Attributes of Yellow Traps Affecting Attraction of Diaphorina citri (Hemiptera: Liviidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Psyllids
2.2. Laboratory Behavioral Assays
2.2.1. LEDs
2.2.2. Black Patterns
2.2.3. UV Reflectance or Fluorescence
2.2.4. Paint Mixtures
2.3. Field Assays
2.4. Reflectance Measurements
2.5. Statistical Analysis
3. Results
3.1. Laboratory Behavioral Assays
3.1.1. LEDs
3.1.2. Black Patterns
3.1.3. UV Reflectance or Fluorescence
3.1.4. Paint Mixtures
3.2. Field Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gottwald, T.R.; da Graca, J.V.; Bassanezi, R.B. Citrus Huanglongbing: The Pathogen and Its Impact: Plant Management Network: 2007. Available online: http:www.plantmanagmentnetwork.org/sub/php/review/2007/huanglongbing/ (accessed on 22 April 2020).
- Hall, D.G.; Richardson, M.L.; Ammar, E.-D.; Halbert, S.E. Asian citrus psyllid, Diaphorina citri, vector of citrus huanglongbing disease. Entomol. Exp. Appl. 2013, 146, 207–223. [Google Scholar] [CrossRef]
- Monzo, C.; Qureshi, J.A.; Stansly, P.A. Insecticide sprays, natural enemy assemblages and predation on Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae). Bull. Entomol. Res. 2014, 104, 576–585. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, J.A.; Kostyk, B.C.; Stansly, P.A. Insecticidal suppression of Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae) vector of Huanglongbing pathogens. PLoS ONE 2014, 9, e0112331. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.G.; Hentz, M.G.; Adair, R.C., Jr. Population ecology and phenology of Diaphorina citri (Hemiptera: Psyllidae) in two Florida citrus groves. Environ. Entomol. 2008, 37, 914–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, M.P.; Dos Santos, F.L.; Bassanezi, R.B.; Montesino, L.H.; Barbosa, J.C.; Sétamou, M. Monitoring methods for Diaphorina citri Kuwayama (Hemiptera: Liviidae) on citrus groves with different insecticide application programmes. J. Appl. Entomol. 2018, 142, 89–96. [Google Scholar] [CrossRef]
- Hall, D.G.; Sétamou, M.; Mizell, R.F., III. A comparison of sticky traps for monitoring Asian citrus psyllid (Diaphorina citri Kuwayama). Crop. Protect. 2010, 29, 1341–1436. [Google Scholar] [CrossRef]
- George, J.; Robbins, P.S.; Alessandro, R.T.; Stelinski, L.L.; Lapointe, S.L. Formic and acetic acids in degradation products of plant volatiles elicit olfactory and behavioral responses from an insect vector. Chem. Senses 2016, 41, 325–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, J.; Paris, T.; Allan, S.; Stelinski, L.L.; Lapointe, S.L. UV reflective properties of magnesium oxide increase attraction and probing behavior of Asian citrus psyllids (Hemiptera: Liviidae). Sci. Rep. 2020, 10, 1890. [Google Scholar] [CrossRef] [PubMed]
- Lapointe, S.L.; Hall, D.G.; George, J. A phagostimulant blend for the Asian citrus psyllid. J. Chem. Ecol. 2016, 42, 941–951. [Google Scholar] [CrossRef]
- Mann, R.S.; Rouseff, R.L.; Smoot, J.M.; Castle, W.S.; Stelinski, L.L. Sulfur volatiles from Allium spp. affect Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae) response to citrus volatiles. Bull. Entomol. Res. 2011, 101, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Patt, J.M.; Sétamou, M. Responses of the Asian citrus psyllid to volatiles emitted by the flushing shoots of its rutaceous host plants. Environ. Entomol. 2010, 39, 618–624. [Google Scholar] [CrossRef] [Green Version]
