Plant-Derived Natural Compounds for Tick Pest Control in Livestock and Wildlife: Pragmatism or Utopia?
Abstract
:1. Introduction
2. Ecology and Economic Importance of Ticks and Tick-Borne Diseases of Livestock (Veterinary) and Public Health Concern
3. Chemical Control Failure and the Hope of Natural Organic Products on Tick Pest Management
4. Plant-Derived Compounds with Potential Use for Tick Pest Control
4.1. Plant Extracts
4.2. Plant Essential Oils
4.3. Mode of Action
5. From the Bench to the Market: A Long Rough Road of Scaling up Natural Products for Tick Pest Control
Organic Compounds Already in the Market
6. Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Group, T.-B.D.W. Report to Congress. Available online: https://www.hhs.gov/sites/default/files/tbdwg-report-to-congress-2018.pdf (accessed on 5 May 2020).
- Eisen, R.J.; Eisen, L. The Blacklegged Tick, Ixodes scapularis: An Increasing Public Health Concern. Trends Parasitol. 2018, 34, 295–309. [Google Scholar] [CrossRef] [PubMed]
- Ogden, N.H.; Lindsay, L.R. Effects of Climate and Climate Change on Vectors and Vector-Borne Diseases: Ticks Are Different. Trends Parasitol. 2016, 32, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Nah, K.; Bede-Fazekas, A.; Trajer, A.J.; Wu, J. The potential impact of climate change on the transmission risk of tick-borne encephalitis in Hungary. BMC Infect. Dis. 2020, 20, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokarevich, N.K.; Tronin, A.A.; Blinova, O.V.; Buzinov, R.V.; Boltenkov, V.P.; Yurasova, E.D.; Nurse, J. The impact of climate change on the expansion of Ixodes persulcatus habitat and the incidence of tick-borne encephalitis in the north of European Russia. Glob. Health Action 2011, 4, 8448. [Google Scholar] [CrossRef]
- Goolsby, J.A.; Singh, N.K.; Shapiro-Ilan, D.I.; Miller, R.J.; De León, A.A.P. Comparative efficacy of entomopathogenic nematodes against multi-acaricide resistant strain of cattle fever tick, Rhipicephalus microplus (Acari: Ixodidae). Southwest. Entomol. 2019, 44, 143–153. [Google Scholar] [CrossRef]
- Singh, N.; Goolsby, J.; Shapiro Ilan, D.I.; Miller, R.; Thomas, D.B.; Klafke, G.; Tidwell, J.P.; Racelis, A.; Grewal, P.; Perez De Leon, A.A. Efficacy of entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae) against engorged females of the cattle fever tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Southwest. Entomol. 2018, 43, 1–17. [Google Scholar] [CrossRef]
- Aw, K.M.S.; Hue, S.M. Mode of Infection of Metarhizium spp. Fungus and Their Potential as Biological Control Agents. J. Fungi 2017, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, E.K.; Bittencourt, V.R. Entomopathogenic fungi against South American tick species. Exp. Appl. Acarol. 2008, 46, 71–93. [Google Scholar] [CrossRef]
- Fernandes, E.K.; Bittencourt, V.R.; Roberts, D.W. Perspectives on the potential of entomopathogenic fungi in biological control of ticks. Exp. Parasitol. 2012, 130, 300–305. [Google Scholar] [CrossRef]
- Samish, M.; Ginsberg, H.; Glazer, I. Biological control of ticks. Parasitology 2004, 129, S389–S403. [Google Scholar] [CrossRef]
- Barker, S.C.; Walker, A.R. Ticks of Australia. The species that infest domestic animals and humans. Zootaxa 2014, 18, 1–144. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, W.L.; Sonenshine, D.E.; Noden, B.H.; Brown, R.N. Ticks (Ixodida). In Medical and Veterinary Entomology; Academic Press: Cambridge, MA, USA, 2006; pp. 603–672. [Google Scholar]
- Scoles, G.A.; Hutcheson, H.J.; Schlater, J.L.; Hennager, S.G.; Pelzel, A.M.; Knowles, D.P. Equine piroplasmosis associated with Amblyomma cajennense Ticks, Texas, USA. Emerg. Infect. Dis. 2011, 17, 1903–1905. [Google Scholar] [CrossRef] [PubMed]
- Scoles, G.A.; Ueti, M.W. Amblyomma cajennense is an intrastadial biological vector of Theileria equi. Parasit. Vectors 2013, 6, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szabó, M.P.; Pinter, A.; Labruna, M.B. Ecology, biology and distribution of spotted-fever tick vectors in Brazil. Front. Cell. Infect. Microbiol. 2013, 3, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labruna, M.B.; Krawczak, F.S.; Gerardi, M.; Binder, L.C.; Barbieri, A.R.M.; Paz, G.F.; Rodrigues, D.S.; Araújo, R.N.; Bernardes, M.L.; Leite, R.C. Isolation of Rickettsia rickettsii from the tick Amblyomma sculptum from a Brazilian spotted fever-endemic area in the Pampulha Lake region, southeastern Brazil. Vet. Parasitol. Reg. Stud. Rep. 2017, 8, 82–85. [Google Scholar] [CrossRef]
- Esemu, S.N.; Besong, W.O.; Ndip, R.N.; Ndip, L.M. Prevalence of Ehrlichia ruminantium in adult Amblyomma variegatum collected from cattle in Cameroon. Exp. Appl. Acarol. 2013, 59, 377–387. [Google Scholar] [CrossRef]
- Eremeeva, M.E.; Dasch, G.A. Challenges posed by tick-borne rickettsiae: Eco-epidemiology and public health implications. Front. Public Health 2015, 3, 55. [Google Scholar] [CrossRef]
- Noguchi, H. Cultivation Of Rickettsia-Like Microorganisms From The Rocky Mountain Spotted Fever Tick, Dermacentor Andersoni. J. Exp. Med. 1926, 43, 515–532. [Google Scholar] [CrossRef]
- Kocan, K.M.; Hair, J.A.; Ewing, S.A.; Stratton, L.G. Transmission of Anaplasma marginale Theiler by Dermacentor andersoni Stiles and Dermacentor variabilis (Say). Am. J. Vet. Res. 1981, 42, 15–18. [Google Scholar]
- Lewis, B.D.; Penzhorn, B.L.; Lopez-Rebollar, L.M.; De Waal, D.T. Isolation of a South African vector-specific strain of Babesia canis. Vet. Parasitol. 1996, 63, 9–16. [Google Scholar] [CrossRef]
- Guan, G.; Ma, M.; Moreau, E.; Liu, J.; Lu, B.; Bai, Q.; Luo, J.; Jorgensen, W.; Chauvin, A.; Yin, H. A new ovine Babesia species transmitted by Hyalomma anatolicum anatolicum. Exp. Parasitol. 2009, 122, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Moltmann, U.G.; Mehlhorn, H.; Schein, E.; Voigt, W.P.; Friedhoff, K.T. Ultrastructural study on the development of Babesia equi (Coccidia: Piroplasmia) in the salivary glands of its vector ticks. J. Protozool. 1983, 30, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Zeb, J.; Szekeres, S.; Takács, N.; Kontschán, J.; Shams, S.; Ayaz, S.; Hornok, S. Genetic diversity, piroplasms and trypanosomes in Rhipicephalus microplus and Hyalomma anatolicum collected from cattle in northern Pakistan. Exp. Appl. Acarol. 2019, 79, 233–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mourya, D.T.; Yadav, P.D.; Shete, A.M.; Gurav, Y.K.; Raut, C.G.; Jadi, R.S.; Pawar, S.D.; Nichol, S.T.; Mishra, A.C. Detection, isolation and confirmation of Crimean-Congo hemorrhagic fever virus in human, ticks and animals in Ahmadabad, India, 2010–2011. PLoS Neglect. Trop. Dis. 2012, 6, e1653. [Google Scholar] [CrossRef] [PubMed]
- Kasi, K.K.; von Arnim, F.; Schulz, A.; Rehman, A.; Chudhary, A.; Oneeb, M.; Sas, M.A.; Jamil, T.; Maksimov, P.; Sauter-Louis, C.; et al. Crimean-Congo haemorrhagic fever virus in ticks collected from livestock in Balochistan, Pakistan. Transbound Emerg. Dis. 2020. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, E.; Toma, L.; Polci, A.; d’Alessio, S.G.; Di Luca, M.; Orsini, M.; Di Domenico, M.; Marcacci, M.; Mancini, G.; Spina, F.; et al. Crimean-Congo Hemorrhagic Fever Virus Genome in Tick from Migratory Bird, Italy. Emerg. Infect. Dis. 2019, 25, 1418–1420. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, A.; Pastor, A.R.; Berkvens, C.N.; Gara-Boivin, C.; Hébert, M.; Léveillé, A.N.; Barta, J.R.; Smith, D.A. Babesia odocoilei as a cause of mortality in captive cervids in Canada. Can. Vet. J. 2018, 59, 52–58. [Google Scholar]
- Hess, W.R.; Endris, R.G.; Haslett, T.M.; Monahan, M.J.; McCoy, J.P. Potential arthropod vectors of African swine fever virus in North America and the Caribbean basin. Vet. Parasitol. 1987, 26, 145–155. [Google Scholar] [CrossRef]
- Biguezoton, A.; Noel, V.; Adehan, S.; Adakal, H.; Dayo, G.K.; Zoungrana, S.; Farougou, S.; Chevillon, C. Ehrlichia ruminantium infects Rhipicephalus microplus in West Africa. Parasit. Vectors 2016, 9, 354. [Google Scholar] [CrossRef] [Green Version]
- Corrier, D.E.; Kuttler, K.L.; Terry, M.K. Observations on anaplasmosis following field exposure to heavy and light infestations with Boophilus microplus. Vet. Parasitol. 1983, 13, 187–190. [Google Scholar] [CrossRef]
