The Longevity of Colonies of Fungus-Growing Termites and the Stability of the Symbiosis
Abstract
:Simple Summary
Abstract
1. Stability of Symbioses
2. The Stability of the Termite Mound
2.1. The Physical Structure of the Termite Mound
2.1.1. Erosion and Persistence
2.1.2. Reuse by New Termite Colonies
2.1.3. Ages of Termite Mounds
2.2. The Longevity of a Termite Colony
3. How Short-Term Stability of the Symbiont May Affect Long-Term Stability of the Symbiosis
3.1. Symbiont Transmission and Dispersal
3.2. Selection of the “Right” Partner
3.3. Conflict Reduction between Termite Host and Fungal Symbiont
3.4. Conflict between Symbionts: Establishment and Maintenance of Fungal Monocultures
3.4.1. Positive Frequency-Dependent Selection and Bottlenecks
3.4.2. Symbiont Turn-Over
3.4.3. Mutations and Cheaters
3.4.4. Termite Adaptations against Fungal Genetic Variation
3.4.5. Termitomyces Adaptations against Fungal Genetic Variation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Westman, W.E. Measuring the Inertia and Resilience of Ecosystems. Bioscience 1978, 28, 705–710. [Google Scholar] [CrossRef]
- Relman, D.A. The human microbiome: Ecosystem resilience and health. Nutr. Rev. 2012, 70, S2–S9. [Google Scholar] [CrossRef] [PubMed]
- Frank, S.A. Host-symbiont conflict over the mixing of symbiotic lineages. Proc. R. Soc. London B Biol. Sci. 1996, 263, 339–344. [Google Scholar]
- Leigh, E.G. The evolution of mutualism. J. Evol. Biol. 2010, 23, 2507–2528. [Google Scholar] [CrossRef]
- Aanen, D.K.; Anten, N. The sociobiology of domestication. In The Convergent Evolution of Agriculture in Humans and Insects; Schultz, T., Peregrin, N., Gawne, R., Eds.; (In press)
- Ma, J.; Zhang, Q.; Gao, Q. Stability of a three-species symbiosis model with delays. Nonlinear Dyn. 2012, 67, 567–572. [Google Scholar] [CrossRef]
- Reilly, P.J. Stability of commensalistic systems. Biotechnol. Bioeng. 1974, 16, 1373–1392. [Google Scholar] [CrossRef]
- Butler, S.; O’Dwyer, J.P. Stability criteria for complex microbial communities. Nat. Commun. 2018, 9, 2970. [Google Scholar] [CrossRef] [Green Version]
- Goulet, T.L.; Coffroth, M.A. Stability of an octocoral-algal symbiosis over time and space. Mar. Ecol. Prog. Ser. 2003, 250, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Kiers, E.T.; Heijden, M.G.A. van der Mutualistic stability in the arbuscular mycorrhizal symbiosis: Exploring hypotheses of evolutionary cooperation. Ecology 2006, 87, 1627–1636. [Google Scholar] [CrossRef]
- Nobre, T.; Fernandes, C.; Boomsma, J.J.; Korb, J.; Aanen, D.K. Farming termites determine the genetic population structure of Termitomyces fungal symbionts. Mol. Ecol. 2011, 20, 2023–2033. [Google Scholar] [CrossRef]
- Roberts, E.M.; Todd, C.N.; Aanen, D.K.; Nobre, T.; Hilbert-Wolf, H.L.; O’Connor, P.M.; Tapanila, L.; Mtelela, C.; Stevens, N.J. Oligocene termite nests with in situ fungus gardens from the rukwa rift basin, Tanzania, support a paleogene african origin for insect agriculture. PLoS ONE 2016, 11, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.A.; Thomas, R.J.; Wood, T.G.; Swift, M.J. The inoculation of the fungus comb in newly founded colonies of some species of the macrotermitinae (Isoptera) from nigeria. J. Nat. Hist. 1981, 15, 751–756. [Google Scholar] [CrossRef]