- Wenninger, E.J.; Stelinski, L.L.; Hall, D.G. Roles of olfactory cues, visual cues, and mating status in orientation of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) to four different host plants. Environ. Entomol. 2009, 38, 225–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanardi, O.Z.; Volpe, H.X.L.; Luvizotto, R.A.G.; Magnani, R.F.; Gonzalez, F.; Calvo, C.; Oehlschlager, C.A.; Lehan, B.J.; Esperança, V.; Delfino, J.Y.; et al. Laboratory and field evaluation of acetic acid-based lures for male Asian citrus psyllid, Diaphorina citri. Sci. Rep. 2019, 9, 12920. [Google Scholar] [CrossRef] [Green Version]
- Allan, S.A. Spectral sensitivity of the Asian citrus psyllid, Diaphorina citri. In Proceedings of the Grower Day International Research Conference. HLB IV, Orlando, FL, USA, 13 February 2015. [Google Scholar]
- Sétamou, M.; Sanchez, A.; Saldana, R.R.; Patt, J.M.; Sunny, R. Visual responses of adult Asian citrus psyllid (Hemiptera: Liviidae) to colored sticky traps on citrus trees. J. Insect Behav. 2014, 27, 540–553. [Google Scholar] [CrossRef]
- Paris, T.M.; Croxton, S.D.; Stansly, P.A.; Allan, S.A. Temporal response and attraction of Diaphorina citri to visual stimuli. Entomol. Exp. Appl. 2015, 155, 137–147. [Google Scholar] [CrossRef]
- Paris, T.M.; Allan, S.A.; Udell, B.J.; Stansly, P.A. Wavelength and polarization affect phototaxis of the Asian citrus psyllid. Insects 2017, 8, 88. [Google Scholar] [CrossRef] [Green Version]
- Paris, T.M.; Allan, S.A.; Udell, B.J.; Stansly, P.A. Evidence of behavior-based utilization by the Asian citrus psyllid of a combination of UV and green or yellow wavelengths. PLoS ONE 2017, 12, e0189228. [Google Scholar] [CrossRef] [Green Version]
- Prokopy, R.J.; Owens, E.D. Visual detection of plants by herbivorous insects. Annu. Rev. Entomol. 1983, 28, 337–364. [Google Scholar] [CrossRef]
- Döring, T.F.; Chittka, L. Visual ecology of aphids—A critical review on the role of colours in host finding. Arthropod-Plant. Interact. 2007, 1, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Döring, T.F. How aphids find their host plants, and how they don’t. Ann. Appl. Biol. 2014, 165, 3–26. [Google Scholar] [CrossRef]
- Sampson, C.; Covaci, A.D.; Hamilton, J.G.C.; Hassan, N.; Al-Zaidi, S.; Kirk, W.D.J. Reduced translucency and the addition of black patterns increase the catch of the greenhouse whitefly, Trialeurodes vaporariorum, on yellow sticky traps. PLoS ONE 2018, e0193064. [Google Scholar] [CrossRef] [PubMed]
- Whitney, H.M.; Reed, A.; Rands, S.A.; Chittka, L.; Glover, B.J. Flower iridescence increases object detection in the insect visual system without object identity. Curr. Biol. 2016, 26, 802–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kooi, C.J.; Dyer, A.G.; Kevan, P.G.; Lunau, K. Functional significance of the optical properties of flowers for visual signaling. Ann. Botany 2019, 123, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Kirk, W.D.J. Effects of trap size and scent on catches of Thrips imaginis Bagnall (Thysanoptera: Thripidae). J. Aust. Entomol. Soc. 1987, 26, 299–302. [Google Scholar] [CrossRef]
- Vernon, R.S.; Gillespie, D.R. Influence of trap shape, size, and background color on captures of Frankliniella occidentalis (Thysanoptera: Thripidae) in a cucumber greenhouse. J. Econ. Entomol. 1995, 88, 288–293. [Google Scholar] [CrossRef]