- Miller, R.S.; Farnsworth, M.L.; Malmberg, J.L. Diseases at the livestock-wildlife interface: Status, challenges, and opportunities in the United States. Prev. Vet. Med. 2013, 110, 119–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabezas-Cruz, A.; Pollet, T.; Estrada-Peña, A.; Allain, E.; Bonnet, S.I.; Moutailler, S. Handling the Microbial Complexity Associated to Ticks. In Ticks and Tick-Borne Pathogens; Abubakar, M., Ed.; Intech Open: London, UK, 2018; Volume 1. [Google Scholar]
- Craft, M.E. Infectious disease transmission and contact networks in wildlife and livestock. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2015, 370. [Google Scholar] [CrossRef] [PubMed]
- Lew-Tabor, A.E.; Rodriguez Valle, M. A review of reverse vaccinology approaches for the development of vaccines against ticks and tick borne diseases. Ticks Tick Borne Dis. 2016, 7, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Gashaw, B.A.; Mersha, C.K. Pathology of tick bite lesions in naturally infested skin and hides of ruminants: A review. Acta Parasitol. Globalis 2013, 4, 59–63. [Google Scholar]
- Reck, J.; Marks, F.S.; Rodrigues, R.O.; Souza, U.A.; Webster, A.; Leite, R.C.; Gonzales, J.C.; Klafke, G.M.; Martins, J.R. Does Rhipicephalus microplus tick infestation increase the risk for myiasis caused by Cochliomyia hominivorax in cattle? Prev. Vet. Med. 2014, 113, 59–62. [Google Scholar] [CrossRef]
- Hurtado, O.J.B.; Giraldo-Ríos, C. Economic and health impact of the ticks in production animals. In Ticks and Tick-Borne Pathogens; Abubakar, M., Perera, P.K., Eds.; IntechOpen: London, UK, 2019. [Google Scholar]
- Chaudhry, I.Z.; Saiddain, A.; Sabir, N.; Malik, A.N.; Azeem, S.; Sajid, A. Prevalence of pathological condition causing skin damage and consequently reducing its market value in domestic ruminants of Punjab, Pakistan. Vet. Sci. Dev. 2011, 1, e4. [Google Scholar] [CrossRef]
- Lima, T.S.; Oliveira Filho, R.B.; Sousa, M.S.; Santos, N.T.A.; Sampaio, R.A.G.; Lcena, R.B. Cytological, histopathological, histochemical, and immunohistochemical findings of multiple cutaneous nodules in a bovine. Semin.-Cien. Agrar. 2019, 40, 3781–3788. [Google Scholar] [CrossRef] [Green Version]
- Galay, R.L.; Umemiya-Shirafuji, R.; Bacolod, E.T.; Maeda, H.; Kusakisako, K.; Koyama, J.; Tsuji, N.; Mochizuki, M.; Fujisaki, K.; Tanaka, T. Two kinds of ferritin protect ixodid ticks from iron overload and consequent oxidative stress. PLoS ONE 2014, 9, e90661. [Google Scholar] [CrossRef] [Green Version]
- Molyneux, D.H. Vectors. In Modern Parasitology: A Textbook of Parasitology, 2nd ed.; Cox, F.E.G., Ed.; Blackwell Science: Oxford, UK, 1993; pp. 53–74. [Google Scholar]
- Eskezia, B.G.; Desta, A.H. Review on the impact of ticks on livestock health and productivity. J. Biol. Agric. Healthcare 2016, 6, 1–7. [Google Scholar]
- Jonsson, N.N.; Mayer, D.G.; Matschoss, A.L.; Green, P.E.; Ansell, J. Production effects of cattle tick (Boophilus microplus) infestation of high yielding dairy cows. Vet. Parasitol. 1998, 78, 65–77. [Google Scholar] [CrossRef]
- Narladkar, B.W. Projected economic losses due to vector and vector-borne parasitic diseases in livestock of India and its significance in implementing the concept of integrated practices for vector management. Vet. World 2018, 11, 151–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, J.F.; Martínez, R.; López-Villalobos, N.; Morris, S.T. Tick burden in Bos taurus cattle and its relationship with heat stress in three agroecological zones in the tropics of Colombia. Parasit. Vectors 2019, 12, 73. [Google Scholar] [CrossRef] [PubMed]
- Nuttall, P.A. Tick saliva and its role in pathogen transmission. Wien. Klin. Wochenschr. 2019, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz, J.H. A Comparative Meta-Analysis of Tick Paralysis in the United States and Australia. Clin. Toxicol. (Phila) 2015, 53, 874–883. [Google Scholar] [CrossRef] [PubMed]
- Kwak, M.L.; Madden, C. The first record of infestation by a native tick (Acari: Ixodidae) on the Australian emu (Dromaius novaehollandiae) and a review of tick paralysis in Australian birds. Exp. Appl. Acarol. 2017, 73, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Pienaar, R.; Neitz, A.W.H.; Mans, B.J. Tick Paralysis: Solving an Enigma. Vet. Sci. 2018, 5, 53. [Google Scholar] [CrossRef] [Green Version]
- Burrow, H.M.; Mans, B.J.; Cardoso, F.F.; Birkett, M.A.; Kotze, A.C.; Hayes, B.J.; Mapholi, N.; Dzama, K.; Marufu, M.C.; Githaka, N.F. Towards a new phenotype for tick resistance in beef and dairy cattle: A review. Anim. Prod. Sci. 2019, 59, 1401–1427. [Google Scholar] [CrossRef] [Green Version]
- De la Fuente, J.; Kopáček, P.; Lew-Tabor, A.; Maritz-Olivier, C. Strategies for new and improved vaccines against ticks and tick-borne diseases. Parasite Immunol. 2016, 38, 754–769. [Google Scholar] [CrossRef]
- Ghosh, S.; Azhahianambi, P.; Yadav, M.P. Upcoming and future strategies of tick control: A review. J. Vector Borne Dis. 2007, 44, 79–89. [Google Scholar]
- Goodenough, A.E.; Harrell, A.N.; Keating, R.L.; Rolfe, R.N.; Stubbs, H.; MacTavish, L.; Hart, A.G. Managing grassland for wildlife: The effects of rotational burning on tick presence and abundance in African savannah habitat. Wildl. Biol. 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Hofmeester, T.R.; Jansen, P.A.; Wijnen, H.J.; Coipan, E.C.; Fonville, M.; Prins, H.H.T.; Sprong, H.; van Wieren, S.E. Cascading effects of predator activity on tick-borne disease risk. Proc. Biol. 2017, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hüe, T.; Fontfreyde, C. Development of a new approach of pasture management to control Rhipicephalus microplus infestation. Trop. Anim. Health Prod. 2019, 51, 1989–1995. [Google Scholar] [CrossRef] [PubMed]
- Jongejan, F.; Uilenberg, G. The global importance of ticks. Parasitology 2004, 129, S3–S14. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, N.N. The productivity effects of cattle tick (Boophilus microplus) infestation on cattle, with particular reference to Bos indicus cattle and their crosses. Vet. Parasitol. 2006, 137, 1–10. [Google Scholar] [CrossRef]
- Mondal, D.B.; Sarma, K.; Saravanan, M. Upcoming of the integrated tick control program of ruminants with special emphasis on livestock farming system in India. Ticks Tick Borne Dis. 2013, 4, 1–10. [Google Scholar] [CrossRef]
- Rego, R.O.M.; Trentelman, J.J.A.; Anguita, J.; Nijhof, A.M.; Sprong, H.; Klempa, B.; Hajdusek, O.; Tomás-Cortázar, J.; Azagi, T.; Strnad, M.; et al. Counterattacking the tick bite: Towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasit. Vectors 2019, 12, 229. [Google Scholar] [CrossRef]
- George, J.E.; Pond, J.M.; Davey, R.B. Acaricides for controlling ticks on cattle and the problem of acaricide resistance. In Ticks: Biology, Disease and Control; Bowman, A.S., Nuttall, P., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 408–423. [Google Scholar]
- George, J.E.; Pound, J.M.; Davey, R.B. Chemical control of ticks on cattle and the resistance of these parasites to acaricides. Parasitology 2004, 129, S353–S366. [Google Scholar] [CrossRef]
- Rajput, Z.I.; Hu, S.H.; Chen, W.J.; Arijo, A.G.; Xiao, C.W. Importance of ticks and their chemical and immunological control in livestock. J. Zhejiang Univ. Sci. B 2006, 7, 912–921. [Google Scholar] [CrossRef]
- Vudriko, P.; Okwee-Acai, J.; Byaruhanga, J.; Tayebwa, D.S.; Omara, R.; Muhindo, J.B.; Lagu, C.; Umemiya-Shirafuji, R.; Xuan, X.; Suzuki, H. Evidence-based tick acaricide resistance intervention strategy in Uganda: Concept and feedback of farmers and stakeholders. Ticks Tick Borne Dis. 2018, 9, 254–265. [Google Scholar] [CrossRef]
- Markets, M.A. Acaricides Market by Type (Organochlorine, Organophosphorus, Natural Sources, and others), by Application (Agriculture, Animal Husbandry, Industrial, and Others), by Mode of Action (spray, Dipping Vat, Hand Dressing and Others) & geography—Trends & forecasts to 2019. Available online: https://www.marketsandmarkets.com/Market-Reports/acaricides-market-196650767.html (accessed on 12 February 2020).
