DNA Barcoding: A Reliable Method for the Identification of Thrips Species (Thysanoptera, Thripidae) Collected on Sticky Traps in Onion Fields
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Thrips Abundance
2.2. DNA Extraction
2.3. PCR Amplification and DNA Sequencing
2.4. Data Analysis
3. Results
3.1. DNA Barcode Analysis
3.2. Seasonal Thrips Abundance on Sticky Traps
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Palmer, J.M.; Mound, L.A.; DuHeaume, G.J. Guides to Insects of Importance to Man 2. Thysanoptera; Betts, C.R., Ed.; CAB International Institute of Entomology and British Museum (Natural History): London, UK, 1992; pp. 1–73. [Google Scholar]
- Fang, J.; Kritzman, A.; Yonash, N.; Gera, A.; Pollak, N.; Lavi, U. Genetic variation of thrips populations assessed by amplified fragment length polymorphism (Thysanoptera: Thripidae). Ann. Entomol. Soc. Am. 2005, 98, 351–358. [Google Scholar] [CrossRef]
- Moritz, G. Pictorial key to the economically important species of Thysanoptera in central Europe. EPPO Bull. 1994, 24, 181–208. [Google Scholar] [CrossRef]
- Rugman-Jones, P.F.; Hoddle, M.S.; Mound, L.A.; Stouthamer, R. Molecular identification key for pest species of Scirtothrips (Thysanoptera: Thripidae). J. Econ. Entomol. 2006, 99, 1813–1819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatti, J.S. The African genus Akheta of predatory thrips, with description of a new species from India (Terebrantia: Thripidae). Thrips 1999, 1, 10–14. [Google Scholar]
- Minaei, K.; Azemayeshfard, P.; Mound, L.A. The southern Palaearctic genus Neoheegeria (Thysanoptera: Phlaeothripidae): Redefinition and key to species. Tijdschr. Entomol. 2007, 150, 55–64. [Google Scholar] [CrossRef]
- Zhang, H.R.; Xie, Y.H.; Li, Z.Y. Identification key to species of Thrips genus from China (Thysanoptera, Thripidae), with seven new records. Zootaxa 2011, 2810, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Mehle, N.; Trdan, S. Traditional and modern methods for the identification of thrips (Thysanoptera) species. J. Pest Sci. 2012, 85, 179–190. [Google Scholar] [CrossRef]
- Bonsignore, C.P. Effect of environmental factors on the flight activity of Trialeurodes Vaporariorum (Westwood) under greenhouse conditions. Entomol. Sci. 2015, 18, 207–216. [Google Scholar] [CrossRef]
- Hoddle, M.S.; Robinson, L.; Morgan, D. Attraction of thrips (Thysanoptera: Thripidae Aeolothripidae) to colored sticky cards in a California avocado orchard. Crop Prot. 2002, 21, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.X.; Chu, C.C. Comparison of absolute estimates of Thrips tabaci (Thysanoptera, Thripidae) with field visual counting and sticky traps in onion field in South Texas. Southwest. Entomol. 2004, 29, 83–89. [Google Scholar]
- Kirk, W.D.J. Ecologically selective coloured traps. Ecol. Entomol. 1984, 9, 35–41. [Google Scholar] [CrossRef]
- Cho, K.; Eckel, C.S.; Walgenbach, J.F.; Kennedy, G.G. Comparison of colored sticky traps for monitoring thrips populations (Thysanoptera: Thripidae) in staked tomato fields. J. Entomol. Sci. 1995, 30, 176–190. [Google Scholar] [CrossRef]
- Childers, C.C.; Brecht, J.K. Colored sticky traps for monitoring Frankliniella bispinosa (Morgan) (Thysanoptera:Thripidae) during flowering cycle in citrus. J. Econ. Entomol. 1996, 89, 1240–1249. [Google Scholar] [CrossRef]
- Vernon, R.S.; Gillespie, D.R. Spectral responsiveness of Frankliniella occidentalis (Thysanoptera: Thripidae) determined by trap catches in greenhouses. Environ. Entomol. 1990, 19, 1229–1241. [Google Scholar] [CrossRef]
