrossRef]
- Tabachnick, W.J. Nature, Nurture and Evolution of Intra-Species Variation in Mosquito Arbovirus Transmission Competence. Int. J. Environ. Res. Public Heal. 2013, 10, 249–277. [Google Scholar] [CrossRef] [Green Version]
- Werren, J.H.; Zhang, W.; Guo, L.R. Evolution and Phylogeny of Wolbachia: Reproductive Parasites of Arthropods. Proc. R. Soc. B Biol. Sci. 1995, 261, 55–63. [Google Scholar]
- Kageyama, D.; Narita, S.; Imamura, T.; Miyanoshita, A. Detection and Identification of Wolbachia Endosymbionts from Laboratory Stocks of Stored-Product Insect Pests and Their Parasitoids. J. Stored Prod. Res. 2010, 46, 13–19. [Google Scholar] [CrossRef]
- Correa, C.C.; Ballard, J.W.O. Wolbachia Associations With Insects: Winning or Losing Against a Master Manipulator. Front. Ecol. Evol. 2016, 3, 506. [Google Scholar] [CrossRef] [Green Version]
- Werren, J.H. Biology of Wolbachia. Annu. Rev. Entomol. 1997, 42, 587–609. [Google Scholar] [CrossRef] [Green Version]
- Bordenstein, S.R.; O’Hara, F.P.; Werren, J.H. Wolbachia-Induced Incompatibility Precedes Other Hybrid Incompatibilities in Nasonia. Nature 2001, 409, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Muhammad, A.; Bala, N.S.; Wang, G.; Chen, Z.; Peng, Z.; Hou, Y. Genomic Evaluations of Wolbachia and mtDNA in the Population of Coconut Hispine Beetle, Brontispa longissima (Coleoptera: Chrysomelidae). Mol. Phylogenet. Evol. 2018, 127, 1000–1009. [Google Scholar] [CrossRef] [PubMed]
- Shaikevich, E.; Bogacheva, A.; Rakova, V.; Ganushkina, L.; Ilinsky, Y. Wolbachia Symbionts in Mosquitoes: Intra- and Intersupergroup Recombinations, Horizontal Transmission and Evolution. Mol. Phylogenet. Evol. 2019, 134, 24–34. [Google Scholar] [CrossRef]
- Sicard, M.; Bonneau, M.; Weill, M. Wolbachia Prevalence, Diversity, and Ability to Induce Cytoplasmic Incompatibility in Mosquitoes. Curr. Opin. Insect Sci. 2019, 34, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Lilja, T.; Troell, K.; Kirik, H.; Lindström, A. A Distinct Group of North European Aedes vexans as Determined by Mitochondrial and Nuclear Markers. Med. Vet. Entomol. 2018, 32, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Sallum, M.A.M.; Schultz, T.R.; Foster, P.G.; Aronstein, K.; Wirtz, R.A.; Wilkerson, R.C. Phylogeny of Anophelinae (Diptera: Culicidae) Based on Nuclear Ribosomal and Mitochondrial DNA Sequences. Syst. Entomol. 2002, 27, 361–382. [Google Scholar] [CrossRef] [Green Version]
- Krzywinski, J.; Wilkerson, R.C.; Besansky, N.J. Evolution of Mitochondrial and Ribosomal Gene Sequences in Anophelinae (Diptera: Culicidae): Implications for Phylogeny Reconstruction. Mol. Phylogenet. Evol. 2001, 18, 479–487. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.P.; Rajavel, A.R.; Natarajan, R.; Jambulingam, P. DNA Barcodes Can Distinguish Species of Indian Mosquitoes (Diptera: Culicidae). J. Med. Entomol. 2007, 44, 01–07. [Google Scholar] [CrossRef]
- Gunay, F.; Alten, B.; Simsek, F.; Aldemir, A.; Linton, Y.M. Barcoding Turkish Culex Mosquitoes to Facilitate Arbovirus Vector Incrimination Studies Reveals Hidden Diversity and New Potential Vectors. Acta Trop. 2015, 143, 112–120. [Google Scholar] [CrossRef]
- Simons, C.; Frati, F.; Beckenbach, A.; Crespi, B.; Liu, H.; Flook, P. Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers. Ann. Entomol. Soc. Am. 1994, 87, 651–701. [Google Scholar] [CrossRef]
- Ruiling, Z.; Tongkai, L.; Zhendong, H.; Guifen, Z.; Dezhen, M.; Zhong, Z. Genetic Analysis of Aedes albopictus (Diptera, Culicidae) Reveals a Deep Divergence in the Original Regions. Acta Trop. 2018, 185, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Makhawi, A.M.; Liu, X.-B.; Yang, S.-R.; Liu, Q.-Y. Genetic Variations of ND5 Gene of mtDNA in Populations of Anopheles sinensis (Diptera: Culicidae) Malaria Vector in China. Parasit. Vectors 2013, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.; Song, J.; Liu, C.; Luo, K.; Han, J.; Li, Y.; Pang, X.; Xu, H.; Zhu, Y.; Xiao, P.; et al. Use of ITS2 Region As the Universal DNA Barcode for Plants and Animals. PLoS ONE 2010, 5. [Google Scholar] [CrossRef] [Green Version]
- Versteirt, V.; Boyer, S.; Damiens, D.; De Clercq, E.M.; Dekoninck, W.; Ducheyne, E.; Grootaert, P.; Garros, C.; Hance, T.; Hendrickx, G.; et al. Nationwide Inventory of Mosquito Biodiversity (Diptera: Culicidae) in Belgium, Europe. Bull. Entomol. Res. 2013, 103, 193–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA Primers for Amplification of Mitochondrial Cytochrome C Oxidase Subunit I from Diverse Metazoan Invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Birungi, J.; Munstermann, L.E. Genetic Structure of Aedes albopictus (Diptera: Culicidae) Populations Based on Mitochondrial ND5 Sequences: Evidence for an Independent Invasion into Brazil and United States. Ann. Entomol. Soc. Am. 2002, 95, 125–132. [Google Scholar] [CrossRef]