- Abbas, R.Z.; Zaman, M.A.; Colwell, D.D.; Gilleard, J.; Iqbal, Z. Acaricide resistance in cattle ticks and approaches to its management: The state of play. Vet. Parasitol. 2014, 203, 6–20. [Google Scholar] [CrossRef]
- Foil, L.D.; Coleman, P.; Eisler, M.; Fragoso-Sanchez, H.; Garcia-Vazquez, Z.; Guerrero, F.D.; Jonsson, N.N.; Langstaff, I.G.; Li, A.Y.; Machila, N.; et al. Factors that influence the prevalence of acaricide resistance and tick-borne diseases. Vet. Parasitol. 2004, 125, 163–181. [Google Scholar] [CrossRef] [PubMed]
- Nolan, J. Mechanisms of resistance to chemicals in arthropod parasites of veterinary importance. Vet. Parasitol. 1985, 18, 155–166. [Google Scholar] [CrossRef]
- Uganda, N. Tick-Borne Diseases Kill Hundreds of Cows in Kiruhura District; Uganda, N., Ed.; NTV Uganda: Kampala, Uganda, 2016. [Google Scholar]
- Thomas, D.B.; Klafke, G.; Busch, J.D.; Olafson, P.U.; Miller, R.A.; Mosqueda, J.; Stone, N.E.; Scoles, G.; Wagner, D.M.; Perez-De-Leon, A. Tracking the Increase of Acaricide Resistance in an Invasive Population of Cattle Fever Ticks (Acari: Ixodidae) and Implementation of Real-Time PCR Assays to Rapidly Genotype Resistance Mutations. Ann. Entomol. Soc. Am. 2020, 113, 298–309. [Google Scholar] [CrossRef]
- Freitas Ede, P.; Zapata, M.T.; Fernandes Fde, F. Monitoring of resistance or susceptibility of adults and larvae of Amblyomma cajennense (Acari: Ixodidae) to synthetic acaricides in Goias, Brazil. Exp. Appl. Acarol. 2011, 53, 189–202. [Google Scholar] [CrossRef]
- Higa, L.O.S.; Barradas Pina, F.T.; Rodrigues, V.D.S.; Garcia, M.V.; Salas, D.R.; Miller, R.J.; de Leon, A.P.; Barros, J.C.; Andreotti, R. Evidence of acaricide resistance in different life stages of Amblyomma mixtum and Rhipicephalus microplus (Acari: Ixodidae) collected from the same farm in the state of Veracruz, Mexico. Prev. Vet. Med. 2020, 174, 104837. [Google Scholar] [CrossRef]
- Alonso-Diaz, M.A.; Fernandez-Salas, A.; Martinez-Ibanez, F.; Osorio-Miranda, J. Amblyomma cajennense (Acari: Ixodidae) tick populations susceptible or resistant to acaricides in the Mexican Tropics. Vet. Parasitol. 2013, 197, 326–331. [Google Scholar] [CrossRef]
- Gaur, R.S.; Sangwan, A.K.; Sangwan, N.; Kumar, S. Acaricide resistance in Rhipicephalus (Boophilus) microplus and Hyalomma anatolicum collected from Haryana and Rajasthan states of India. Exp. Appl. Acarol. 2016, 69, 487–500. [Google Scholar] [CrossRef]
- El-Ashram, S.; Aboelhadid, S.M.; Kamel, A.A.; Mahrous, L.N.; Fahmy, M.M. First Report of Cattle Tick Rhipicephalus (Boophilus) annulatus in Egypt Resistant to Ivermectin. Insects 2019, 10, 404. [Google Scholar] [CrossRef] [Green Version]
- Ziapour, S.P.; Kheiri, S.; Fazeli-Dinan, M.; Sahraei-Rostami, F.; Mohammadpour, R.A.; Aarabi, M.; Nikookar, S.H.; Sarafrazi, M.; Asgarian, F.; Enayati, A.; et al. Pyrethroid resistance in Iranian field populations of Rhipicephalus (Boophilus) annulatus. Pestic. Biochem. Physiol. 2017, 136, 70–79. [Google Scholar] [CrossRef]
- Vudriko, P.; Okwee-Acai, J.; Tayebwa, D.S.; Byaruhanga, J.; Kakooza, S.; Wampande, E.; Omara, R.; Muhindo, J.B.; Tweyongyere, R.; Owiny, D.O.; et al. Emergence of multi-acaricide resistant Rhipicephalus ticks and its implication on chemical tick control in Uganda. Parasit. Vectors 2016, 9, 4. [Google Scholar] [CrossRef]
- Enayati, A.A.; Asgarian, F.; Sharif, M.; Boujhmehrani, H.; Amouei, A.; Vahedi, N.; Boudaghi, B.; Piazak, N.; Hemingway, J. Propetamphos resistance in Rhipicephalus bursa (Acari, Ixodidae). Vet. Parasitol. 2009, 162, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Reck, J.; Klafke, G.M.; Webster, A.; Dall’Agnol, B.; Scheffer, R.; Souza, U.A.; Corassini, V.B.; Vargas, R.; dos Santos, J.S.; Martins, J.R. First report of fluazuron resistance in Rhipicephalus microplus: A field tick population resistant to six classes of acaricides. Vet. Parasitol. 2014, 201, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Corley, S.W.; Jonsson, N.N.; Piper, E.K.; Cutullé, C.; Stear, M.J.; Seddon, J.M. Mutation in the RmβAOR gene is associated with amitraz resistance in the cattle tick Rhipicephalus microplus. Proc. Natl. Acad. Sci. USA 2013, 110, 16772–16777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sungirai, M.; Baron, S.; Moyo, D.Z.; De Clercq, P.; Maritz-Olivier, C.; Madder, M. Genotyping acaricide resistance profiles of Rhipicephalus microplus tick populations from communal land areas of Zimbabwe. Ticks Tick Borne Dis. 2018, 9, 2–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaparro-Gutierrez, J.J.; Villar, D.; Schaeffer, D.J. Interpretation of the larval immersion test with ivermectin in populations of the cattle tick Rhipicephalus (Boophilus) microplus from Colombian farms. Ticks Tick Borne Dis. 2020, 11, 101323. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Salas, A.; Alonso-Diaz, M.A.; Acosta-Rodriguez, R.; Torres-Acosta, J.F.; Sandoval-Castro, C.A.; Rodriguez-Vivas, R.I. In vitro acaricidal effect of tannin-rich plants against the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet. Parasitol. 2011, 175, 113–118. [Google Scholar] [CrossRef]
- Guerrero, F.D.; Lovis, L.; Martins, J.R. Acaricide resistance mechanisms in Rhipicephalus (Boophilus) microplus. Rev. Bras. Parasitol. Vet. 2012, 21, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Klafke, G.; Webster, A.; Dall Agnol, B.; Pradel, E.; Silva, J.; de La Canal, L.H.; Becker, M.; Osório, M.F.; Mansson, M.; Barreto, R.; et al. Multiple resistance to acaricides in field populations of Rhipicephalus microplus from Rio Grande do Sul state, Southern Brazil. Ticks Tick Borne Dis. 2017, 8, 73–80. [Google Scholar] [CrossRef]
- Faza, A.P.; Pinto, I.S.; Fonseca, I.; Antunes, G.R.; Monteiro, C.M.; Daemon, E.; Muniz Mde, S.; Martins, M.F.; Furlong, J.; Prata, M.C. A new approach to characterization of the resistance of populations of Rhipicephalus microplus (Acari: Ixodidae) to organophosphate and pyrethroid in the state of Minas Gerais, Brazil. Exp. Parasitol. 2013, 134, 519–523. [Google Scholar] [CrossRef] [Green Version]
- Godara, R.; Katoch, R.; Rafiqi, S.I.; Yadav, A.; Nazim, K.; Sharma, R.; Singh, N.K.; Katoch, M. Synthetic pyrethroid resistance in Rhipicephalus (Boophilus) microplus ticks from north-western Himalayas, India. Trop. Anim. Health Prod. 2019, 51, 1203–1208. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, A.K.; Ghosh, S. Menace of acaricide resistance in cattle tick, Rhipicephalus microplus in India: Status and possible mitigation strategies. Vet. Parasitol. 2020, 278, 108993. [Google Scholar] [CrossRef] [PubMed]
- Lovis, L.; Reggi, J.; Berggoetz, M.; Betschart, B.; Sager, H. Determination of acaricide resistance in Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) field populations of Argentina, South Africa, and Australia with the Larval Tarsal Test. J. Med. Entomol. 2013, 50, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Mendes, M.C.; Lima, C.K.; Nogueira, A.H.; Yoshihara, E.; Chiebao, D.P.; Gabriel, F.H.; Ueno, T.E.; Namindome, A.; Klafke, G.M. Resistance to cypermethrin, deltamethrin and chlorpyriphos in populations of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) from small farms of the State of São Paulo, Brazil. Vet. Parasitol. 2011, 178, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Petermann, J.; Cauquil, L.; Hurlin, J.C.; Gaia, H.; Hue, T. Survey of cattle tick, Riphicephalus (Boophilus) microplus, resistance to amitraz and deltamethrin in New Caledonia. Vet. Parasitol. 2016, 217, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Stone, N.E.; Olafson, P.U.; Davey, R.B.; Buckmeier, G.; Bodine, D.; Sidak-Loftis, L.C.; Giles, J.R.; Duhaime, R.; Miller, R.J.; Mosqueda, J.; et al. Multiple mutations in the para-sodium channel gene are associated with pyrethroid resistance in Rhipicephalus microplus from the United States and Mexico. Parasit. Vectors 2014, 7, 456. [Google Scholar] [PubMed] [Green Version]
- Villar, D.; Klafke, G.M.; Rodriguez-Duran, A.; Bossio, F.; Miller, R.; Perez de Leon, A.A.; Cortes-Vecino, J.A.; Chaparro-Gutierrez, J.J. Resistance profile and molecular characterization of pyrethroid resistance in a Rhipicephalus microplus strain from Colombia. Med. Vet. Entomol. 2020, 34, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Zikankuba, V.L.; Mwanyika, G.; Ntwenya, J.E.; James, A. Pesticide regulations and their malpractice implications on food and environment safety. Cogent. Food Agric. 2019, 5, 1601544. [Google Scholar] [CrossRef]
