Effects of Three Artificial Diets on Life History Parameters of the Ladybird Beetle Stethorus gilvifrons, a Predator of Tetranychid Mites
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Stock Colony of T. turkestani and S. gilvifrons
2.2. Artificial Diets and Their Compositions
2.3. Experimental Setup
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mossadegh, M.S.; Kocheili, F. A Semi Descriptive Checklist of Identified Species of Arthropods (Agricultural, Medical) and Other Pests from Khuzestan, Iran; Shahid Chamran University Press: Ahvaz, Iran, 2003. [Google Scholar]
- Modares Awal, M. List of Agricultural Pests and Their Natural Enemies in Iran, 3rd ed.; Ferdowsi University Press: Mashhad, Iran, 2012. [Google Scholar]
- Sohrabi, F.; Shishehbor, P. Effects of host plant and temperature on growth and reproduction of the strawberry spider mite Tetranychus turkestani Ugarov & Nikolskii (Acari: Tetranychidae). Syst. Appl. Acarol. 2008, 13, 26–32. [Google Scholar] [CrossRef]
- Jeppson, L.R.; Keifer, H.H.; Baker, E.W. Mites Injurious to Economic Plants; University of California Press: Berkeley, CA, USA, 1975. [Google Scholar]
- Putman, W.L. Bionomics of Stethorus punctillum Weise (Coleoptera: Coccinellidae) in Ontario. Can. Entomol. 1955, 87, 9–33. [Google Scholar] [CrossRef] [Green Version]
- Chazeau, J. Predaceous insects. In Spider Mites: Their Biology, Natural Enemies and Control; Helle, W., Sabelis, M.W., Eds.; Elsevier: Amsterdam, The Netherland, 1985; Volume 1B, pp. 211–246. [Google Scholar]
- Hoy, M.A. Agricultural Acarology: Introduction to Integrated Mite Management; CRC Press: New York, NY, USA, 2011. [Google Scholar]
- Kapur, A.K. On the Old World species of the genus Stethorus Weise (Coleoptera, Coccinellidae). Bull. Entomol. Res. 1948, 37, 297–320. [Google Scholar] [CrossRef] [PubMed]
- Bellows, T.S.; Fisher, T.W. Handbook of Biological Control: Principles and Applications; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Yang, X.; Shen, M.; Xiong, J.; Guo, Z. Approaches to enhance the effectiveness of biocontrol of Panonychus citri (Acarina: Tetranychidae) with Stethorus punctillum (Coleoptera: Coccinellidae) in citrus orchards in Guizhou. Syst. Appl. Acarol. 1996, 1, 21–27. [Google Scholar]
- Roy, M.; Brodeur, J.; Cloutier, C. Seasonal abundance of spider mites and their predators on red raspberry in Quebec. Environ. Entomol. 1999, 28, 735–747. [Google Scholar] [CrossRef]
- Roy, M.; Brodeur, J.; Cloutier, C. Seasonal activity of the spider mite predators Stethorus punctillum (Coleoptera: Coccinellidae) and Neoseiulus fallacis (Acarina: Phytoseiidae) in raspberry, two predators of Tetranychus mcdanieli (Acarina: Tetranychidae). Biol. Control 2005, 34, 47–57. [Google Scholar] [CrossRef]
- Hull, L.A. The Functional and Numerical Response of Stethorus punctum (Coleoptera: Coccinellidae) to Densities of the Panonychus ulmi (Acarina: Tetranychidae). Ph.D. Thesis, Pennsylvania State University, State College, PA, USA, 1977. [Google Scholar]
- McMurtry, J.A.; Johnson, H. An ecological study of the spider mite Oligonychus punicae and its natural enemies. Hilgardia 1966, 37, 363–402. [Google Scholar] [CrossRef] [Green Version]
- Tanigoshi, L.K. Studies of the dynamic of predation of Stethorus picipes (Coleoptera: Coccinellidae) and Typhlodromus floridanus on the prey Oligonychus punicae (Acarina: Phytoseiidae, Tetranychidae). Ph.D. Thesis, University of California, Riverside, CA, USA, 1973; p. 237. [Google Scholar]
- Perumalsamy, K.; Selvasundrama, R.; Roobakkumar, A.; Jasin Rahman, V.; Nair Muraeedharan, N. Life table and predatory efficiency of Stethorus gilvifrons (Coleoptera: Coccinellidae), an important predator of the red spider mite, Oligonychus coffeae (Acari: Tetranychidae), infesting tea. Exp. Appl. Acarol. 2010, 50, 141–150. [Google Scholar] [CrossRef]