- Collins, F.H.; Paskewitz, S.M. A Review of the Use of Ribosomal DNA (rDNA) to Differentiate Among Cryptic Anopheles Species. Insect Mol. Biol. 1996, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Braig, H.R.; Zhou, W.G.; Dobson, S.L.; O’Neill, S.L. Cloning and Characterization of a Gene Encoding the Major Surface Protein of the Bacterial Endosymbiont Wolbachia pipientis. J. Bacteriol. 1998, 180, 2373–2378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Tamura, K. Estimation of the Number of Nucleotide Substitutions When There Are Strong Transition-Transversion and G+C-Content Biases. Mol. Biol. Evol. 1992, 9, 678–687. [Google Scholar] [PubMed] [Green Version]
- Kimura, M. A Simple Method for Estimating Evolutionary Rates of Base Substitutions Through Comparative Studies of Nucleotide Sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press, Incorporated: Cary, NC, USA, 2000. [Google Scholar]
- Turelli, M.; Hoffmann, A.A. Cytoplasmic Incompatibility in Drosophila simulans: Dynamics and Parameter Estimates from Natural Populations. Genetics 1995, 140, 1319–1338. [Google Scholar] [PubMed]
- Raukas, A. When and How Did the Continental Ice Retreat from Estonia? Quat. Int. 2009, 207, 50–57. [Google Scholar] [CrossRef]
- Patton, H.; Hubbard, A.; Andreassen, K.; Auriac, A.; Whitehouse, P.L.; Stroeven, A.P.; Shackleton, C.; Winsborrow, M.; Heyman, J.; Hall, A.M. Deglaciation of the Eurasian Ice Sheet Complex. Quat. Sci. Rev. 2017, 169, 148–172. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, G.M. Post-Glacial Re-Colonization of European Biota. Biol. J. Linn. Soc. 1999, 68, 87–112. [Google Scholar] [CrossRef]
- Song, H.; Buhay, J.E.; Whiting, M.F.; Crandall, K.A. Many Species in One: DNA Barcoding Overestimates the Number of Species When Nuclear Mitochondrial Pseudogenes are Coamplified. Proc. Natl. Acad. Sci. USA 2008, 105, 13486–13491. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Moulton, M.J.; Whiting, M.F. Rampant Nuclear Insertion of mtDNA across Diverse Lineages with in Orthoptera (Insecta). PLoS ONE 2014, 9, e110508. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.R.; Li, B.; Zhang, Y.J.; Mao, Q.M.; Chen, B. Complete Mitogenome of Anopheles sinensis and Mitochondrial Insertion Segments in the Nuclear Genomes of 19 Mosquito Species. PLoS ONE 2018, 13, e0204667. [Google Scholar] [CrossRef]
- Behura, S.K.; Lobo, N.F.; Haas, B.; DeBruyn, B.; Lovin, D.D.; Shumway, M.F.; Puiu, D.; Romero-Severson, J.; Nene, V.; Severson, D.W. Complete Sequences of Mitochondria Genomes of Aedes aegypti and Culex quinquefasciatus and Comparative Analysis of Mitochondrial DNA Fragments Inserted in the Nuclear Genomes. Insect Biochem. Mol. Biol. 2011, 41, 770–777. [Google Scholar] [CrossRef] [Green Version]
- Perna, N.T.; Kocher, T.D. Mitochondrial DNA: Molecular Fossils in the Nucleus. Curr. Biol. 1996, 6, 128–129. [Google Scholar] [CrossRef] [Green Version]
- Lopez, J.V.; Culver, M.; Stephens, J.C.; Johnson, W.E.; O’Brien, S.J. Rates of Nuclear and Cytoplasmic Mitochondrial DNA Sequence Divergence in Mammals. Mol. Biol. Evol. 1997, 14, 277–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frey, J.E.; Frey, B. Origin of Intra-Individual Variation in PCR-Amplified Mitochondrial Cytochrome Oxidase I of Thrips tabaci (Thysanoptera: Thripidae): Mitochondrial Heteroplasmy or Nuclear Integration? Hereditas 2004, 140, 92–98. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirik, H.; Tummeleht, L.; Lilja, T.; Kurina, O. Novel Mitochondrial DNA Lineage Found among Ochlerotatus communis (De Geer, 1776) of the Nordic-Baltic Region. Insects 2020, 11, 397. https://doi.org/10.3390/insects11060397
Kirik H, Tummeleht L, Lilja T, Kurina O. Novel Mitochondrial DNA Lineage Found among Ochlerotatus communis (De Geer, 1776) of the Nordic-Baltic Region. Insects. 2020; 11(6):397. https://doi.org/10.3390/insects11060397
Chicago/Turabian StyleKirik, Heli, Lea Tummeleht, Tobias Lilja, and Olavi Kurina. 2020. "Novel Mitochondrial DNA Lineage Found among Ochlerotatus communis (De Geer, 1776) of the Nordic-Baltic Region" Insects 11, no. 6: 397. https://doi.org/10.3390/insects11060397
APA StyleKirik, H., Tummeleht, L., Lilja, T., & Kurina, O. (2020). Novel Mitochondrial DNA Lineage Found among Ochlerotatus communis (De Geer, 1776) of the Nordic-Baltic Region. Insects, 11(6), 397. https://doi.org/10.3390/insects11060397