- Fernández-Salas, A.; Rodríguez-Vivas, R.I.; Alonso-Díaz, M.A. First report of a Rhipicephalus microplus tick population multi-resistant to acaricides and ivermectin in the Mexican tropics. Vet. Parasitol. 2012, 183, 338–342. [Google Scholar] [CrossRef]
- Janadaree Bandara, K.M.U.; Parakrama Karunaratne, S.H.P. Mechanisms of acaricide resistance in the cattle tick Rhipicephalus (Boophilus) microplus in Sri Lanka. Pestic. Biochem. Physiol. 2017, 139, 68–72. [Google Scholar] [CrossRef]
- Miller, R.J.; Davey, R.B.; George, J.E. First report of organophosphate-resistant Boophilus microplus (Acari: Ixodidae) within the United States. J. Med. Entomol. 2005, 42, 912–917. [Google Scholar] [CrossRef]
- Nagar, G.; Sharma, A.K.; Kumar, S.; Saravanan, B.C.; Kumar, R.; Gupta, S.; Kumar, S.; Ghosh, S. Molecular mechanism of synthetic pyrethroid and organophosphate resistance in field isolates of Rhipicephalus microplus tick collected from a northern state of India. Exp. Appl. Acarol. 2018, 75, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Castro Janer, E.; Klafke, G.M.; Capurro, M.L.; Schumaker, T.T. Cross-resistance between fipronil and lindane in Rhipicephalus (Boophilus) microplus. Vet. Parasitol. 2015, 210, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.J.; Almazan, C.; Ortiz-Estrada, M.; Davey, R.B.; George, J.E.; De Leon, A.P. First report of fipronil resistance in Rhipicephalus (Boophilus) microplus of Mexico. Vet. Parasitol. 2013, 191, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Vivas, R.I.; Ojeda-Chi, M.M.; Trinidad-Martinez, I.; Bolio-Gonzalez, M.E. First report of amitraz and cypermethrin resistance in Rhipicephalus sanguineus sensu lato infesting dogs in Mexico. Med. Vet. Entomol. 2017, 31, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.; Webster, A.; Doyle, R.L.; Martins, J.R.; Reck, J.; Klafke, G.M. Resistance to deltamethrin, fipronil and ivermectin in the brown dog tick, Rhipicephalus sanguineus sensu stricto, Latreille (Acari: Ixodidae). Ticks Tick Borne Dis. 2019, 10, 1046–1050. [Google Scholar] [CrossRef] [PubMed]
- Eiden, A.L.; Kaufman, P.E.; Oi, F.M.; Allan, S.A.; Miller, R.J. Detection of Permethrin Resistance and Fipronil Tolerance in Rhipicephalus sanguineus (Acari: Ixodidae) in the United States. J. Med. Entomol. 2015, 52, 429–436. [Google Scholar] [CrossRef]
- Miller, R.J.; George, J.E.; Guerrero, F.; Carpenter, L.; Welch, J.B. Characterization of acaricide resistance in Rhipicephalus sanguineus (latreille) (Acari: Ixodidae) collected from the Corozal Army Veterinary Quarantine Center, Panama. J. Med. Entomol. 2001, 38, 298–302. [Google Scholar] [CrossRef]
- Welsh, J.A.; Braun, H.; Brown, N.; Um, C.; Ehret, K.; Figueroa, J.; Boyd Barr, D. Production-related contaminants (pesticides, antibiotics and hormones) in organic and conventionally produced milk samples sold in the USA. Public Health Nutr. 2019, 22, 2972–2980. [Google Scholar] [CrossRef] [Green Version]
- De Meneghi, D.; Stachurski, F.; Adakal, H. Experiences in Tick Control by Acaricide in the Traditional Cattle Sector in Zambia and Burkina Faso: Possible Environmental and Public Health Implications. Front. Public Health 2016, 4, 239. [Google Scholar] [CrossRef] [Green Version]
- Laing, G.; Aragrande, M.; Canali, M.; Savic, S.; De Meneghi, D. Control of Cattle Ticks and Tick-Borne Diseases by Acaricide in Southern Province of Zambia: A Retrospective Evaluation of Animal Health Measures According to Current One Health Concepts. Front. Public Health 2018, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Kunz, S.E.; Kemp, D.H. Insecticides and acaricides: Resistance and environmental impact. Rev. Sci. Tech. (OIE) 1994, 13, 1249–1286. [Google Scholar] [CrossRef] [PubMed]
- Wanzala, W. Potential of Traditional Knowledge of Plants in the Management of Arthropods in Livestock Industry with Focus on (Acari) Ticks. Evid. Based Complement. Alternat. Med. 2017, 2017, 8647919. [Google Scholar] [CrossRef] [PubMed]
- Jones, D. Organic agriculture, sustainability and policy. In Organic Agriculture: Sustainability, Markets and Policies; Cabi Publishing: Wallingford, UK, 2003; pp. 17–30. [Google Scholar]
- Willer, H.; Lernoud, J.; Kemper, L. Organic in Europe: Recent Developments. In The World of Organic Agriculture Statistics and Emerging Trends; Willer, H., Lernoud, J., Eds.; FiBL/IFOAM: Frick, Switzerland, 2019; pp. 36–128. [Google Scholar]
- USDA/ERS, U.S.D.o.A.E.R.S. Organic Market Overview. Available online: https://www.ers.usda.gov/topics/natural-resources-environment/organic-agriculture/organic-market-overview/ (accessed on 12 February 2020).
- Benelli, G.; Pavela, R. Repellence of essential oils and selected compounds against ticks-A systematic review. Acta. Trop. 2018, 179, 47–54. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Canale, A.; Mehlhorn, H. Tick repellents and acaricides of botanical origin: A green roadmap to control tick-borne diseases? Parasitol. Res. 2016, 115, 2545–2560. [Google Scholar] [CrossRef] [PubMed]
- Adenubi, O.T.; Fasina, F.; McGaw, L.; Eloff, J.; Naidoo, V. Plant extracts to control ticks of veterinary and medical importance: A review. S. Afr. J. Bot. 2016, 105, 178–193. [Google Scholar] [CrossRef]
- Gomes, G.A.; Monteiro, C.M.; Senra Tde, O.; Zeringota, V.; Calmon, F.; Matos Rda, S.; Daemon, E.; Gois, R.W.; Santiago, G.M.; de Carvalho, M.G. Chemical composition and acaricidal activity of essential oil from Lippia sidoides on larvae of Dermacentor nitens (Acari: Ixodidae) and larvae and engorged females of Rhipicephalus microplus (Acari: Ixodidae). Parasitol. Res. 2012, 111, 2423–2430. [Google Scholar] [CrossRef]
- Dolan, M.C.; Jordan, R.A.; Schulze, T.L.; Schulze, C.J.; Manning, M.C.; Ruffolo, D.; Schmidt, J.P.; Piesman, J.; Karchesy, J.J. Ability of two natural products, nootkatone and carvacrol, to suppress Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in a Lyme disease endemic area of New Jersey. J. Econ. Entomol. 2009, 102, 2316–2324. [Google Scholar] [CrossRef]
- Costa-Júnior, L.M.; Miller, R.J.; Alves, P.B.; Blank, A.F.; Li, A.Y.; Pérez de León, A.A. Acaricidal efficacies of Lippia gracilis essential oil and its phytochemicals against organophosphate-resistant and susceptible strains of Rhipicephalus (Boophilus) microplus. Vet. Parasitol. 2016, 228, 60–64. [Google Scholar] [CrossRef]
- Cruz, P.B.; Barbosa, A.F.; Zeringota, V.; Melo, D.; Novato, T.; Fidelis, Q.C.; Fabri, R.L.; de Carvalho, M.G.; Oliveira Sabaa-Srur, A.U.; Daemon, E.; et al. Acaricidal activity of methanol extract of Acmella oleracea L. (Asteraceae) and spilanthol on Rhipicephalus microplus (Acari: Ixodidae) and Dermacentor nitens (Acari: Ixodidae). Vet. Parasitol. 2016, 228, 137–143. [Google Scholar] [CrossRef]
- Souza Conceição, R.; de, A.C.M.M.; Alves Reis, I.M.; Branco, A.; Curcino Vieira, I.J.; Braz-Filho, R.; Borges Botura, M. In vitro acaricide activity of Ocotea aciphylla (Nees) Mez. (Lauraceae) extracts and identification of the compounds from the active fractions. Ticks Tick Borne Dis. 2017, 8, 275–282. [Google Scholar] [CrossRef]
- Ellse, L.; Wall, R. The use of essential oils in veterinary ectoparasite control: A review. Med. Vet. Entomol. 2014, 28, 233–243. [Google Scholar] [CrossRef]
- Singh, N.K.; Jyoti Vemu, B.; Prerna, M.; Singh, H.; Dumka, V.K.; Sharma, S.K. Acaricidal activity of leaf extracts of Dalbergia sissoo Roxb. (Fabaceae) against synthetic pyrethroid resistant Rhipicephalus (Boophilus) microplus. Res. Vet. Sci. 2016, 106, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Olubukola Tolulope, A.; Ahmed, A.S.; Fasina, F.O.; McGaw, L.J.; Eloff, J.N.; Naidoo, V. Pesticidal plants as a possible alternative to synthetic acaricides in tick control: A systematic review and meta-analysis. Ind. Crops Prod. 2018, 123, 779–806. [Google Scholar] [CrossRef]
- Annan, K.; Dickson, R.; Mensah, A.; Fleischer, T.C. Acaricidal Effect of Plumbago zeylanica L. Against Amblyomma variegatum. PHCOG J. 2009, 1, 190–194. [Google Scholar]
- Carroll, J.F.; Tabanca, N.; Kramer, M.; Elejalde, N.M.; Wedge, D.E.; Bernier, U.R.; Coy, M.; Becnel, J.J.; Demirci, B.; Baser, K.H.; et al. Essential oils of Cupressus funebris, Juniperus communis, and J. chinensis (Cupressaceae) as repellents against ticks (Acari: Ixodidae) and mosquitoes (Diptera: Culicidae) and as toxicants against mosquitoes. J. Vector Ecol. 2011, 36, 258–268. [Google Scholar] [CrossRef] [Green Version]
