Evaluation of Five Medicinal Plant Extracts on Aphis craccivora (Hemiptera: Aphididae) and Its Predator, Chrysoperla carnea (Neuroptera: Chrysopidae) under Laboratory Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Samples and Extracts
2.2. HPLC Analysis and Quantification of Phenolic Compounds
2.3. Insects
Bioassay
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Silva, G. Insecticidas vegetales. In Radcliffe’s IPM World Textbook; University of Minnesota: St. Paul, MN, USA; National IPM Network, CICP: Washington, DC, USA, 2003; Available online: http://ipmworld.umn.edu/cancelado/Spchapters/GsilvaSp.htm (accessed on 21 July 2008).
- Rodríguez-González, Á.; Álvarez-García, S.; González-López, Ó.; Da Silva, S.; Casquero, P.A. Insecticidal Properties of Ocimum basilicum and Cymbopogon winterianus against Acanthoscelides obtectus, Insect Pest of the Common Bean (Phaseolus vulgaris, L.). Insects 2019, 10, 151. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, E.M.; Railda, R.; Antonia, P.; Karla, R.A.; Escobar Falco, M.; Matias, R. Insecticidal effect of the ethanol extract of Baccharis dracunculifolia (Asterales: Asteraceae). Rev. Biol. Trop. 2017, 65, 517–523. [Google Scholar] [CrossRef]
- Bedini, S.; Guarino, S.; Echeverria, M.C.; Flamini, G.; Ascrizzi, R.; Loni, A.; Conti, B. Allium sativum, Rosmarinus officinalis, and Salvia officinalis Essential Oils: A Spiced Shield against Blowflies. Insects 2020, 11, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nong, X.; Feng-Zheng, C.; Yao-Jun, Y.; Zi, L.; Bao-Lian, H.; Yi, L.; Tian-Fei, L.; Hua, Y. Aphicidal Activity of an Ageraphorone Extract From Eupatorium adenophorum Against Pseudoregma bambucicola (Homoptera: Aphididae, Takahashi). J. Insect. Sci. 2015, 15, 81. [Google Scholar] [CrossRef] [PubMed]
- Dempewolf, H.; Rieseberg, L.H.; Cronk, Q.C. Crop domestication in the Compositae: A family-wide trait assessment. Genet. Resour. Crop Evol. 2008, 55, 1141–1157. [Google Scholar] [CrossRef]
- Triana, J.; López, M.; Pérez, F.J.; González-Platas, J.; Quintana, J.; Estévez, F. Sesquiterpenoids from Pulicaria canariensis and Their Cytotoxic Activities. J. Nat. Prod. 2005, 68, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Mothana, R.A.; Alsaid, M.S.; Al-Musayeib, N.M. Phytochemical Analysis and In Vitro Antimicrobial and Free-Radical-Scavenging Activities of the Essential Oils from Euryops arabicus and Laggera decurrens. Molecules 2011, 16, 5149–5158. [Google Scholar] [CrossRef] [PubMed]
- Mahadeoa, K.; Grondina, I.; Kodjab, H.; Govindenc, J.S.; Laullood, S.J.; Frederiche, M.; Gauvin-Bialeckia, A. The genus Psiadia: Review of traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2018, 210, 48–68. [Google Scholar] [CrossRef]
- Hamidpour, S.; Hamidpour, M.; Shahlari, M. The functional novel natural medicine for preventing and curing chronic illnesses. Int. J. Case Rep. Images 2013, 4, 671–677. [Google Scholar] [CrossRef]
- Qnais, E.Y.; Abu-Dieyeh, M.; Abdulla, F.A.; Abdalla, S.S. The antinociceptive and antiinflammatory effects of Salvia officinalis leaf aqueous and butanol extracts. Pharm. Biol. 2010, 10, 1149–1156. [Google Scholar] [CrossRef]
- Oka, Y.; Shuker, S.; Tkachi, N.; Trabelcy, B.; Gerchman, Y. Nematicidal activity of Ochradenus baccatus against the root-knot nematode Meloidogyne javanica. Plant. Pathol. 2014, 63, 221–231. [Google Scholar] [CrossRef]
- Kalita, S.; Hazarika, L.K. Safety of Chromolaena odorata (Asteraceae) leaf extracts against Trichogramma japonicum Ashmead. Ann. Plant Prot. Sci. 2018, 26, 276–280. [Google Scholar] [CrossRef]