- Moreno, D.S.; Gregory, W.A.; Tanigoshi, L.K. Flight response of Aphytis melinus (Hymenoptera: Aphelinidae) and Scirtothrips citri (Thysanoptera: Thripidae) to trap color, size and shape. Environ. Entomol. 1984, 13, 935–940. [Google Scholar] [CrossRef]
- Coli, W.M.; Hollingsworth, C.S.; Maier, C.T. Traps for monitoring pear thrips (Thysanoptera: Thripidae) in maple stands and apple orchards. J. Econ. Entomol. 1992, 85, 2258–2262. [Google Scholar] [CrossRef]
- Gillespie, D.R.; Vernon, R.S. Trap catch of western flower thrips (Thysanoptera: Thripidae) as affected by color and height of sticky traps in mature greenhouse cucumber crops. J. Econ. Entomol. 1990, 83, 971–975. [Google Scholar] [CrossRef]
- Kox, L.F.F.; Vanden Beld, H.E.; Zijlstra, C.; Vierbergen, G. Real time PCR assay for the identification of Thrips palmi. EPPO Bull. 2005, 35, 141–148. [Google Scholar] [CrossRef]
- Toda, S.; Komazaki, S. Identification of thrips species (Thysanoptera: Thripidae) on Japanese fruit trees by polymerase chain reaction and restriction fragment length polymorphism of the ribosomal ITS2 region. Bull. Entomol. Res. 2002, 92, 359–363. [Google Scholar] [CrossRef]
- Yeh, W.B.; Tseng, M.J.; Chang, N.T.; Wu, S.Y.; Tsai, Y.S. Agronomically important thrips: Development of species-specific primers in multiplex PCR and microarray assay using internal transcribed spacer 1 (ITS1) sequences for identification. Bull. Entomol. Res. 2015, 105, 52–59. [Google Scholar] [CrossRef]
- Moritz, G.; Morris, D.C.; Mound, L.A. Thrips ID. Pest Thrips of the World; CSIRO Publishing: Collingwood, Australia, 2001; ISBN 1 86320 296 X. [Google Scholar]
- Brunner, P.C.; Fleming, C.; Frey, J.E. A molecular identification key for economically important thrips species (Thysanoptera: Thripidae) using direct sequencing and a PCR-RFLP based approach. Agric. Forest Entomol. 2002, 4, 127–136. [Google Scholar] [CrossRef]
- Frey, J.E.; Frey, B. Origin of intra-individual variation in PCR-amplified mitochondrial cytochrome oxidase I of T. tabaci (Thysanoptera: Thripidae): Mitochondrial heteroplasmy or nuclear integration? Hereditas 2004, 140, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; De Waard, J.R. Biological Identification through DNA barcodes. Proc. R. Soc. B 2003, 270, 313–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rugman-Jones, P.F.; Hoddle, M.S.; Stouthamer, R. Nuclear-mitochondrial barcoding exposes the global pest Western flower thrips (Thysanoptera: Thripidae) as two sympatric criptic species in its native California. J. Econ. Entomol. 2010, 103, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, R.; Ashfaq, M.; Rasool, A.; Hebert, P.D.N. DNA Barcode Analysis of Thrips (Thysanoptera) Diversity in Pakistan Reveals Cryptic Species Complexes. PLoS ONE 2016, 11, e0146014. [Google Scholar] [CrossRef] [PubMed]
- Przybylska, A.; Fiedler, Z.; Kucharczyk, H.; Obrepalska-Steplowska, A. Detection of the quarantine species Thrips palmi by loop-mediatel isothermal amplification. PLoS ONE 2015, 10, e0122033. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.M.; Lou, H.; Sun, J.T.; Zhu, Y.M.; Xue, X.F.; Hong, X.Y. Temporal genetic dynamics of an invasive species, Frankliniella occidentalis (Pergande), in an early phase of establishment. Sci. Rep. 2015, 5, 11877. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, K.; Kumar, V.; Singha, D.; Chandra, K.; Laskar, B.A.; Kundu, S.; Chakraborty, R.; Chatterjee, S. DNA Barcoding studies on Thrips in India: Cryptic species and species complexes. Sci. Rep. 2017, 7, 4898. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, K.F.; Ball, S.L. DNA barcodes for biosecurity: Invasive species identification. Philos. Trans. R Soc. Lond. B 2005, 360, 1813–1823. [Google Scholar] [CrossRef] [Green Version]