- El-Mustapha, L.; Abderrafea, E.; Ayoub, K.; Abdelaziz, A.; El Hassan, E.M. Toxicity of essential oils obtained from Juniperus thurifera var. africana and Mentha suaveolens subsp. Timija chemotypes against pre-adult stages of Hyalomma aegyptium tick (Acari: Ixodidae). Nat. Prod. Res. 2019, 17, 1–6. [Google Scholar]
- Pfister, K.; Armstrong, R. Systemically and cutaneously distributed ectoparasiticides: A review of the efficacy against ticks and fleas on dogs. Parasit. Vectors 2016, 9, 436. [Google Scholar] [CrossRef] [Green Version]
- Brima, E.I. Toxic Elements in Different Medicinal Plants and the Impact on Human Health. Int J. Environ. Res. Public Health 2017, 14, 1209. [Google Scholar] [CrossRef] [Green Version]
- Martínez, G.J.; Luján, M.C. Medicinal plants used for traditional veterinary in the Sierras de Córdoba (Argentina): An ethnobotanical comparison with human medicinal uses. J. Ethnobiol. Ethnomed. 2011, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Abo-El-Sooud, K. Ethnoveterinary perspectives and promising future. Int J. Vet. Sci. Med. 2018, 6, 1–7. [Google Scholar] [CrossRef]
- James, L.F.; Panter, K.E.; Gaffield, W.; Molyneux, R.J. Biomedical applications of poisonous plant research. J. Agric. Food Chem. 2004, 52, 3211–3230. [Google Scholar] [CrossRef] [PubMed]
- Benítez, G.; González-Tejero, M.R.; Molero-Mesa, J. Knowledge of ethnoveterinary medicine in the Province of Granada, Andalusia, Spain. J. Ethnopharmacol. 2012, 139, 429–439. [Google Scholar] [CrossRef]
- Viegi, L.; Vangelisti, R. Toxic plants used in ethnoveterinary medicine in Italy. Nat. Prod. Commun. 2011, 6, 999–1000. [Google Scholar] [CrossRef] [Green Version]
- Botha, C.J.; Penrith, M.L. Poisonous plants of veterinary and human importance in southern Africa. J. Ethnopharmacol. 2008, 119, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Panter, K.E.; Welch, K.D.; Gardner, D.R.; Lee, S.T.; Green, B.T.; Pfister, J.A.; Cook, D.; Davis, T.Z.; Stegelmeie, B.L. Poisonous plants of the United States. In Veterinary Toxicology; Gupta, R.C., Ed.; Academic Press: Oxford, UK, 2012; pp. 1029–1079. [Google Scholar]
- Azwanida, N. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. J. Med. Aromat. Plants 2015, 4, 1–6. [Google Scholar]
- Castro, K.N.; Lima, D.F.; Vasconcelos, L.C.; Leite, J.R.; Santos, R.C.; Paz Neto, A.A.; Costa-Junior, L.M. Acaricide activity in vitro of Acmella oleracea against Rhipicephalus microplus. Parasitol. Res. 2014, 113, 3697–3701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchesini, P.; Barbosa, A.F.; Franco, C.; Novato, T.; Sanches, M.N.G.; de Carvalho, M.G.; Fabri, R.L.; Daemon, E.; Monteiro, C.M.O. Activity of the extract of Acmella oleracea on immature stages of Amblyomma sculptum (Acari: Ixodidae). Vet. Parasitol. 2018, 254, 147–150. [Google Scholar] [CrossRef]
- Chungsamarnyart, N. Larvicidal Effect of Plant Crude-Extracts on the Tropical Cattle Tick (Boophilus Microplus). Kasetsart J. (Nat. Sci. Suppl.) 1991, 25, 80–89. [Google Scholar]
- Veeramani, V.; Sakthivelkumar, S.; Tamilarasan, K.; Aisha, S.O.; Janarthanan, S. Acaricidal activity of Ocimum basilicum and Spilanthes acmella against the ectoparasitic tick, Rhipicephalus (Boophilus) microplus (Arachinida: Ixodidae). Trop. Biomed. 2014, 31, 414–421. [Google Scholar]
- Broglio-Micheletti, S.M.; Valente, E.C.; de Souza, L.A.; Dias Nda, S.; de Araujo, A.M. Plant extracts in control of Rhipicephalus (Boophilus) microplus (Canestrini, 1887) (Acari: Ixodidae) in laboratory. Rev. Bras. Parasitol. Vet. 2009, 18, 44–48. [Google Scholar] [CrossRef]
- Madhumitha, G.; Rajakumar, G.; Roopan, S.M.; Rahuman, A.A.; Priya, K.M.; Saral, A.M.; Khan, F.R.; Khanna, V.G.; Velayutham, K.; Jayaseelan, C.; et al. Acaricidal, insecticidal, and larvicidal efficacy of fruit peel aqueous extract of Annona squamosa and its compounds against blood-feeding parasites. Parasitol. Res. 2012, 111, 2189–2199. [Google Scholar] [CrossRef]
- Kemal, J.; Zerihun, T.; Alemu, S.; Sali, K.; Nasir, M.; Abraha, A.; Feyera, T. In Vitro Acaricidal Activity of Selected Medicinal Plants Traditionally Used against Ticks in Eastern Ethiopia. J. Parasitol. Res. 2020, 2020, 7834026. [Google Scholar] [CrossRef] [PubMed]
- Schorderet Weber, S.; Kaminski, K.P.; Perret, J.L.; Leroy, P.; Mazurov, A.; Peitsch, M.C.; Ivanov, N.V.; Hoeng, J. Antiparasitic properties of leaf extracts derived from selected Nicotiana species and Nicotiana tabacum varieties. Food Chem. Toxicol. 2019, 132, 110660. [Google Scholar] [CrossRef] [PubMed]
- Castelblanco, S.; Sanabria, R.; Cruz, C.; Rodríguez, M. Preliminary report of the ixodicidal effect of some plant extracts on ticks Boophilus microplus. Rev. Cubana Plant. Med. 2013, 18, 118–130. [Google Scholar]
- Boeke, S.J.; Boersma, M.G.; Alink, G.M.; van Loon, J.J.; van Huis, A.; Dicke, M.; Rietjens, I.M. Safety evaluation of neem (Azadirachta indica) derived pesticides. J. Ethnopharmacol. 2004, 94, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Suraj, R.A.; Rambarran, R.; Ali, K.; Harbajan, D.; Charles, R.; Sant, C.; Georges, K.; Suepaul, S. A comparison of the efficacy of two commercial acaricides (fipronil and amitraz) with Azadirachta indica (neem) on the brown dog tick (Rhipicephalus sanguineus) from canines in Trinidad. Transbound Emerg. Dis. 2019. [Google Scholar] [CrossRef]
- Denardi, S.E.; Bechara, G.H.; Oliveira, P.R.; Camargo-Mathias, M.I. Azadirachta indica A. Juss (neem) induced morphological changes on oocytes of Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) tick females. Exp. Parasitol. 2010, 126, 462–470. [Google Scholar] [CrossRef]
- Remedio, R.N.; Nunes, P.H.; Anholeto, L.A.; Oliveira, P.R.; Camargo-Mathias, M.I. Morphological effects of neem (Azadirachta indica A. Juss) seed oil with known azadirachtin concentrations on the oocytes of semi-engorged Rhipicephalus sanguineus ticks (Acari: Ixodidae). Parasitol. Res. 2015, 114, 431–444. [Google Scholar] [CrossRef]
- Lima de Souza, J.R.; Remedio, R.N.; Arnosti, A.; de Abreu, R.M.M.; Camargo-Mathias, M.I. The effects of neem oil (Azadirachta indica A. JUSS) enriched with different concentrations of azadirachtin on the integument of semi-engorged Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) females. Microsc. Res. Tech. 2017, 80, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Chaube, S.K.; Shrivastav, T.G.; Tiwari, M.; Prasad, S.; Tripathi, A.; Pandey, A.K. Neem (Azadirachta indica L.) leaf extract deteriorates oocyte quality by inducing ROS-mediated apoptosis in mammals. Springerplus 2014, 3, 464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathi, A.; Shrivastav, T.G.; Chaube, S.K. An increase of granulosa cell apoptosis mediates aqueous neem (Azadirachta indica) leaf extract-induced oocyte apoptosis in rat. Int. J. Appl. Basic Med. Res. 2013, 3, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Barbehenn, R.V.; Peter Constabel, C. Tannins in plant-herbivore interactions. Phytochemistry 2011, 72, 1551–1565. [Google Scholar] [CrossRef] [PubMed]
- Salminen, J.P.; Karonen, M. Chemical ecology of tannins and other phenolics: We need a change in approach. Func. Ecol. 2011, 25, 325–338. [Google Scholar] [CrossRef]
- Naumann, H.D.; Tedeschi, L.O.; Zeller, W.; Huntley, N.F. The role of condensed tannins in ruminant animal production: Advances, limitation and future directions. Rev. Bras. Zootec. 2017, 46, 929–949. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim. Nutr. 2018, 4, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Matos, A.C.; Ribeiro, C.M.; Scarminio, I.S.; Afonso, S.; Vidotto, O. Phytochemical analysis and acaricidal activity of Aloe arborescens Mill. extracts against Rhipicephalus (Boophilus) microplus. Semin. Ciências Agrárias 2017, 38, 3113–3121. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, V.O.; Costa, E.G.L.; Moreira, V.R.; Morais-Costa, F.; Duarte, E.R. Efficacy of plants extracts from the Cerrado against adult female of Dermacentor nitens (Acari: Ixodidae). Exp. Appl. Acarol. 2018, 75, 419–427. [Google Scholar] [CrossRef]
- González-López, G.; Ojeda-Chi, M.M.; Casanova-Lugo, F.; Oros-Ortega, I.; Hernández-Chávez, L.I.; Piñeiro-Vázquez, A.T.; Rodríguez-Vivas, R.I. In vitro acaricide activity of extracts from three Leucaena spp. genotypes versus Rhipicephalus microplus. Rev. Mex. Cienc. Pecu. 2019, 10, 692–704. [Google Scholar] [CrossRef]