- Ali, S.; Farooqi, M.A.; Sajjad, A.; Ullah, M.I.; Qureshi, A.K.; Siddique, B.; Waheed, W.; Sarfraz, M.; Asghar, A. Compatibility of entomopathogenic fungi and botanical extracts against the wheat aphid, Sitobion avenae (Fab.) (Hemiptera: Aphididae). Egypt. J. Biol. Pest Control 2018, 28, 97. [Google Scholar] [CrossRef]
- Das, B.C. Ecology and diversity of agricultural crop infesting aphids (Homoptera: Aphididae) in Bangladesh. J. Aphidol. 2002, 16, 51–57. [Google Scholar]
- Thottappilly, G.; Rossel, H.W. Worldwide occurrence and distribution of virus diseases. In Cowpea Research Production and Utilization; Sing, S.R., Rachie, K.O., Eds.; Wiley: New York, NY, USA, 1985; pp. 155–171. [Google Scholar]
- Ghodke, A.B.; Chavaan, S.G.; Sonawane, B.V.; Bharose, A.A. Isolation and in vitro identification of proteinase inhibitors from soybean seeds inhibiting Helicoverpa gut proteases. J. Plant Interact. 2013, 8, 170–178. [Google Scholar] [CrossRef]
- Atanasova, D.; Leather, S.R. Plant essential oils: The way forward for aphid control? Ann. Appl. Biol. 2018, 143, 175–179. [Google Scholar] [CrossRef]
- McEwen, P.K.; New, T.R.R.; Whittington, A. Lacewings in the Crop Environment; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Gopinesh, V.K.; Kannabiran, K. Larvicidal effect of Calotropis procera against Culex quinquefasciatus mosquito larvae. Afr. J. Biotechnol. 2007, 6, 307–311. [Google Scholar]
- Khan, S.; Taning, C.N.T.; Bonneure, E.; Mangelinckx, S.; Smagghe, G.; Shah, M.M. Insecticidal activity of plant-derived extracts against different economically important pest insects. Phytoparasitica 2017. [Google Scholar] [CrossRef]
- Lu, M.; Yuan, B.; Zeng, M.; Chen, J. Antioxidant capacity and major phenolic compounds of spices commonly consumed in China. Food Res. Int. 2011, 44, 530–536. [Google Scholar] [CrossRef]
- Sadeghi, A.; Van Damme, E.J.; Smagghe, G. Evaluation of the susceptibility of the pea aphid, Acyrthosiphon pisum, to a selection of novel biorational insecticides using an artificial diet. J. Insect Sci. 2009, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- SPSS. IBM SPSS Statistics for Windows (Version 23.0); IBM Corp.: Armonk, NY, USA; Chicago, IL, USA, 2015. [Google Scholar]
- Govinden-Soulange, J.; Magan, N.; Gurib-Fakim, A.; Gauvin, A.; Smadja, J.; Kodja, H. Chemical composition and in vitro antimicrobial activities of the essential oils from endemic Psiadia species growing in mauritius. Biol. Pharm. Bull. 2004, 27, 1814–1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aumeeruddy-Elalfi, Z.; Gurib-Fakim, A.; Mahomoodally, F. Antimicrobial, antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of Mauritius. Ind. Crops Prod. 2015, 71, 197–204. [Google Scholar] [CrossRef]
- Ahmed, I.F.; Aftab, A.; Gamal, A.S.; Mohammed, A.S.; Elmutasim, O.I.A.; Hasan, S.Y. Pharmacognostical, antioxidant and antimicrobial studies of aerial part of Pulicaria crispa (Family: Asteraceae). Bull. Environ. Pharmacol. Life Sci. 2015, 4, 19–27. [Google Scholar]
- Hussein, S.R.; Marzouk, M.M.; Soltan, M.M.; Ahmed, E.K.; Said, M.M.; Hamed, A.R. Phenolic constituents of Pulicaria undulata (L.) C.A. Mey. sub sp. undulata (Asteraceae): Antioxidant protective effects and chemosystematic significances. J. Food Drug Anal. 2017, 25, 333–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkady, W.M.; Ayoub, I.M.; Abdel-Mottaleb, Y.; ElShafie, M.F.; Wink, M. Euryops pectinatus L. Flower Extract Inhibits P-glycoprotein and Reverses Multi-Drug Resistance in Cancer Cells: A Mechanistic Study. Molecules 2020, 25, 647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barakat, H.H.; El-Mousallamy, A.M.D.; Souleman, A.M.A.; Awadalla, S. Flavonoids of Ochradenus baccatus. Phytochemistry 1991, 30, 3777–3779. [Google Scholar] [CrossRef]