- Latifian, M.; Kajbaf Valla, G.H. Inoculative release of Stethorus gilvifrons (Coleoptera: Coccinellidae) for biological control of date palm spider mite, Oligonychus afrasiaticus McGregor (Prostigmata: Tetranychidae). J. Plant Prot. 2017, 31, 61–62, (In farsi with English abstract). [Google Scholar]
- Aksit, T.; Cakmak, I.; Ozer, G. Effect of temperature and photoperiod on development and fecundity of an acarophagous ladybird beetle, Stethorus gilvifrons. Phytoparasitica 2007, 35, 357–366. [Google Scholar] [CrossRef]
- Biddinger, D.J.; Weber, D.C.; Hull, L.A. Coccinellidae as predator of mites: Stethorini in biological control. Biol. Control 2009, 51, 268–283. [Google Scholar] [CrossRef] [Green Version]
- Afshari, A. A Study for Stethorus spp. with Particular Reference on the Biology, Feeding Capacity and Population Dynamics of Stethorus gilvifrons (Mulsant) in the Sugarcane Fields of Khuzestan Province. Master’s Thesis, Shahid Chamran University of Ahvaz, Ahvaz, Iran, 1998; p. 183. [Google Scholar]
- Matin, M. Biology and Predation of Stethorus gilvifrons Mulsant on Date Dust Mite, Oligonychus afrasiaticus McGregor. Master’s Thesis, Shahid Chamran University of Ahvaz, Ahvaz, Iran, 2008. [Google Scholar]
- Latifian, M. Voracity and feeding preferences of larvae and adult stages of Stethorus gilvifrons Mulsant (Coleoptera: Coccinellidae) on larvae and adults of Oligonychus afrasiaticus McGregor (Acarina: Tetranychidae). Intl. J. Agri. Crop Sci. 2012, 4, 540–546. [Google Scholar]
- Afshari, A.; Mossadegh, M.S.; Kamali, K. Feeding behavior of the ladybird beetle Stethorus gilvifrons (Mulsant), and effect of different factors on its feeding rate in the laboratory condition. Plant Prot. (Sci. J. Agric.) 1999, 23, 71–90. [Google Scholar]
- Handoko, H.; Affandi, A. Life-history traits of Stethorus gilvifrons (Mulsant) (Coleoptera: Coccinellidae) on phytophagous mites Eutetranychus orientalis Klein (Acari: Tetranychidae). Agrivita J. Agri. Sci. 2012, 34, 7–13. [Google Scholar] [CrossRef]
- Imani, Z.; Shishehboe, P.; Sohrabi, F. The effect of Tetranychus turkestani and Eutetranychus orientalis (Acari: Tetranychidae) on the development and reproduction of Stethorus gilvifrons (Coleoptera: Coccinellidae). J. Asia Pac. Entomol. 2009, 12, 213–216. [Google Scholar] [CrossRef]
- Beddington, J.; Free, C.; Lawton, J. Characteristics of successful natural enemies in models of biological control of insect pests. Nature 1978, 273, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Bolckmans, K.J.F. Commercial aspects of biological pest control in greenhouses. In Integrated Pest and Disease Management in Greenhouse Crops; Albajes, R., Gullino, M.L., van Lenteren, J.C., Elad, Y., Eds.; Kluwer: Dordrecht, The Netherlands, 1999; pp. 310–318. [Google Scholar]
- van Lenteren, J.C. The state of commercial augmentative biological control: Plenty of natural enemies, but a frustrating lack of uptake. BioControl 2012, 57, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.A.; Nordlund, D.A. Automation of insect rearing—A key to the development of competitive augmentative biological control. Nat. Enemies Ins. 1999, 21, 70–81. [Google Scholar]
- van Lenteren, J.C.; Tommasini, M.G. Mass production, storage, shipment and release of natural enemies. In Quality Control and Production of Biological Control Agents: Theory and Testing Procedures; Van Lenteren, J.C., Ed.; CABI Publication: Wallingford, UK, 2003; pp. 181–189. [Google Scholar]
- Riddick, E.W. Benefits and limitations of factitious prey and artificial diets on life parameters of predatory beetles, bugs, and lacewings: A mini-review. BioControl 2009, 54, 325–339. [Google Scholar] [CrossRef]
- Riddick, E.W.; Chen, H. Production of coleopteran predators. In Mass Production of Beneficial Organisms: Invertebrates and Entomopathogens; Morales-Ramos, J.A., Rojas, M.G., Shapiro, D.E., Eds.; Elsevier Inc.: London, UK, 2013; pp. 17–55. [Google Scholar]
- Sun, Y.X.; Hao, Y.N.; Riddick, E.W.; Liu, T.X. Factitious prey and artificial diets for predatory lady beetles: Current situation, obstacles, and approaches for improvement: A review. Biocontrol Sci. Technol. 2017, 27, 601–619. [Google Scholar] [CrossRef]