- Korb, J.; Aanen, D.K. The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae). Behav. Ecol. Sociobiol. 2003, 53, 65–71. [Google Scholar] [CrossRef]
- De Fine Licht, H.H.; Boomsma, J.J.; Aanen, D.K. Presumptive horizontal symbiont transmission in the fungus-growing termite Macrotermes natalensis. Mol. Ecol. 2006, 15, 3131–3138. [Google Scholar] [CrossRef] [PubMed]
- Aanen, D.K.; Eggleton, P.; Rouland-Lefèvre, C.; Guldberg-Frøslev, T.; Rosendahl, S.; Boomsma, J.J. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc. Natl. Acad. Sci. USA 2002, 99, 14887–14892. [Google Scholar] [CrossRef] [Green Version]
- Nobre, T.; Koné, N.A.; Konaté, S.; Linsenmair, K.E.; Aanen, D.K. Dating the fungus-growing termites’ mutualism shows a mixture between ancient codiversification and recent symbiont dispersal across divergent hosts. Mol. Ecol. 2011, 20, 2619–2627. [Google Scholar] [CrossRef]
- GBIF. Available online: www.gbif.org (accessed on 22 July 2020).
- Dangerfield, J.M.; McCarthy, T.S.; Ellery, W.N. The mound-building termite Macrotermes michaelseni as an ecosystem engineer. J. Trop. Ecol. 1998, 14, 507–520. [Google Scholar] [CrossRef]
- Poulsen, M. Towards an integrated understanding of the consequences of fungus domestication on the fungus-growing termite gut microbiota. Environ. Microbiol. 2015, 17, 2562–2572. [Google Scholar] [CrossRef]
- Gerber, C.; Badertscher, S.; Leuthold, R.H. Polyethism in Macrotermes bellicosus (Isoptera). Insectes Soc. 1988, 35, 226–240. [Google Scholar] [CrossRef]
- Badertscher, S.; Gerber, C.; Leuthold, R.H. Polyethism in Food Supply and Processing in Termite Colonies of Macrotermes subhyalinus (Isoptera) Susanna. Behav. Ecol. Sociobiol. 1983, 12, 115–119. [Google Scholar] [CrossRef]
- Leuthold, R.H.; Badertscher, S.; Imboden, H. The inoculation of newly formed fungus comb with Termitomyces in Macrotermes colonies (Isoptera, Macrotermitinae). Insectes Soc. 1989, 36, 328–338. [Google Scholar] [CrossRef]
- Li, H.; Yang, M.; Chen, Y.; Zhu, N.; Lee, C.-Y.; Wei, J.-Q.; Mo, J. Investigation of Age Polyethism in Food Processing of the Fungus-Growing Termite Odontotermes formosanus (Blattodea: Termitidae) Using a Laboratory Artificial Rearing System. J. Econ. Entomol. 2015, 108, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Katoh, H.; Miura, T.; Maekawa, K.; Shinzato, N.; Matsumoto, T. Genetic variation of symbiotic fungi cultivated by the macrotermitine termite Odontotermes formosanus (Isoptera: Termitidae) in the Ryukyu Archipelago. Mol. Ecol. 2002, 11, 1565–1572. [Google Scholar] [CrossRef] [PubMed]
- Aanen, D.K.; de Fine Licht, H.H.; Debets, A.J.M.; Kerstes, N.A.G.; Hoekstra, R.F.; Boomsma, J.J. High Symbiont Relatedness Stabilizes Mutualistic Cooperation in Fungus-Growing Termites. Science 2009, 326, 1103–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aanen, D.K. As you reap, so shall you sow: Coupling of harvesting and inoculating stabilizes the mutualism between termites and fungi. Biol. Lett. 2006, 2, 209–212. [Google Scholar] [CrossRef]
- Baranova, M.A.; Logacheva, M.D.; Penin, A.A.; Seplyarskiy, V.B.; Safonova, Y.Y.; Naumenko, S.A.; Klepikova, A.V.; Gerasimov, E.S.; Bazykin, G.A.; James, T.Y.; et al. Extraordinary Genetic Diversity in a Wood Decay Mushroom. Mol. Biol. Evol. 2015, 32, 2775–2783. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.B.; Catona, S. Genomewide mutation dynamic within a long-lived individual of Armillaria gallica. Mycologia 2014, 106, 642–648. [Google Scholar] [CrossRef] [Green Version]