- Brunner, P.C.; Chatzivassiliou, E.; Katis, N.I.; Frey, J.E. Host-associated genetic differentiation in Thrips tabaci (Insecta; Thysanoptera), as determined from mtDNA sequence data. Heredity 2004, 93, 364–370. [Google Scholar] [CrossRef] [Green Version]
- Rebijith, K.B.; Asokan, R.; Krishna, V.; RanJitha, H.H.; Krishna Kumar, N.K.; Ramamurthy, V.V. DNA barcoding and elucidation of cryptic diversity in thrips (Thysanoptera). Flo. Entomol. 2014, 97, 1328–1347. [Google Scholar] [CrossRef]
- Kawasaki, E.S. Sample preparation from blood, cells and other fluids. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.L., Eds.; Akademic Press: San Diego, CA, USA, 1990; pp. 146–152. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA 7: Molecular Evolutionary Genetics Analysis version 7.0 for biggest databases. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.L.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. Available online: http://www.ncbi.nlm.nih.gov/blast/ (accessed on 10 September 2019). [CrossRef]
- Ratnasingham, S.; Hebert, P.D. Barcoding Bold: The Barcode of Life Data System. Mol. Ecol. Notes 2007, 7, 355–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Boil. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranneby, B. The maximum spacing method. An estimation method related to the maximum Likelihood method. Scand. J. Stat. 1984, 11, 93–112. [Google Scholar]
- Paradis, E. Pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 2010, 26, 419–420. [Google Scholar] [CrossRef] [Green Version]
- Rozas, J.; Sanchez-Del Barrio, J.C.; Messenguer, X.; Rozas, R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2004, 19, 2496–2497. [Google Scholar] [CrossRef]
- Asokan, R.; Krishna Kumar, N.K.; Kumar, V.; Ranganath, H.R. Molecular differences in the mitochondrial cytochrome oxidase (mtCOI) gene and development of a species-specific marker for onion thrips, Thrips tabaci Lindeman and melon thrips, Thrips palmi Karny (Thysanoptera:Thripidae), vectors of tospoviruses (Bunyaviridae). Bull. Entomol. Res. 2007, 97, 461–470. [Google Scholar]
- Kadirvel, P.; Srinvasan, R.; Yun-Che, H.; Fu-Cheng, S.; De La Pena, R. Application of Cytochrome Oxidase I Sequences for Phylogenetic Analysis and Identification of Thrips Species Occurring on Vegetable Crops. J. Econ. Entomol. 2013, 106, 408–418. [Google Scholar] [CrossRef]
- Bout, A.; Marchand, A.; Ziegler, M.; Disdier, M.; Reynaud, P.; Robert, F.; Crochard, D.; Pizzol, J.; Ris, N.; Malausa, T. Improving knowledge on thrips diversity and ecology in French greenhouses: Inputs of barcoding approaches for a better pest management. Acta Hortic. 2015, 1104, 395–400. [Google Scholar] [CrossRef]
- Rebijith, K.B.; Asokan, R.; Krishna Kumar, N.K.; Krishna, V.; Ramamurthy, V. Development of species-specific markers and molecular differences in mtDNA of Thrips palmi Karny and Scirtothrips dorsalis Hood (Thripidae: Thysanoptera), vectors of Tospoviruses (Bunyaviridae). India Entomol. News 2011, 122, 201–213. [Google Scholar] [CrossRef]
- Bravo-Perez, D.; Santillan-Galicia, M.T.; Johansen-Naime, R.M.; Gonzales-Hermandez, H.; Segura-Leon, O.L.; Ochoa-Martinez, D.L.; Guzman-Valencia, S. Species diversity of thrips (Thysanoptera) in selected avocado orchards from Mexico based on morphology and molecular data. J. Integr. Agric. 2018, 17, 2509–2517. [Google Scholar] [CrossRef] [Green Version]