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential Oils: Extraction Techniques, Pharmaceutical And Therapeutic Potential—A Review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef]
- Fernandez, C.M.M.; da Rosa, M.F.; Fernandez, A.; Bortolucci, W.C.; Ferreira, F.B.P.; Linde, G.A.; Colauto, N.B.; Simoes, M.R.; Lobo, V.D.S.; Gazim, Z.C. Essential oil and fractions isolated of Laurel to control adults and larvae of cattle ticks. Nat. Prod. Res. 2020, 34, 731–735. [Google Scholar] [CrossRef]
- Figueiredo, A.; Nascimento, L.M.; Lopes, L.G.; Giglioti, R.; Albuquerque, R.; Santos, M.G.; Falcao, D.Q.; Nogueira, J.A.P.; Rocha, L.; Chagas, A.C.S. First report of the effect of Ocotea elegans essential oil on Rhipicephalus (Boophilus) microplus. Vet. Parasitol. 2018, 252, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Campos, R.N.; Nascimento Lima, C.B.; Passos Oliveira, A.; Albano Araujo, A.P.; Fitzgerald Blank, A.; Barreto Alves, P.; Nascimento Lima, R.; Albano Araujo, V.; Santana, A.S.; Bacci, L. Acaricidal properties of vetiver essential oil from Chrysopogon zizanioides (Poaceae) against the tick species Amblyomma cajennense and Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet. Parasitol. 2015, 212, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Rey-Valeiron, C.; Perez, K.; Guzman, L.; Lopez-Vargas, J.; Valarezo, E. Acaricidal effect of Schinus molle (Anacardiaceae) essential oil on unengorged larvae and engorged adult females of Rhipicephalus sanguineus (Acari: Ixodidae). Exp. Appl. Acarol. 2018, 76, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Jyoti Singh, N.K.; Singh, H.; Mehta, N.; Rath, S.S. In vitro assessment of synergistic combinations of essential oils against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Exp. Parasitol. 2019, 201, 42–48. [Google Scholar]
- Lazcano Diaz, E.; Padilla Camberos, E.; Castillo Herrera, G.A.; Estarron Espinosa, M.; Espinosa Andrews, H.; Paniagua Buelnas, N.A.; Gutierrez Ortega, A.; Martinez Velazquez, M. Development of essential oil-based phyto-formulations to control the cattle tick Rhipicephalus microplus using a mixture design approach. Exp. Parasitol. 2019, 201, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Goode, P.; Ellse, L.; Wall, R. Preventing tick attachment to dogs using essential oils. Ticks Tick Borne Dis. 2018, 9, 921–926. [Google Scholar] [CrossRef] [Green Version]
- Soutar, O.; Cohen, F.; Wall, R. Essential oils as tick repellents on clothing. Exp. Appl. Acarol. 2019, 79, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, F.M.; Delmonte, C.C.; Novato, T.L.P.; Monteiro, C.M.O.; Daemon, E.; Vilela, F.M.P.; Amaral, M.P.H. Acaricidal activity of essential oil of Syzygium aromaticum, hydrolate and eugenol formulated or free on larvae and engorged females of Rhipicephalus microplus. Med. Vet. Entomol. 2018, 32, 41–47. [Google Scholar] [CrossRef]
- Coelho, L.; de Paula, L.G.F.; Alves, S.; Sampaio, A.L.N.; Bezerra, G.P.; Vilela, F.M.P.; Matos, R.D.S.; Zeringota, V.; Borges, L.M.F.; Monteiro, C. Combination of thymol and eugenol for the control of Rhipicephalus sanguineus sensu lato: Evaluation of synergism on immature stages and formulation development. Vet. Parasitol. 2020, 277, 108989. [Google Scholar] [CrossRef]
- Rosado-Aguilar, J.A.; Arjona-Cambranes, K.; Torres-Acosta, J.F.J.; Rodriguez-Vivas, R.I.; Bolio-Gonzalez, M.E.; Ortega-Pacheco, A.; Alzina-Lopez, A.; Gutierrez-Ruiz, E.J.; Gutierrez-Blanco, E.; Aguilar-Caballero, A.J. Plant products and secondary metabolites with acaricide activity against ticks. Vet. Parasitol. 2017, 238, 66–76. [Google Scholar] [CrossRef]
- Camilo, C.J.; Nonato, C.F.A.; Galvão-Rodrigues, F.F.; Costa, W.D.; Clemente, G.G.; Macedo, M.A.C.S.; Rodrigues, F.F.G.; Costa, J.G.M. Acaricidal activity of essential oils: A review. Trends Phytochem. Res. 2017, 1, 183–198. [Google Scholar]
- Gross, A.D.; Temeyer, K.B.; Day, T.A.; Perez de Leon, A.A.; Kimber, M.J.; Coats, J.R. Interaction of plant essential oil terpenoids with the southern cattle tick tyramine receptor: A potential biopesticide target. Chem. Biol. Interact. 2017, 263, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ntalli, N.; Koliopoulos, G.; Giatropoulos, A.; Menkissoglu-Spiroudi, U. Plant secondary metabolites against arthropods of medical importance. Phytochem. Rev. 2019, 18, 1255–1275. [Google Scholar] [CrossRef]
- Marrone, P.G. Pesticidal natural products—status and future potential. Pest. Manag. Sci. 2019, 75, 2325–2340. [Google Scholar] [CrossRef] [PubMed]
- Habeeb, S.M. Ethno-veterinary and medical knowledge of crude plant extracts and its methods of application (traditional and modern) for tick control. World Appl. Sci. J. 2010, 11, 1047–1054. [Google Scholar]
- Pavela, R. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—A review. Plant. Prot. Sci. 2016, 52, 229–241. [Google Scholar]
- Regulations, e.-C.E.C.o.F. Title 40: Protection of Environment, Part 152-Pesticide Registration and Classification Procedures, Subpart B-Exemptions. Available online: https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=69440ce5a203b1b965485809036fa4d0&n=sp40.24.152.b&r=SUBPART&ty=HTML (accessed on 10 March 2020).
- Balog, A.; Hartel, T.; Loxdale, H.D.; Wilson, K. Differences in the progress of the biopesticide revolution between the EU and other major crop-growing regions. Pest. Manag. Sci. 2017, 73, 2203–2208. [Google Scholar] [CrossRef] [Green Version]
- Isman, M.B. Botanical Insecticides in the Twenty-First Century-Fulfilling Their Promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef] [Green Version]
- USDA/FDA/EPA. The Unified Website for Biotechnology Regulation. Available online: https://usbiotechnologyregulation.mrp.usda.gov/biotechnologygov/home/ (accessed on 10 March 2020).
- Borges, L.M.; Sousa, L.A.; Barbosa Cda, S. Perspectives for the use of plant extracts to control the cattle tick Rhipicephalus (Boophilus) microplus. Rev. Bras. Parasitol. Vet. 2011, 20, 89–96. [Google Scholar] [CrossRef] [Green Version]
- El-Seedi, H.R.; Azeem, M.; Khalil, N.S.; Sakr, H.H.; Khalifa, S.A.M.; Awang, K.; Saeed, A.; Farag, M.A.; AlAjmi, M.F.; Pålsson, K.; et al. Essential oils of aromatic Egyptian plants repel nymphs of the tick Ixodes ricinus (Acari: Ixodidae). Exp. Appl. Acarol. 2017, 73, 139–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirali-Kheirabadi, K.; Teixeira da Silva, J.A. Lavandula angustifolia essential oil as a novel and promising natural candidate for tick (Rhipicephalus (Boophilus) annulatus) control. Exp. Parasitol. 2010, 126, 184–186. [Google Scholar] [CrossRef]
- Lans, C.; Harper, T.; Georges, K.; Bridgewater, E. Medicinal and ethnoveterinary remedies of hunters in Trinidad. BMC Complement. Altern. Med. 2001, 1, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, B.L.; Jezierski, T.; Bolhuis, J.E.; Amo, L.; Rosell, F.; Oostindjer, M.; Christensen, J.W.; McKeegan, D.; Wells, D.L.; Hepper, P. Olfaction: An Overlooked Sensory Modality in Applied Ethology and Animal Welfare. Front. Vet. Sci. 2015, 2, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tronson, D. The Odour, the Animal and the Plant. Molecules 2001, 6, 104–116. [Google Scholar] [CrossRef]
- Banumathi, B.; Vaseeharan, B.; Rajasekar, P.; Prabhu, N.M.; Ramasamy, P.; Murugan, K.; Canale, A.; Benelli, G. Exploitation of chemical, herbal and nanoformulated acaricides to control the cattle tick, Rhipicephalus (Boophilus) microplus—A review. Vet. Parasitol. 2017, 244, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Pavoni, L.; Pavela, R.; Cespi, M.; Bonacucina, G.; Maggi, F.; Zeni, V.; Canale, A.; Lucchi, A.; Bruschi, F.; Benelli, G. Green Micro- and Nanoemulsions for Managing Parasites, Vectors and Pests. Nanomaterials 2019, 9, 1285. [Google Scholar] [CrossRef] [Green Version]
- Pavoni, L.; Perinelli, D.R.; Bonacucina, G.; Cespi, M.; Palmieri, G.F. An Overview of Micro- and Nanoemulsions as Vehicles for Essential Oils: Formulation, Preparation and Stability. Nanomaterials 2020, 10, 135. [Google Scholar] [CrossRef] [Green Version]
- Panella, N.A.; Dolan, M.C.; Karchesy, J.J.; Xiong, Y.; Peralta-Cruz, J.; Khasawneh, M.; Montenieri, J.A.; Maupin, G.O. Use of novel compounds for pest control: Insecticidal and acaricidal activity of essential oil components from heartwood of Alaska yellow cedar. J. Med. Entomol. 2005, 42, 352–358. [Google Scholar] [CrossRef]
- Evolva. NootkaShield. Available online: https://evolva.com/nootkashield/ (accessed on 1 May 2020).