- Hiltunen, M.; Grudzinska-Sterno, M.; Wallerman, O.; Ryberg, M.; Johannesson, H. Maintenance of High Genome Integrity over Vegetative Growth in the Fairy-Ring Mushroom Marasmius oreades. Curr. Biol. 2019, 29, 2758–2765. [Google Scholar] [CrossRef]
- Jeon, J.; Choi, J.; Lee, G.-W.; Dean, R.A.; Lee, Y.-H. Experimental Evolution Reveals Genome-Wide Spectrum and Dynamics of Mutations in the Rice Blast Fungus, Magnaporthe oryzae. PLoS ONE 2013, 8, e65416. [Google Scholar] [CrossRef] [Green Version]
- Erens, H.; Boudin, M.; Mees, F.; Mujinya, B.B.; Baert, G.; Van Strydonck, M.; Boeckx, P.; Van Ranst, E. The age of large termite mounds—Radiocarbon dating of Macrotermes falciger mounds of the Miombo woodland of Katanga, DR Congo. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 435, 265–271. [Google Scholar] [CrossRef]
- Pullan, R.A. Termite hills in Africa: Their characteristics and evolution. Catena 1979, 6, 267–291. [Google Scholar] [CrossRef]
- Eggleton, P. An Introduction to Termites: Biology, Taxonomy and Functional Morphology. In Biology of Termites: A Modern Synthesis; Bignell, D., Roisin, Y., Lo, N., Eds.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Jouquet, P.; Guilleux, N.; Chintakunta, S.; Mendez, M.; Subramanian, S.; Shanbhag, R.R. The influence of termites on soil sheeting properties varies depending on the materials on which they feed. Eur. J. Soil Biol. 2015, 69, 74–78. [Google Scholar] [CrossRef]
- Jouquet, P.; Tessier, D.; Lepage, M. The soil structural stability of termite nests: Role of clays in Macrotermes bellicosus (Isoptera, Macrotermitinae) mound soils. Eur. J. Soil Biol. 2004, 40, 23–29. [Google Scholar] [CrossRef]
- McMahan, E.A. Polyethism in workers ofNasutitermes costalis (Holmgren). Insectes Soc. 1970, 17, 113–120. [Google Scholar] [CrossRef]
- Collins, N.M. Populations, Age Structure and Survivorship of Colonies of Macrotermes bellicosus (Isoptera: Macrotermitinae). J. Anim. Ecol. 1981, 50, 293–311. [Google Scholar] [CrossRef]
- Keller, L. Queen lifespan and colony characteristics in ants and termites. Insectes Soc. 1998, 45, 235–246. [Google Scholar] [CrossRef]
- Moore, J.M.; Picker, M.D. Heuweltjies (earth mounds) in the Clanwilliam district, Cape Province, South Africa: 4000-year-old termite nests. Oecologia 1991, 86, 424–432. [Google Scholar] [CrossRef]
- Watson, J.P. A Termite Mound in an Iron Age Burial Ground in Rhodesia. J. Ecol. 1967, 55, 663–669. [Google Scholar] [CrossRef]
- Matsuura, K.; Vargo, E.L.; Kawatsu, K.; Labadie, P.E.; Nakano, H.; Yashiro, T.; Tsuji, K. Queen succession through asexual reproduction in termites. Science 2009, 323, 1687. [Google Scholar] [CrossRef] [Green Version]
- Myles, T.G.; Nutting, W.L. Termite Eusocial Evolution: A Re-Examination of Bartz’s Hypothesis and Assumptions. Q. Rev. Biol. 1988, 63, 1–23. [Google Scholar] [CrossRef]
- Bartz, S.H. Evolution of Eusociality in Termites. Proc. Natl. Acad. Sci. USA. 1979, 76, 5764–5768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aanen, D.; Boomsma, J. The evolutionary origin andmaintenance of the mutualistic symbiosis between termites and fungi. In Insect Symbiosis; Bourtzis, K., Miller, T., Eds.; CRC Press: Boca Raton, FL, USA, 2006; Volume 2, pp. 79–95. [Google Scholar] [CrossRef]