- Kauroo, S.; Govinden-Soulange, J.; Marie, D.E.P. Endemic Asteraceae from Mauritius Islands as potential phytomedicines. IJCEBS 2016, 4, 23–27. [Google Scholar]
- Alarif, W.M.; Abdel-Lateff, A.; Al-Abd, A.M.; Basaif, S.A.; Badria, F.A.; Shams, M.; Ayyad, S.N. Selective cytotoxic effects on human breast carcinoma of new methoxylated flavonoids from Euryops arabicus grown in Saudi Arabia. Eur. J. Med. Chem. 2013, 66, 204–210. [Google Scholar] [CrossRef]
- Duletic, S.; Alimpic, A.; Pavlovic, D.; Marin, P.D.; Lakusic, D. Salvia officinalis of different origins antioxidant activity, phenolic and flavonoid content of extracts. Agro Food Ind. Hi-Tech 2016, 27, 52–55. [Google Scholar]
- Wang, M.; Li, J.; Rangarajan, M.; Shao, Y.; La Voie, E.J.; Huang, T.C.; Ho, C.T. Antioxidative phenolic compounds from sage (Salvia officinalis). J. Agric. Food Chem. 1998, 46, 4869–4873. [Google Scholar] [CrossRef]
- Lu, Y.; Foo, L.Y. Flavonoid and phenolic glycosides from Salvia offcinalis. Phytochemoistry 2000, 55, 263–267. [Google Scholar] [CrossRef]
- Hussain, J.; Rehman, N.U.; Khan, A.; Ali, L.; Kim, J.-S.; Zakarova, A.; Al-Harrasi, A.; Shinwari, Z.K. Phytochemical and biological assessment of medicinally important plant Ochradenus arabicus. Pak. J. Bot. 2014, 46, 2027–2034. [Google Scholar]
- Dhawan, D.; Gupta, J. Comparison of different solvents for phytochemical extraction potential from Datura metel plant leaves. Int. J. Biol. Chem. 2017, 11, 17–22. [Google Scholar]
- Mierziak, J.; Kostyn, K.; Kulma, A. Flavonoids as Important Molecules of Plant Interactions with the Environment. Molecules 2014, 19, 16240–16265. [Google Scholar] [CrossRef]
- Simmonds, M.S. Flavonoid-insect interactions: Recent advances in our knowledge. Phytochemistry 2003, 64, 21–30. [Google Scholar] [CrossRef]
- Mathur, Y.K.; Kirpa, S.; Salik, R. Evaluation of some grain protectants against Callosobruchus chinensis (L.) on black gram. Bull. Grain Technol. 1985, 23, 253–259. [Google Scholar]
- Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef]
- Holman, J. Host Plant Catalog of Aphids: Palaearctic Region; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Abdel-Aziz, N.F.; Abdou, W.L.; Abdel-Hakim, E.A.; El-Hawarya, F.M.; El-Bakry, A.M.; Sammour, E.A. The effect of some green insecticides from essential oils on Aphis craccivora, and their side effects. J. Entomol. Res. 2015, 39, 275–286. [Google Scholar] [CrossRef]
- Macêdo, M.E.; Consoli, R.A.; Grandi, T.S.; dos Anjos, A.M.; de Oliveira, A.B.; Mendes, N.M.; Queiróz, R.O.; Zani, C.L. Screening of Asteraceae (Compositae) plant extracts for larvicidal activity against Aedes fluviatilis (Diptera:Culicidae). Meml. Inst. Oswaldo Cruz 1997, 92, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Boussaada, O.; Kamel, M.B.; Ammar, S.; Haouas, D.; Mighri, Z.; Helal, N. Insecticidal activity of some Asteraceae plant extracts against Tribolium confusum. Bull. Insectol. 2008, 61, 283–289. [Google Scholar]
- Dang-Minh-Chanh, N.; Dong-Jun, S.; Van-Nam, N.; Kil-Yong, K.; Ro-Dong, P.; Woo-Jin, J. Nematicidal activity of gallic acid purified from Terminalia nigrovenulosa bark against the root-knot nematode Meloidogyne incognita. Nematology 2013, 15, 507–518. [Google Scholar]