- Flor-Weiler, L.B.; Behle, R.W.; Stafford, K.C., 3rd. Susceptibility of four tick species, Amblyomma americanum, Dermacentor variabilis, Ixodes scapularis, and Rhipicephalus sanguineus (Acari: Ixodidae), to nootkatone from essential oil of grapefruit. J. Med. Entomol. 2011, 48, 322–326. [Google Scholar] [CrossRef] [Green Version]
- Jordan, R.A.; Schulze, T.L.; Dolan, M.C. Efficacy of plant-derived and synthetic compounds on clothing as repellents against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae). J. Med. Entomol. 2012, 49, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Behle, R.W.; Flor-Weiler, L.B.; Bharadwaj, A.; Stafford, K.C., 3rd. A formulation to encapsulate nootkatone for tick control. J. Med. Entomol. 2011, 48, 1120–1127. [Google Scholar] [CrossRef] [Green Version]
- Bharadwaj, A.; Stafford, K.C., 3rd; Behle, R.W. Efficacy and environmental persistence of nootkatone for the control of the blacklegged tick (Acari: Ixodidae) in residential landscapes. J. Med. Entomol. 2012, 49, 1035–1044. [Google Scholar] [CrossRef]
- Jordan, R.A.; Dolan, M.C.; Piesman, J.; Schulze, T.L. Suppression of host-seeking Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) nymphs after dual applications of plant-derived acaricides in New Jersey. J. Econ. Entomol. 2011, 104, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Pereira Junior, A.M.; Camargo-Mathias, M.I.; Daemon, E.; Peconick, A.P.; Lima-Souza, J.R.; Oliveira, P.R.; Braga, A.S.; Lara, L.J.; Remedio, R.N. Efficacy of carvacrol on Rhipicephalus (Boophilus) microplus engorged female ticks (Canestrini, 1887) (Acari: Ixodidae): Effects on mortality and reproduction. Nat. Prod. Res. 2019, 14, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Konig, I.F.M.; Goncalves, R.R.P.; Oliveira, M.V.S.; Silva, C.M.; Thomasi, S.S.; Peconick, A.P.; Remedio, R.N. Sublethal concentrations of acetylcarvacrol strongly impact oocyte development of engorged female cattle ticks Rhipicephalus microplus (Canestrini, 1888) (Acari: Ixodidae). Ticks Tick Borne Dis. 2019, 10, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Konig, I.F.M.; Oliveira, M.V.S.; Goncalves, R.R.P.; Peconick, A.P.; Thomasi, S.S.; Anholeto, L.A.; Lima-de-Souza, J.R.; Camargo-Mathias, M.I.; Remedio, R.N. Low concentrations of acetylcarvacrol induce drastic morphological damages in ovaries of surviving Rhipicephalus sanguineus sensu lato ticks (Acari: Ixodidae). Micron 2020, 129, 102780. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.D.S.; Landulfo, G.A.; Costa-Junior, L.M. Repellent Effects of Encapsulated Carvacrol on the Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). J. Med. Entomol. 2019, 56, 881–885. [Google Scholar] [CrossRef]
- Pound, J.M.; George, J.E.; Kammlah, D.M.; Lohmeyer, K.H.; Davey, R.B. Evidence for role of white-tailed deer (Artiodactyla: Cervidae) in epizootiology of cattle ticks and southern cattle ticks (Acari: Ixodidae) in reinfestations along the Texas/Mexico border in south Texas: A review and update. J. Econ. Entomol. 2010, 103, 211–218. [Google Scholar] [CrossRef]
- Pound, J.M.; Miller, J.A.; George, J.E.; Lemeilleur, C.A. The ‘4-poster’ passive topical treatment device to apply acaricide for controlling ticks (Acari: Ixodidae) feeding on white-tailed deer. J. Med. Entomol. 2000, 37, 588–594. [Google Scholar] [CrossRef]
- Schulze, T.L.; Jordan, R.A.; Hung, R.W.; Schulze, C.J. Effectiveness of the 4-Poster passive topical treatment device in the control of Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in New Jersey. Vector Borne Zoonotic Dis. 2009, 9, 389–400. [Google Scholar] [CrossRef]
- Sonenshine, D.E.; Allan, S.A.; Norval, R.A.; Burridge, M.J. A self-medicating applicator for control of ticks on deer. Med. Vet. Entomol. 1996, 10, 149–154. [Google Scholar] [CrossRef]
- Stafford, K.C., 3rd. Third-year evaluation of host-targeted permethrin for the control of Ixodes dammini (Acari: Ixodidae) in southeastern Connecticut. J. Med. Entomol. 1992, 29, 717–720. [Google Scholar] [CrossRef] [PubMed]
- Stafford, K.C., 3rd; Denicola, A.J.; Pound, J.M.; Miller, J.A.; George, J.E. Topical treatment of white-tailed deer with an acaricide for the control of Ixodes scapularis (Acari: Ixodidae) in a Connecticut Lyme borreliosis hyperendemic Community. Vector Borne Zoonotic Dis. 2009, 9, 371–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laing, R.; Gillan, V.; Devaney, E. Ivermectin—Old Drug, New Tricks? Trends Parasitol. 2017, 33, 463–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitney, T.R.; Wildeus, S.; Zajac, A.M. The use of redberry juniper (Juniperus pinchotii) to reduce Haemonchus contortus fecal egg counts and increase ivermectin efficacy. Vet. Parasitol. 2013, 197, 182–188. [Google Scholar] [CrossRef]
- Whitney, T.R. Ground Juniperus pinchotii and urea in supplements fed to Rambouillet ewe lambs: I. Feedlot growth traits, blood serum parameters, and fecal characteristics. J. Anim. Sci. 2017, 95, 3676–3686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitney, T.R.; Lupton, C.J.; Muir, J.P.; Adams, R.P.; Stewart, W.C. Effects of using ground redberry juniper and dried distillers grains with solubles in lamb feedlot diets: Growth, blood serum, fecal, and wool characteristics. J. Anim. Sci. 2014, 92, 1119–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoste, H.; Jackson, F.; Athanasiadou, S.; Thamsborg, S.M.; Hoskin, S.O. The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends Parasitol. 2006, 22, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Eller, F.J.; Vander Meer, R.K.; Behle, R.W.; Flor-Weiler, L.B.; Palmquist, D.E. Bioactivity of cedarwood oil and cedrol against arthropod pests. Environ. Entomol. 2014, 43, 762–766. [Google Scholar] [CrossRef]
- Panella, N.A.; Karchesy, J.; Maupin, G.O.; Malan, J.C.; Piesman, J. Susceptibility of immature Ixodes scapularis (Acari:Ixodidae) to plant-derived acaricides. J. Med. Entomol. 1997, 34, 340–345. [Google Scholar] [CrossRef]
- Pazinato, R.; Volpato, A.; Baldissera, M.D.; Santos, R.C.; Baretta, D.; Vaucher, R.A.; Giongo, J.L.; Boligon, A.A.; Stefani, L.M.; Da Silva, A.S. In vitro effect of seven essential oils on the reproduction of the cattle tick Rhipicephalus microplus. J. Adv. Res. 2016, 7, 1029–1034. [Google Scholar] [CrossRef] [Green Version]
- George, D.R.; Finn, R.D.; Graham, K.M.; Sparagano, O.A. Present and future potential of plant-derived products to control arthropods of veterinary and medical significance. Parasit. Vectors 2014, 7, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Primary Tick Vector | Disease | Causative Agent | Host(s) | Reference |
---|---|---|---|---|
Amblyomma americanum | Ehrlichiosis | Ehrlichia chaffeensis, E. ewingii | Humans, dogs | [13] |
A. mixtum * | Equine Piroplasmosis | Theileria equi (intrastadial) | Horses | [13,14,15] |
A. cajennense | Brazilian spotted fever (BSF) | Rickettsia rickettsii | Humans, capybaras | [16] |
A. sculptum | Brazilian spotted fever (BSF) | Rickettsia rickettsii | Humans, capybaras | [17] |
A. variegatum | Heartwater | Ehrlichia ruminantium | Domestic and wild ruminants | [18] |
Argas persicus | Avian spirochetosis | Borrelia anserine | Turkeys, chickens, birds | [13] |
Dermacentor andersoni | Tick paralysis | Tick proteins | Sheep, cattle, goats, other mammals, chickens | [13] |
Rocky mountain spotted fever | Rickettsia rickettsii | Wild-rodents, rabbits, humans | [19,20] | |
Bovine anaplasmosis | A. marginale | Cattle, buffalo, large ruminants | [21] | |
D. variabilis | Bovine anaplasmosis | A. marginale | Cattle, buffalo, large ruminants | [21] |
Rocky mountain spotted fever | Rickettsia rickettsii | Wild-rodents, Opossums, humans | [19,20] | |
Haemaphysalis longicornis | Theileriosis | Theileria orientalis | Cattle, buffalo | [13] |
Ha. leachi | Canine babesiosis | Babesia canis | Dogs | [22] |
Ha. spinigera | Tropical theileriosis | Theirleria annulata | Cattle, buffalo | [13] |
Hyalomma anatolicum | Ovine babesiosis | Babesia spp. | Sheep | [22,23] |
Equine babesiosis | Babesia equi | Horses | [24] | |