- Döring, T.F.; Rohrig, K. Behavioral response of winged aphids to visual contrasts in the field. Ann. Appl. Biol. 2016, 168, 421–434. [Google Scholar] [CrossRef]
- Allan, S.A.; Stoffolano, J.G., Jr. Effects of background contrast on visual attraction and orientation of Tabanus nigrovittatus Macquart (Diptera: Tabanidae). Environ. Entomol. 1986, 15, 689–694. [Google Scholar] [CrossRef]
- Mainali, B.P.; Lim, U.T. Circular yellow sticky trap with black background enhances attraction of Frankliniella occidentalis (Pergande)(Thysanoptera: Thripidae). Appl. Entomol. Zool. 2010, 45, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Koshitaka, H.; Arikawa, K.; Kinoshita, M. Intensity contrast as a crucial cue for butterfly landing. J. Comp. Physiol. A 2011, 197, 1105–1112. [Google Scholar] [CrossRef]
- Kinoshita, M.; Takahashi, Y.; Arikawa, K. Simultaneous brightness contrast of foraging Papilio butterflies. Proc. R. Soc. B 2018. [Google Scholar] [CrossRef] [Green Version]
- Chapman, J.W.; Knapp, J.J.; Goulson, G. Visual responses of Musca domestica to pheromone impregnated targets in poultry units. Med. Vet. Entomol. 1999, 13, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Diclaro, J.W.; Cohnstaedt, L.W.; Pereira, R.M.; Allan, S.A.; Koehler, P.G. Behavioral and physiological response of Musca domestica to colored visual targets. J. Med. Entomol. 2012, 49, 94–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, C.L.; Lewis, T. The relationship between the size of yellow water traps and catches of aphids. Entomol. Exp. Appl. 1967, 10, 485–487. [Google Scholar] [CrossRef]
- Li, W.B.; Hartung, J.S.; Levy, L. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J. Microbiol. Methods 2006, 66, 104–115. [Google Scholar] [CrossRef]
- Godfrey, K.E.; Galindo, C.; Patt, J.M.; Luque-Williams, M. Evaluation of color and scent attractants used to trap and detect Asian citrus psyllid (Hemiptera: Liviidae) in urban environments. Fla. Entomol. 2013, 96, 1406–1416. [Google Scholar] [CrossRef]
- Chen, T.Y.; Chu, C.C.; Fitzgerald, G.; Natwick, E.T.; Henneberry, T.J. Trap evaluation for thrips (Thysanoptera: Thripidae) and hoverflies (Diptera: Syrphidae). Environ. Entomol. 2004, 33, 1416–1420. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.Y.; Chu, C.C.; Henneberry, T.J.; Umeda, K. Monitoring and trapping insects on poinsettia with yellow sticky card traps equipped with light-emitting diodes. HortTechnolgy 2004, 14, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Shimoda, M.; Honda, K. Insect reactions to light and its applications to pest management. Appl. Entomol. Zool. 2013, 48, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Lee, H.S. Phototactic behavioral response of agricultural insects and stored-product insects to light-emitting diodes (LEDs). Appl. Bio. Chem. 2017, 60, 137–144. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Liu, M.; Zhang, H.; Sun, H.; Wang, H.; Miao, L.; Li, M.; Shu, R.; Qin, W. A greenhouse test to explore and evaluate light-emitting (LED) insect traps in the monitoring and control of Trialeurodes Vap. Insects 2020, 11, 94. [Google Scholar] [CrossRef] [Green Version]
- Mangan, R.L.; Chapa, D. Evaluation of the effects of light source and plant materials on Asian citrus psyllid (Hemiptera: Psyllidae) trapping levels in the transtrap for citrus shipping containers. Fla. Entomol. 2013, 96, 104–111. [Google Scholar] [CrossRef]