- Nobre, T.; Eggleton, P.; Aanen, D.K. Vertical transmission as the key to the colonization of Madagascar by fungus-growing termites? Proc. R. Soc. B Biol. Sci. 2010, 277, 359–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koné, N.A.; Dosso, K.; Konaté, S.; Kouadio, J.Y.; Linsenmair, K.E. Environmental and biological determinants of Termitomyces species seasonal fructification in central and southern cǒte d’ivoire. Insectes Soc. 2011, 58, 371–382. [Google Scholar] [CrossRef]
- Koné, N.A.; Soro, B.; Vanié-Léabo, L.P.L.; Konaté, S.; Bakayoko, A.; Koné, D. Diversity, phenology and distribution of Termitomyces species in Côte d’Ivoire. Mycology 2018, 9, 307–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vreeburg, S.M.E.; de Ruijter, N.C.A.; Zwaan, B.J.; da Costa, R.R.; Poulsen, M.; Aanen, D.K. Asexual and sexual reproduction are two separate developmental pathways in a Termitomyces fungus. (submitted).
- Bright, M.; Bulgheresi, S. A complex journey: Transmission of microbial symbionts. Nat. Rev. Microbiol. 2010, 8, 218–230. [Google Scholar] [CrossRef] [Green Version]
- Vesala, R.; Niskanen, T.; Liimatainen, K.; Boga, H.; Pellikka, P.; Rikkinen, J. Diversity of fungus-growing termites (Macrotermes) and their fungal symbionts (Termitomyces) in the semiarid Tsavo Ecosystem, Kenya. Biotropica 2017, 49, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Aanen, D.K.; Ros, V.I.D.; De Fine Licht, H.H.; Mitchell, J.; De Beer, Z.W.; Slippers, B.; Rouland-LeFèvre, C.; Boomsma, J.J. Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa. BMC Evol. Biol. 2007, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Vesala, R.; Harjuntausta, A.; Hakkarainen, A.; Rönnholm, P.; Pellikka, P.; Rikkinen, J. Termite mound architecture regulates nest temperature and correlates with species identities of symbiotic fungi. PeerJ 2019, 2019, 1–20. [Google Scholar] [CrossRef]
- da Costa, R.R.; Vreeburg, S.M.E.; Shik, J.Z.; Aanen, D.K.; Poulsen, M. Can interaction specificity in the fungus-farming termite symbiosis be explained by nutritional requirements of the fungal crop? Fungal Ecol. 2019, 38, 54–61. [Google Scholar] [CrossRef]
- Katariya, L.; Ramesh, P.B.; Gopalappa, T.; Desireddy, S.; Bessière, J.M.; Borges, R.M. Fungus-Farming Termites Selectively Bury Weedy Fungi that Smell Different from Crop Fungi. J. Chem. Ecol. 2017, 43, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, K. Symbionts affecting termite behavior. In Insect Symbiosis; Bourtzis, K., Miller, T.A., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 131–143. [Google Scholar]
- Hamilton, W.D.; May, R.M. Dispersal in stable habitats. Nature 1977, 269, 578–581. [Google Scholar] [CrossRef]
- Bastiaans, E.; Debets, A.J.M.; Aanen, D.K. Experimental evolution reveals that high relatedness protects multicellular cooperation from cheaters. Nat. Commun. 2016, 7, 11435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobre, T.; Koopmanschap, B.; Baars, J.J.; Sonnenberg, A.S.; Aanen, D.K. The scope for nuclear selection within Termitomyces fungi associated with fungus-growing termites is limited. BMC Evol. Biol. 2014, 14, 1–12. [Google Scholar] [CrossRef] [Green Version]