Tropical theileriosis | Theirleria annulata | Cattle, buffalo | [25] | |
Crimean-Congo hemorrhagic hever | Crimean-Congo Hemorrhagic Fever virus | Humans, goat, sheep, cattle | [26] | |
Hy. marginatum | Sweating sickness | Tick proteins | Cattle, sheep, other ruminants, dogs | [13] |
Crimean-Congo hemorrhagic fever | Crimean-Congo Hemorrhagic Fever virus | Humans, goat, sheep, cattle | [27] | |
Hy. rufipes | Crimean-Congo hemorrhagic fever | Crimean-Congo Hemorrhagic Fever virus | Humans, goat, sheep, cattle | [28] |
I. ricinus | Tick-borne encephalitis | Flavivirus | Humans, rodents, insectivores | [13] |
Babesiosis (human babesiosis and redwater fever) | Babesia microti, Babesia divergens | Humans, cattle | [13] | |
I. scapulariss | Lyme borreliosis | Borrelia burgdorferi sensu stricto, B. mayonii | Humans, dogs, cats, rodents | [13] |
Anaplasmosis | Anaplasma phagocytophilum | Humans, rodents, cervids | [13] | |
Babesiosis | Babesia microti, B. odocoilei | Humans, rodents, cervids | [13,29] | |
Powassan virus lineage II (deer tick virus) | Flavivirus | Humans, rodents, insectivores | [13] | |
Ornithodoros coriaceus | African swine fever | Iridovirus | Domestic and wild pigs, warthogs | [30] |
O. lahorensis | Tick toxicosis | Tick proteins | Cattle, sheep, birds | [13] |
African swine fever | Iridovirus | Domestic and wild pigs, warthogs | [13] | |
O. porcinus | African swine fever | Iridovirus | Domestic and wild pigs, warthogs | [13] |
Rhipicephalus appendiculatus | East coast fever | Theileria parva | Cattle, buffalo | [13] |
R. (Boophilus) microplus | Bovine babesiosis | Babesia bovis, B. bigemina | Cattle, water buffalo | [13] |
Heartwater | E. ruminantium | Domestic and wild ruminants | [31] | |
Bovine anaplasmosis | A. marginale | Cattle, buffalo, large ruminants | [32] | |
R. sanguineus | Boutonneuse fever/Mediterranean spotted fever | Rickettsia conorii | Small mammals, hedgehogs, dogs, humans | [13] |
Rocky mountain spotted fever | Rickettsia rickettsii | Dogs, humans | [19,20] |
Tick Species | Acaricide Class | Country Reported | Reference |
---|---|---|---|
Amblyomma cajennense | Pyrethroids | Brazil | [72] |
Amblyomma mixtum * | Pyrethroids | Mexico | [73] |
Organophosphate | Mexico | [73,74] | |
Hyalomma anatolicum | Pyrethroids | India | [75] |
Organophosphate | India | [75] | |
Rhipicephalus annulatus | Macrocyclic lactones | Egypt | [76] |
Pyrethroids | Iran | [77] | |
Rhipicephalus appendiculatus | Pyrethroids | Uganda | [78] |
Organophosphate | Uganda | [78] | |
Rhipicephalus bursa | Organophosphate | Iran | [79] |
Rhipicephalus decoloratus | Pyrethroids | Uganda | [78] |
Organophosphate | Uganda | [78] | |
Rhipicephalus microplus | Benzoylphenyl ureas | Brazil | [80] |
Formamidines | Australia, Zimbabwe | [81,82] | |
Macrocyclic lactones | Mexico, Brazil, Colombia, Egypt | [76,82,83,84,85,86] | |
Pyrethroids | Mexico, Brazil, Colombia, Argentina, US, Australia, India, New Caledonia (France territory), South Africa | [76,83,84,85,86,87,88,89,90,91,92,93,94,95] | |
Organophosphate | Mexico, Argentina, Brazil, USA, Sri Lanka, India, Australia | [85,87,91,96,97,98,99] | |
Organochlorine | Brazil | [86,100] | |
Phenylpyrazole | Mexico, Brazil | [101] | |
Rhipicephalus sanguineus | Macrocyclic lactones | Mexico | [102] |
Pyrethroids | Brazil, Mexico, Panama, USA | [102,103,104] | |
Organophosphate | Panama | [105] | |
Phenylpyrazole | Brazil | [103,105] |
Class of Compound | Compound | Formula | Source | Effect | Species of Tick |
---|---|---|---|---|---|
Monoterpene | α-pinene | C10H16 | Plectranthus barbatus Rosmarinus officinalis Satureja myrtifolia | acaricide | R. microplus |
β-pinene | C10H16 | Lindera melissifolia Stylosanthes humilis Cleome monophylla Clausena anisata Cannabis sativa | repellent | A. americanum R. appendiculatus | |
β-citronellol | C10H20O | Pelargonium graveolens Dianthus caryophyllus | acaricide, repellent | A. americanum I. ricinus | |
Borneol | C10H18O | Lavandula angustifolia Artemisia abrotanum Cunila spinate Origanum minutiflorum | repellent | H. marginatum I. ricinus R. turanicus | |
Carvacrol | C10H14O | Chamaecyparis nootkatensis Gynandropsis gynandra Origanum minutiflorum Satureja thymbra Lippia gracilis | acaricide | H. marginatum I. Scapularis R. appendiculatus | |
Citronellal | C10H18O | Cymbopogon nardus Corymbia citriodora Citrus hystrix | acaricide | A. cajennens D. nitens I. ricinus R. microplus | |
Elemol | C15H26O | Maclura pomifera | repellent | A. americanum I. scapularis | |
Eucalyptol (1,8-cineole) | C10H18O | Eupatorium adenophorum Lippia javanica Ocimum species | acaricide | H. longicornis H. marginatum R. microplus | |
Geraniol | C10H18O | Pelargonium species Cymbopogon species Dianthus caryophyllus | acaricide, repellent | A. americanum A. cajennense I. ricinus R. microplus | |
Limonene | C10H16 | Citrus species Copaifera reticulata Hesperozygis ringens Tetradenia riparia | acaricide | R. microplus | |
Linalool | C10H18O | Tagetes erecta Hesperozygis ringens Ocimum basilicum Origanum onites Cymbopogon martini | acaricide | H. bispinosa R. microplus R.turanicus | |
Myrcene | C10H16 | Origanum minutiflorum Lippia javanica Salvia nilotica | acaricide | H. marginatum R.turanicus | |
Pulegone | C10H16O | Mentha suaveolens | acaricide | H. aegyptium | |
Tagetone | C10H16O | Tagetes species | acaricide | H. bispinosa H. marginatum R. sanguineus | |
Thymol | C10H14O | Thymus vulgaris Lippia sidoides Lippia gracilis Origanum minutiflorum | acaricide | A. cajennense R. sanguineus R. turanicus | |
Diterpene | Callicarpenal | C16H26O | Callicarpa americana | acaricide, repellent | A. cajennense |
Fatty acid amide | Spilanthol | C14H23NO | Acmella Oleracea | acaricide | R. microplus, D. nitens |
Sesquiterpene | α-humulene | C15H24 | Lindera melissifolia Stylosanthes humilis Cleome monophyla | repellent | R. appendiculatus |
β-caryophyllene | C15H24 | Syzygium aromaticum Cannabis sativa | I. ricinus R. microplus | ||
Nootkatone | C15H22O | Chamaecyparis nootkatensis Chrysopogon zizanioides Citrus grandis | acaricide | I. scapularis | |
Tetranotriterpenoid | Azadirachtin | C35H14016 | Azadirachta indica Melia azedarach | acaricide | A. cajennense R. microplus |
Naphthoquinone | Plumbagin | C11H8O3 | Plumbago zeylanica | acaricide | A. variegatum |
Organosulfur | Allicin | C6H10OS2 | Allium sativum | acaricide, repellent | H. marginatum R. microplus |
Phenylpropanoid | Eugenol | C10H12O2 | Ocimum species Artemisia species Plectranthus barbatus | acaricide | H. anatolicum I. ricinus R. appendiculatus R. microplus R. sanguineus |
Pyrethrin | Pyrethrin I | C21H28O3 | Chrysanthemum species | acaricide | D. reticulatus D. variabilis I. scapularis R. sanguineus |
Resin | Oleoresin | C18H27NO3 | Copaifera reticulata | acaricide | R. microplus |
Steroidal glycoside | Digitoxin | C41H64O13 | Calotropis procera Digitalis purpurea | acaricide | H. dromedarii R. microplus |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quadros, D.G.; Johnson, T.L.; Whitney, T.R.; Oliver, J.D.; Oliva Chávez, A.S. Plant-Derived Natural Compounds for Tick Pest Control in Livestock and Wildlife: Pragmatism or Utopia? Insects 2020, 11, 490. https://doi.org/10.3390/insects11080490
Quadros DG, Johnson TL, Whitney TR, Oliver JD, Oliva Chávez AS. Plant-Derived Natural Compounds for Tick Pest Control in Livestock and Wildlife: Pragmatism or Utopia? Insects. 2020; 11(8):490. https://doi.org/10.3390/insects11080490
Chicago/Turabian StyleQuadros, Danilo G., Tammi L. Johnson, Travis R. Whitney, Jonathan D. Oliver, and Adela S. Oliva Chávez. 2020. "Plant-Derived Natural Compounds for Tick Pest Control in Livestock and Wildlife: Pragmatism or Utopia?" Insects 11, no. 8: 490. https://doi.org/10.3390/insects11080490
APA StyleQuadros, D. G., Johnson, T. L., Whitney, T. R., Oliver, J. D., & Oliva Chávez, A. S. (2020). Plant-Derived Natural Compounds for Tick Pest Control in Livestock and Wildlife: Pragmatism or Utopia? Insects, 11(8), 490. https://doi.org/10.3390/insects11080490