- Horridge, A. What does an insect see. J. Exp. Biol. 2009, 212, 2721–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semeao, A.A.; Campbell, J.F.; Whitworth, R.J.; Sloderback, P.E. Response of Tribolium casteneum and Tribolium confusum adults to vertical black shapes and its potential to improve trap capture. J. Insect Stored Prod. Res. 2011, 47, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Allan, S.A.; Stoffolano, J.G., Jr. The important of pattern in visual attraction of Tabanus nigrovittatus Macquart (Diptera: Tabanidae). Can. J. Zool. 1986, 64, 2273–2278. [Google Scholar] [CrossRef]
- Marshall, J.; Johnsen, S. Fluorescence as a means of colour signal enhancement. Phil Trans. R. Soc. B 2017, 372, 20161335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, M.; Garcia, J.E.; Chua, J.H.J.; Howard, S.R.; Tscheuli, T.; Dorin, A.; Nielsen, A.; Dyer, A.G. Fluorescent pan traps affect the capture rate of insect orders in different ways. Insects 2019, 10, 40. [Google Scholar] [CrossRef] [Green Version]
- Arnold, K.E.; Owens, J.P.F.; Marshall, N.J. Fluorescent signaling in parrots. Science 2002, 295, 92. [Google Scholar] [CrossRef]
- Lim, M.L.M.; Land, M.F.; Li, D. Sex-specific UV and fluorescence signals in jumping spiders. Science 2007, 315, 418. [Google Scholar] [CrossRef] [Green Version]
- Greany, P.D.; Burditt, A.K., Jr.; Agee, H.R.; Chambers, D.L. Increasing effectiveness of visual traps for the Caribbean fruit fly, Anastrepha suspensa (Diptera: Tephritidae), by use of fluorescent colors. Ent. Exp. Appl. 1978, 23, 20–25. [Google Scholar] [CrossRef]
- Guillermo-Ferreira, R.; Therézio, E.M.; Gehlen, M.H.; Bispo, P.C.; Marletta, A. The role of wing pigmentation, UV and fluorescence as signals in a neotropical damselfly. J. Insect Behav. 2013, 27, 67–80. [Google Scholar] [CrossRef]
- Rao, S.; Ostroverkhova, O. Visual outdoor response of multiple wild bee species: Highly selective stimulation of a single photoreceptor type by sunlight-induced fluorescence. J. Comp. Physiol. A 2015, 201, 705–716. [Google Scholar] [CrossRef]
- Mori, S.; Fukiu, H.; Oishi, M.; Sakuma, M.; Kawakami, M.; Tsukioka, J.; Goto, K.; Hirai, N. Biocommunication between plants and pollinating insects through fluorescence of pollen and anthers. J. Chem. Ecol. 2018, 44, 591–600. [Google Scholar] [CrossRef] [Green Version]
- Roth, F.; Galli, Z.; Toth, M.; Fail, J.; Jenser, G. The hypothesized visual system of Thrips tabaci Lindeman and Frankliniella occidentalis (Pergande) based on different coloured traps catches. North-West. J. Zool. 2016, 12, 40–49. [Google Scholar]
- Lagorio, M.G.; Cordon, G.B.; Iriel, A. Reviewing the relevance of fluorescence in biological systems. Photochem. Photobiol. Sci. 2015, 14, 1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iriel, A.; Lagorio, M.G. Is the flower fluorescence relevant in biocommunication? Naturwiss 2010, 97, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Vernon, R.S.; Gillespie, D.R. Response of Frankliniella occidentalis (Thysanoptera: Thripidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae) to fluorescent traps in a cucumber greenhouse. J. Entomol. B C 1990, 87, 38–41. [Google Scholar]
- Yee, W.L. Preferences by Rhagoletis indifferens (Diptera, Tephritidae) for rectangles of various yellow colours and fluorescence. J. Appl. Entomol. 2013, 137, 225–233. [Google Scholar] [CrossRef]