- Karimi, J.; Hassani-Kakhki, M.; Modarres Awal, M. Identifying thrips (Insecta: Thysanoptera) using DNA Barcodes. J. Cell Mol. Res. 2010, 2, 35–41. [Google Scholar]
- Jinko, U.; Kato, T.; Ito, M. Current progress in DNA barcoding and future implications for entomology. Entomol. Sci. 2011, 14, 1–18. [Google Scholar]
- Whiteman, N.K.; Santiago-Alarcon, D.; Johonson, K.P.; Parker, P.G. Differences in straggling rates between two genera of dove lice (Insecta: Phthiraptera) reinforce population genetic and cophylogenetic patterns. Int. J. Parasitol. 2004, 34, 1113–1119. [Google Scholar] [CrossRef]
- Timm, A.E.; Stiller, M.; Frey, J.E. A molecular identification key for economically important thrips species (Thysanoptera: Thripidae) in southern Africa. Afr. Entomol. 2008, 16, 68–75. [Google Scholar] [CrossRef]
- Glover, R.H.; Collins, D.W.; Walsh, K.; Boonham, N. Assessment of loci for DNA barcoding in the genus Thrips (Thysanoptera: Thripidae). Mol. Ecol. Resour. 2010, 10, 51–59. [Google Scholar] [CrossRef]
Name | Sequence 5’-3’ | Source |
---|---|---|
HCO-2198 | 5’ TAA ACT TCA GGG TGA CCA AAA AAT CA 3’ | Folmer et al., 1994 |
LCO-1490 | 5’ GGT CAA CAA ATC AAA AGA TAT TGG 3’ | Folmer et al., 1994 |
C1-J-1751 | 5′ GGA TCA CCT CAT ATA GCA TTC CC 3′ | Simon et al., 1994 |
C1-N-2191 | 5′ CCC GGT AAA AAT TAA AAT ATA AAC TTC 3′ | Simon et al., 1994 |
C1 N2353 | 5′-GCTCGTG TATCAACGTCTATWCC-3′ | Simon et al., 2006 |
Genus | Species | No. of Individuals |
---|---|---|
Aeolothrips | Intermedius | 2 |
Anaphothrips | Obscura | 4 |
Chirothrips | Manicatus | 5 |
Frankliniella | other species | 2 |
Frankliniella | Intonsa | 63 |
Frankliniella | Tenuicornis | 15 |
Thrips | other species | 25 |
Thrips | Fuscipennis | 7 |
Thrips | Major | 5 |
Thrips | Tabaci | 44 |
Thrips | Trehernei | 6 |
Total | 178 |
No. of Sequences | Number of Segregating Sites (S) | Nucleotide Diversity (π) | Standard Deviation of π | Total Number of Haplotypes | Haplotype Diversity (Hd) | Standard Deviation of Hd | Tajima’s D | |
---|---|---|---|---|---|---|---|---|
A. intermedius | 2 | - | - | - | 1 | - | - | - |
A. obscurus | 4 | - | - | - | 1 | - | - | - |
C. manicatus | 5 | - | - | - | 1 | - | - | - |
F. intonsa | 63 | 5 | 0.0032 | 0.0003 | 5 | 0.778 | 0.027 | 1.013 (p > 0.10) |
F. tenuicornis | 15 | - | - | - | 1 | - | - | - |
T. fuscipennis | 7 | 16 | 0.0158 | 0.0033 | 2 | 0.571 | 0.119 | 2.220 (p < 0.01) |
T. major | 5 | 5 | 0.0064 | 0.0014 | 3 | 0.800 | 0.164 | 0.562 (p > 0.10) |
T. tabaci | 44 | 18 | 0.0142 | 0.0018 | 3 | 0.633 | 0.034 | 1.670 (p > 0.10) |
T. trehernei | 6 | - | - | - | 1 | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marullo, R.; Mercati, F.; Vono, G. DNA Barcoding: A Reliable Method for the Identification of Thrips Species (Thysanoptera, Thripidae) Collected on Sticky Traps in Onion Fields. Insects 2020, 11, 489. https://doi.org/10.3390/insects11080489
Marullo R, Mercati F, Vono G. DNA Barcoding: A Reliable Method for the Identification of Thrips Species (Thysanoptera, Thripidae) Collected on Sticky Traps in Onion Fields. Insects. 2020; 11(8):489. https://doi.org/10.3390/insects11080489
Chicago/Turabian StyleMarullo, Rita, Francesco Mercati, and Gregorio Vono. 2020. "DNA Barcoding: A Reliable Method for the Identification of Thrips Species (Thysanoptera, Thripidae) Collected on Sticky Traps in Onion Fields" Insects 11, no. 8: 489. https://doi.org/10.3390/insects11080489
APA StyleMarullo, R., Mercati, F., & Vono, G. (2020). DNA Barcoding: A Reliable Method for the Identification of Thrips Species (Thysanoptera, Thripidae) Collected on Sticky Traps in Onion Fields. Insects, 11(8), 489. https://doi.org/10.3390/insects11080489