- Atanasova, D.; Nevov, N. Еffectiveness of plant derived essentials oils products towards some aphid (Hemiptera: Aphididae) species. MAYFEB J. Agric. Sci. 2017, 1, 1–5. [Google Scholar]
- Atanasova, D.; Ganchev, D.; Nevov, N. Efficacy of some plant essential oils against cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) under laboratory conditions. MAYFEB J. Agric. Sci. 2018, 1, 10–16. [Google Scholar]
- Vasilev, P.; Atanasova, D.; Andreev, R. Efficacy of bioinsecticides against the hop aphid Phorodon Humuli (Schrank) (Hemiptera: Aphididae) under laboratory conditions. Can. J. Agric. Crops 2019, 4, 130–135. [Google Scholar] [CrossRef]
- Farag, N.A.; Ismail, I.A. The comparative effect of certain insecticides and plant extracts on cabbage aphid, Brevicoryne brassicae L. and its natural enemies. J. Egypt. Ger. Soc. Zool. 1999, 30, 281–289. [Google Scholar]
- Amoabeng, B.W.; Gurr, G.M.; Gitau, C.W.; Nicol, H.I.; Munyakazi, L.; Stevenson, P.C. Tri-trophic insecticidal effects of African plants against cabbage pests. PLoS ONE 2013, 8, e78651. [Google Scholar] [CrossRef]
- Senthil-Nathan, S. Natural pesticide research. Physiol. Mol. Plant Pathol. 2018, 101, 1–2. [Google Scholar] [CrossRef]
- Czaja, K.; Góralczyk, K.; Struciński, P.; Agnieszka Hernik, A.; Korcz, W.; Minorczyk, M.; Łyczewska, M.; Ludwicki, J.K. Biopesticides—Towards increased consumer safety in the European Union. Pest. Manag. Sci. 2015, 71, 3–6. [Google Scholar] [CrossRef]
- Kumar, S. Biopesticides: A Need for Food and Environmental Safety. J. Biofertil. Biopestic. 2012, 3, e107. [Google Scholar] [CrossRef]
- Samada, L.H.; Tambunan, U.S.F. Biopesticides as Promising Alternatives to Chemical Pesticides: A Review of Their Current and Future Status. OnLine J. Biol. Sci. 2020, 20, 66–76. [Google Scholar] [CrossRef]
- Abdel-Rahman, R.S.; Ismail, I.A.; Mohamed, T.A.; Hegazy, M.E.F.; Abdelshafeek, K.A. Laboratory and field evaluation of certain wild plant extracts against Aphis fabae Scop.(Homoptera: Aphididae) and its predators. Bull. Natl. Res. Cent. 2019, 43, 44. [Google Scholar] [CrossRef]
No. | Scientific Name | Common Name | Family Name |
---|---|---|---|
1 | Psiadia penninervia | Lakuna, Pisidic tribes | Asteraceae (Compositae) |
2 | Salvia officinalis | Garden sage, Common sage, or Culinary sage | Lamiaceae |
3 | Ochradenus baccatus | Taily weed | Resedaceae |
4 | Pulicaria crispa | Dhola lizru | Asteraceae (Compositae) |
5 | Euryops arabicus | Djibouti | Asteraceae (Compositae) |
Compounds | Psiadia penninervia | Salvia officinalis | Ochradenus baccatus | Pulicaria crispa | Euryops arabicus |
---|---|---|---|---|---|
Gallic acid | 3.14981 | 1.95416 | 6.73492 | 3.71654 | ND |
Catechol | 18.58176 | 37.61870 | 5.87161 | 3.35947 | 56.47470 |
p-Hydroxy benzoic acid | 23.41773 | ND | 23.37553 | 7.97348 | 39.50618 |
Catchin | 2.86307 | 4.91904 | 1.48770 | 2.84388 | 2.14091 |
Chlorgenic acid | 4.53216 | 7.56331 | ND | 10.66796 | ND |
Vanillic acid | 408.63805 | 4.82321 | 91.62633 | 337.59454 | 653.50251 |
Caffeic acid | ND | 3.72419 | ND | 6.63623 | ND |
Syringic acid | 2.83148 | 8.65167 | 1.69567 | 11.54246 | 21.80036 |
p-Coumaric acid | 11.65656 | 1.13434 | 1.28208 | 36.73665 | 37.64450 |
Benzoic acid | 104.93644 | ND | 41.55768 | 155.18990 | 118.06012 |
Ferulic acid | 11.75697 | 174.80431 | 1.65414 | 17.19678 | 9.99849 |
Rutin | 102.00465 | 68.54289 | 60.39530 | 96.12466 | 25.04535 |