- Finkbeiner, S.D.; Fishman, D.A.; Osorio, D.; Briscoe, A.D. Ultraviolet and yellow reflectance but not fluorescence is important for visual discrimination of conspecifics by Heliconius erato. J. Exp. Biol. 2017, 220, 1267–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandia-Herrero, F.; Escribano, J.; Garcia-Carmona, F. Betaxanthins as pigments responsible for visible fluorescence in flowers. Planta 2005, 222, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Bernays, E.A.; Chapman, R.F. Host-Plant. Selection by Phytophagous Insects; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Hardie, J. Spectral specificity for targeted flight in the black bean aphid, Aphis Fabae. Ent. Exp. Appl. 1989, 35, 619–626. [Google Scholar] [CrossRef]
- Brennan, E.B.; Weinbaum, S.A. Psyllid responses to colored sticky traps and the colors of juvenile and adult leaves of the heteroblastic host plant Eucalyptus globulus. Environ. Entomol. 2001, 30, 365–370. [Google Scholar] [CrossRef]
- Farnier, K.; Dyer, A.G.; Steinbauer, M.J. Related but not alike: Not all Hemiptera are attracted to yellow. Front. Ecol. Evol. 2014, 2, 67. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.G.; Hentz, M.G.; Ciomperlik, M.A. A comparison of traps and stem tap sampling for monitoring adult Asian citrus psyllid (Hemiptera: Psyllidae) in citrus. Fla. Entomol. 2007, 90, 327–334. [Google Scholar] [CrossRef]
- Daniel, C.; Mtias, S.; Feichtinger, G. A new visual trap for Rhagoletis cerasi (L.)(Diptera: Tephritidae). Insects 2014, 5, 564–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, W.F. Responses of selected Thysanoptera to colored surfaces. Environ. Entomol. 1974, 3, 295–304. [Google Scholar] [CrossRef]
- Vernon, R.S.; Gillespie, D.R. Spectral responsiveness of Frankliniella occidentalis (Thysanoptera: Thripidae) determined by trap catches in greenhouses. Environ. Entomol. 1990, 19, 1229–1241. [Google Scholar] [CrossRef]
- Antignus, Y. Manipulation of wavelength-dependent behavior of insects: An IPM tool to impede insects and restrict epidemics of insect-borne viruses. Virus Res. 2000, 71, 213–220. [Google Scholar] [CrossRef]
- Johnson, S.D.; Andersson, S. A simple field method for manipulating ultraviolet reflectance of flowers. Can. J. Botany 2002, 80, 1325–1328. [Google Scholar] [CrossRef]
- Matteson, N.; Terry, L.I. Response to colour by male and female Frankliniella occidentalis. J. Insect Physiol. 1992, 38, 453–459. [Google Scholar] [CrossRef]
- Croxton, S.D.; Stansly, P.A. Metalized polyethylene mulch to repel Asian citrus psyllid, slow spread of huanglongbing and improve growth of new citrus plantings. Pest. Manag. Sci. 2014, 70, 318–323. [Google Scholar] [CrossRef]
- Mann, R.S.; Kaufman, P.E.; Butler, J.F. Lutzomyia spp. (Diptera: Psychodidae) responses to olfactory attractant- and light-emitting diode-modified mosquito magnet X (MM-X) traps. J. Med. Entomol. 2009, 46, 1052–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duehl, A.J.; Cohnstaedt, L.W.; Arbogast, R.T.; Teal, P.E.A. Evaluating light attraction to increase trap efficiency for Tribolium castaneum (Coleoptera: Tenebrionidae). J. Econ. Entomol. 2011, 104, 1430–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doukas, D.; Payne, C.C. Greenhouse whitefly (Homoptera: Aleyrodidae) dispersal under different UV-light environments. J. Econ. Entomol. 2007, 100, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.P.; Dos Santos, F.L.; Felippe, M.R.; Moreno, A.; Fereres, A. Effect of UV-blocking plastic films on take-off and host plant finding ability of Diaphorina citri (Hemiptera: Liviidae). J. Econ. Entomol. 2015, 108, 245–251. [Google Scholar] [CrossRef]