- De Fine Licht, H.H.; Andersen, A.; Aanen, D.K. Termitomyces sp. associated with the termite Macrotermes natalensis has a heterothallic mating system and multinucleate cells. Mycol. Res. 2005, 109, 314–318. [Google Scholar] [CrossRef] [Green Version]
- Makonde, H.M.; Boga, H.I.; Osiemo, Z.; Mwirichia, R.; Stielow, J.B.; Göker, M.; Klenk, H.P. Diversity of Termitomyces Associated with Fungus-Farming Termites Assessed by Cultural and Culture-Independent Methods. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Visser, A.A.; Kooij, P.W.; Debets, A.J.M.; Kuyper, T.W.; Aanen, D.K. Pseudoxylaria as stowaway of the fungus-growing termite nest: Interaction asymmetry between Pseudoxylaria, Termitomyces and free-living relatives. Fungal Ecol. 2011, 4, 322–332. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, H.; Fan, J.; Wang, Y.; Li, Y.; Chen, J.; Fan, J.; Yang, S.; Hu, L.; Leung, H.; et al. Genetic diversity and disease control in rice. Nature 2000, 406, 718–722. [Google Scholar] [CrossRef]
- Visser, A.A.; Ros, V.I.D.; De Beer, Z.W.; Debets, A.J.M.; Hartog, E.; Kuyper, T.W.; Laessøe, T.; Slippers, B.; Aanen, D.K. Levels of specificity of Xylaria species associated with fungus-growing termites: A phylogenetic approach. Mol. Ecol. 2009, 18, 553–567. [Google Scholar] [CrossRef]
- Visser, A.A.; Nobre, T.; Currie, C.R.; Aanen, D.K.; Poulsen, M. Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites. Microb. Ecol. 2012, 63, 975–985. [Google Scholar] [CrossRef]
- Katariya, L.; Ramesh, P.B.; Sharma, A.; Borges, R.M. Local hypoxia generated by live burial is effective in weed control within termite fungus farms. Insectes Soc. 2018, 65, 561–569. [Google Scholar] [CrossRef]
- Bastiaans, E.; Debets, A.J.M.; Aanen, D.K. Experimental demonstration of the benefits of somatic fusion and the consequences for allorecognition. Evolution 2015, 69, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- West, S.A.; Gardner, A.; Griffin, A.S. Altruism. Curr. Biol. 2006, 16, 482–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dyken, J.D.; Linksvayer, T.A.; Wade, M.J. Kin selection-mutation balance: A model for the origin, maintenance, and consequences of social cheating. Am. Nat. 2011, 177, 288–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steidinger, B.S.; Bever, J.D. The coexistence of hosts with different abilities to discriminate against cheater partners: An evolutionary game-theory approach. Am. Nat. 2014, 183, 762–770. [Google Scholar] [CrossRef] [Green Version]
- Kiers, E.T.; Rousseau, R.A.; West, S.A.; Denison, R.F. Host sanctions and the legume–rhizobium mutualism. Nature 2003, 425, 78–81. [Google Scholar] [CrossRef]
- Wang, R.W.; Dunn, D.W.; Sun, B.F. Discriminative host sanctions in a fig-wasp mutualism. Ecology 2014, 95, 1384–1393. [Google Scholar] [CrossRef]
- Kiers, E.T.; Duhamel, M.; Beesetty, Y.; Mensah, J.A.; Franken, O.; Verbruggen, E.; Fellbaum, C.R.; Kowalchuk, G.A.; Hart, M.M.; Bago, A.; et al. Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis. Science 2011, 333, 880–882. [Google Scholar] [CrossRef] [Green Version]
- Bever, J.D.; Richardson, S.C.; Lawrence, B.M.; Holmes, J.; Watson, M. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol. Lett. 2009, 12, 13–21. [Google Scholar] [CrossRef]