Ellagic | 11.97470 | 227.49873 | 10.27533 | 168.42101 | 1.80337 |
o-Coumaric acid | 9.54869 | 5.13542 | 10.34360 | 7.09154 | 12.84780 |
Resvertol | 108.51695 | 508.72487 | 388.57594 | 349.52147 | 266.34312 |
Cinnamic acid | ND | 15.46662 | 6.50717 | 55.39434 | 7.19120 |
Quercetin | 28.57828 | 26.80540 | 18.90163 | 82.79101 | ND |
Rosmarinic acid | 19.25397 | 9.83388 | 35.70374 | ND | 294.95133 |
Neringein | ND | 11.29797 | ND | 148.58088 | ND |
Myricetin | ND | 10.58877 | 11.00759 | 72.89414 | ND |
Kaempferol | ND | 4.26682 | 11.03976 | 102.88033 | 478.60399 |
Total | 869.40644 | 1125.56781 | 721.36812 | 1667.83976 | 2025.91391 |
Plant Extract | LC50 (CI limits) | Intercept ± SE | Slope ± SE | ꭓ2 |
---|---|---|---|---|
Psiadia penninervia | 128.546 (97.120–156.662) | −4532 ± 0.638 | 2.149 ± 0.264 | 0.374 |
Salvia officinalis | 1210.957 (982.616–1668.270) | −7.628 ± 0.937 | 2.474 ± 0.337 | 1.108 |
Ochradenus baccatus | 626.461 (542.038–745.145) | −6.587 ± 0.646 | 2.35 ± 0.242 | 0.465 |
Pulicaria crispa | 1368.340 (1043.539–2127.691) | −6.179 ± 0.287 | 1.970 ± 0.785 | 4.482 |
Euryops arabicus | 1168.794 (893.076–1785.935) | −5.232 ± 0.648 | 1.706 ± 0.242 | 0.162 |
Plant Extract | LC50 (CI limits) | Intercept ± SE | Slope ± SE | ꭓ2 |
---|---|---|---|---|
Psiadia penninervia | 232.095 (190.242–274.221) | −4.452 ± 0.542 | 1.882 ± 0.215 | 0.822 |
Salvia officinalis | 1448.547 (1131.509–1714.452) | −6.788 ± 0.873 | 2.148 ± 0.316 | 6.405 |
Ochradenus baccatus | 1299.649 (1073.062–1789.167) | −9.761 ± 1.404 | 3.135 ± 0.492 | 3.130 |
Pulicaria crispa | 1137.564 (979.468–1432.116) | −11.026 ± 1.516 | 3.608 ± 0.529 | 1.789 |
Euryops arabicus | 1593.631 (1154.401–2791.251) | −5.770 ± 0.774 | 1.802 ± 0.284 | 4.789 |
Plant Extract | Psiadia penninervia | Salvia officinalis | Ochradenus baccatus | Pulicaria crispa | Euryops arabicus |
---|---|---|---|---|---|
Psiadia penninervia | 5.793 | 7.070 | 6.518 | 5.345 | |
Salvia officinalis | 0.092 | 1.220 | 1.125 | 0.923 | |
Ochradenus baccatus | 0.195 | 2.112 | 0.922 | 0.756 | |
Pulicaria crispa | 0.099 | 1.073 | 0.508 | 0.820 | |
Euryops arabicus | 0.129 | 1.402 | 0.664 | 1.307 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayed, S.M.; Alotaibi, S.S.; Gaber, N.; Elarrnaouty, S.-A. Evaluation of Five Medicinal Plant Extracts on Aphis craccivora (Hemiptera: Aphididae) and Its Predator, Chrysoperla carnea (Neuroptera: Chrysopidae) under Laboratory Conditions. Insects 2020, 11, 398. https://doi.org/10.3390/insects11060398
Sayed SM, Alotaibi SS, Gaber N, Elarrnaouty S-A. Evaluation of Five Medicinal Plant Extracts on Aphis craccivora (Hemiptera: Aphididae) and Its Predator, Chrysoperla carnea (Neuroptera: Chrysopidae) under Laboratory Conditions. Insects. 2020; 11(6):398. https://doi.org/10.3390/insects11060398
Chicago/Turabian StyleSayed, Samy M., Saqer S. Alotaibi, Nevien Gaber, and Sayed-Ashraf Elarrnaouty. 2020. "Evaluation of Five Medicinal Plant Extracts on Aphis craccivora (Hemiptera: Aphididae) and Its Predator, Chrysoperla carnea (Neuroptera: Chrysopidae) under Laboratory Conditions" Insects 11, no. 6: 398. https://doi.org/10.3390/insects11060398
APA StyleSayed, S. M., Alotaibi, S. S., Gaber, N., & Elarrnaouty, S. -A. (2020). Evaluation of Five Medicinal Plant Extracts on Aphis craccivora (Hemiptera: Aphididae) and Its Predator, Chrysoperla carnea (Neuroptera: Chrysopidae) under Laboratory Conditions. Insects, 11(6), 398. https://doi.org/10.3390/insects11060398