- Daumer, K. Blumengarben: Wie sie die Bienen schen. Z. Vgl. Physiol. 1958, 41, 49–110. [Google Scholar]
LED | % Capture | p | t-Value (df) |
---|---|---|---|
None | 41.9 ± 3.3 a | 0.002 | 3.39 (38) |
UV violet | 58.1 ± 3.3 b | ||
None | 45.6 ± 3.3 a | 0.024 | 2.34 (38) |
White | 55.4 ± 3.3 b | ||
None | 46.4 ± 4.2 a | 0.07 | 1.48 (38) |
Yellow | 54.2 ± 4.2 a | ||
White | 49.9 ± 3.5 a | 0.959 | 0.052 (38) |
UV violet | 50.1 ± 3.5 a |
Pattern | Black/Yellow Edge Length (cm) | Capture (%) |
---|---|---|
Single large square | 28.72 | 27.6 ± 2.0 |
Wide stripes | 50.8 | 25.0 ± 1.5 |
Narrow stripes | 111.76 | 23.9 ± 1.8 |
Small squares | 85.92 | 23.8 ± 2.2 |
Experiment | Paint | Capture (%) |
---|---|---|
1. White paints | Decoy | 25.8 ± 2.6 a |
Neon | 22.5 ± 2.4 a | |
Primer | 27.2 ± 2.6 a | |
Wildfire | 24.5 ± 3.3 a | |
2. Decoy paints | Green | 25.2 ± 3.0 b |
Iridescent green | 15.3 ± 2.6 bc | |
White | 15.3 ± 3.3 c | |
Yellow | 44.2 ± 5.3 a | |
3. Wildfire paints | Orange | 38.5 ± 3.0 a |
Purple | 9.3 ± 1.8 b | |
Red | 17.1 ± 1.9 b | |
Yellow | 35.1 ± 3.9 a | |
4. Neon paints | Green | 35.5 ± 2.4 a |
Orange | 26.0 ± 3.0 b | |
Purple | 6.5 ± 1.8 c | |
White | 6.3 ± 1.8 c | |
Yellow | 25.7 ± 3.1 b | |
5. Yellow paints | Decoy | 31.1 ± 2.7 a |
Neon | 23.1 ± 1.8 b | |
Olson | 24.5 ± 2.3 b | |
Wildfire | 21.3 ± 2.4 b |
Experiment | Additional Pigments | Capture (%) |
---|---|---|
6. UV reflecting | None | 28.7 ± 2.9 a |
1.25 gm MgO | 25.2 ± 2.2 a | |
2.50 gm MgO | 23.7 ± 2.5 a | |
3.75 gm MgO | 22.4 ± 2.5 a | |
7. Fluorescent WTR | None | 29.5 ± 2.5 ab |
2.5 gm MgO | 22.9 ± 2.7 b | |
2.5 gm yellow WTR | 34.1 ± 3.4 a | |
2.5 gm white WTR | 13.5 ± 2.9 c | |
8. Fluorescent UVI | None | 49.6 ± 2.7 a |
2.5 gm MgO | 23.6 ± 2.7 b | |
2.5 gm yellow UVI | 12.8 ± 1.2 c | |
2.5 gm green UVI | 13.9 ± 1.3 c |
Experiment | Mixture | Capture (%) | |
---|---|---|---|
% Yellow | % White | ||
9. Decoy | 100 | 0 | 20.6 ± 2.6 a |
90 | 10 | 21.7 ± 3.0 a | |
80 | 20 | 28.5 ± 3.5 a | |
70 | 30 | 29.2 ± 3.9 a | |
% yellow | % green | ||
10. Decoy | 100 | 0 | 20.2 ± 2.5 a |
90 | 10 | 24.0 ± 2.9 a | |
80 | 20 | 22.8 ± 3.0 a | |
70 | 30 | 21.9 ± 2.9 a | |
0 | 100 | 11.1 ± 1.5 b | |
% yellow | % green | ||
11. Wildfire | 100 | 0 | 30.9 ± 3.8 a |
75 | 25 | 25.9 ± 4.0 a | |
25 | 75 | 23.8 ± 3.0 a | |
0 | 100 | 19.3 ± 3.4 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allan, S.A.; George, J.; Stelinski, L.L.; Lapointe, S.L. Attributes of Yellow Traps Affecting Attraction of Diaphorina citri (Hemiptera: Liviidae). Insects 2020, 11, 452. https://doi.org/10.3390/insects11070452
Allan SA, George J, Stelinski LL, Lapointe SL. Attributes of Yellow Traps Affecting Attraction of Diaphorina citri (Hemiptera: Liviidae). Insects. 2020; 11(7):452. https://doi.org/10.3390/insects11070452
Chicago/Turabian StyleAllan, Sandra A., Justin George, Lukasz L. Stelinski, and Stephen L. Lapointe. 2020. "Attributes of Yellow Traps Affecting Attraction of Diaphorina citri (Hemiptera: Liviidae)" Insects 11, no. 7: 452. https://doi.org/10.3390/insects11070452
APA StyleAllan, S. A., George, J., Stelinski, L. L., & Lapointe, S. L. (2020). Attributes of Yellow Traps Affecting Attraction of Diaphorina citri (Hemiptera: Liviidae). Insects, 11(7), 452. https://doi.org/10.3390/insects11070452