- Lynch, M. Evolution of the mutation rate. Trends Genet. 2010, 26, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Rozhok, A.; Degregori, J. Somatic maintenance impacts the evolution of mutation rate. BMC Evol. Biol. 2019, 19, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanfear, R.; Ho, S.Y.W.; Jonathan Davies, T.; Moles, A.T.; Aarssen, L.; Swenson, N.G.; Warman, L.; Zanne, A.E.; Allen, A.P. Taller plants have lower rates of molecular evolution. Nat. Commun. 2013, 4, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caulin, A.F.; Maley, C.C. Peto’s Paradox: Evolution’s prescription for cancer prevention. Trends Ecol. Evol. 2011, 26, 175–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.B.; Bruhn, J.N.; Kasimer, D.; Wang, H.; Rodrigue, N.; Smith, M.L. Clonal evolution and genome stability in a 2500-year-old fungal individual. Proc. R. Soc. B Biol. Sci. 2018, 285, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Aanen, D.K.; Debets, A.J.M. Mutation-rate plasticity and the germline of unicellular organisms. Proc. R. Soc. B Biol. Sci. 2019, 286. [Google Scholar] [CrossRef] [Green Version]
- Aanen, D.K. How a long-lived fungus keeps mutations in check. Science 2014, 346, 922–923. [Google Scholar] [CrossRef]
- Lynch, M. The lower bound to the evolution of mutation rates. Genome Biol. Evol. 2011, 3, 1107–1118. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Schuster, M. Public goods and cheating in microbes. Curr. Biol. 2019, 29, R442–R447. [Google Scholar] [CrossRef]
- Brien, O.; Luja, A.M.; Paterson, S.; Cant, M.A. Adaptation to public goods cheats in Pseudomonas Aeruginosa. Proc. R. Soc. Biol. Sci. 2017, 284, 20171089. [Google Scholar] [CrossRef] [Green Version]
- Hollis, B. Rapid antagonistic coevolution between strains of the social amoeba Dictyostelium discoideum. Proc. R. Soc. B Biol. Sci. 2012, 279, 3565–3571. [Google Scholar] [CrossRef] [Green Version]
Direct | Indirect | |
---|---|---|
Resources Allocated to Dispersal | Degree of Symbiont Mixing | |
Termite and fungus each favor maximum amount of resources for their own dispersal | Symbiont dispersal can lead to symbiont mixing | |
Short-term disadvantage for the termites | Long-term (evolutionary) disadvantage for the termites | |
Mixed culture reduces fungal productivity | Competition between unrelated strains selects for competitive traits with virulent side-effects |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wisselink, M.; Aanen, D.K.; van ’t Padje, A. The Longevity of Colonies of Fungus-Growing Termites and the Stability of the Symbiosis. Insects 2020, 11, 527. https://doi.org/10.3390/insects11080527
Wisselink M, Aanen DK, van ’t Padje A. The Longevity of Colonies of Fungus-Growing Termites and the Stability of the Symbiosis. Insects. 2020; 11(8):527. https://doi.org/10.3390/insects11080527
Chicago/Turabian StyleWisselink, Margo, Duur K. Aanen, and Anouk van ’t Padje. 2020. "The Longevity of Colonies of Fungus-Growing Termites and the Stability of the Symbiosis" Insects 11, no. 8: 527. https://doi.org/10.3390/insects11080527
APA StyleWisselink, M., Aanen, D. K., & van ’t Padje, A. (2020). The Longevity of Colonies of Fungus-Growing Termites and the Stability of the Symbiosis. Insects, 11(8), 527. https://doi.org/10.3390/insects11080527