- Cohen, A.C. Insect Diets: Science and Technology; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- De Clercq, P. Culture of natural enemies on factitious foods and artificial diets. In Encyclopedia of Entomology; Capinera, J.L., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 651–652. [Google Scholar]
- Smirnoff, W.A. An artificial diet for rearing coccinellid beetles. Can. Entomol. 1958, 90, 563–565. [Google Scholar] [CrossRef]
- Colburn, R.B. The Predator Stethorus punctum (Coleoptera: Coccinellidae), and Its Relationship to Panonychus ulmi (Acarina: Tetranychidae). Ph.D. Thesis, Pennsylvania State University, State College, PA, USA, 1971; p. 89. [Google Scholar]
- Ebrahimifar, J.; Shishehbor, P.; Rasekh, A.; Riddick, E.W. Effect of factitious diets on development and reproduction of the ladybird beetle Stethorus gilvifrons, a predator of tetranychid mites. BioControl 2020. [Google Scholar] [CrossRef]
- Riddick, E.W.; Wu, Z.; Eller, F.J.; Berhow, M.A. Potential of 2,4-dihydroxybenzoic acid as an oviposition stimulant for mass-reared ladybird beetles. J. Insect Sci. 2019, 19, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brindley, T.A. The growth and development of Ephestia kuehniella Zeller (Lepidoptera) and Tribolium confusum Duval (Coleoptera) under control conditions of temperature and relative humidity. Ann. Entomol. Soc. Am. 1930, 24, 1–17. [Google Scholar]
- SPSS. SPSS for Windows, Version 22.0; SPSS Institute Inc.: Chicago, IL, USA, 2018. [Google Scholar]
- Chi, H.; Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin. 1985, 24, 225–240. [Google Scholar]
- Chi, H. TWOSEX-MSChart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis. Available online: http://140.120.197.173/Ecology/prod02.htm (accessed on 1 August 2018).
- Taghizadeh, R.; Fathipour, Y.; Kamali, K. Influence of temperature on life-table parameters of Stethorus gilvifrons Mulsant (Coleoptera: Coccinellidae) fed on Tetranychus urticae Koch. J. Appl. Entomol. 2008, 132, 638–645. [Google Scholar] [CrossRef]
- Scriber, J.M.; Slansky, F.J. The nutritional ecology of immature insects. Annu. Rev. Entomol. 1981, 26, 183–211. [Google Scholar] [CrossRef]
- Silva, R.B.; Zanuncio, J.C.; Serrao, J.E.; Lima, E.R.; Figueiredo, M.L.C.; Cruz, I. Suitability of different artificial diets for development and survival of stages of the predaceous ladybird beetle Eriopis connexa. Phytoparasitica 2009, 37, 115–123. [Google Scholar] [CrossRef]
- Riddick, E.W.; Wu, Z.; Eller, F.J.; Berhow, M.A. Do bioflavonoids in Juniperus virginiana heartwood stimulate oviposition in the ladybird Coleomegilla maculata? Int. J. Insect Sci. 2018, 10. [Google Scholar] [CrossRef]
- Riddick, E.W.; Wu, Z.; Eller, F.J.; Berhow, M.A. Utilization of quercetin as an oviposition stimulant by lab-cultured Coleomegilla maculata in the presence of conspecific and a tissue substrate. Insects 2018, 9, 77. [Google Scholar] [CrossRef] [Green Version]
- De Clercq, P.; Arjis, Y.; Van Meir, T.; Van Stappen, G.; Sorgeloos, P.; Dewettinck, K.; Rey, M.; Grenier, S.; Febvay, G. Nutritional value of brine shrimp cysts as a factitious food for Orius laevigatus (Heteroptera: Anthocoridae). Biocontrol Sci. Technol. 2005, 15, 467–479. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Vangansbeke, D.; De Clercq, P. Artificial and factitious foods support the development and reproduction of the predatory mite Amblyseius swirskii. Exp. Appl. Acarol. 2014, 62, 181–194. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Artificial Diets (AD) | ||
---|---|---|---|
AD1 | AD2 | AD3 | |
Sterilized distilled water | 50 mL | 50 mL | 50 mL |
Agar | 1.3 g | 1.3 g | 1.3 g |
Sugar | 10 g | 10 g | 10 g |
Royal jelly | 1.5 g | 1.5 g | 1.5 g |
Honey | 4.5 g | 2.5 g | 4.5 g |
Date palm pollen | 1.5 g | 1.5 g | 1.5 g |
Hen’s egg yolk | 2.5 g | - | - |
Yeast | - | 1 g | 1 g |
E. kuehniella egg | - | 1.5 g | 1.5 g |
2,4-dihydroxybenzoic acid | - | - | 0.3 g |
Diet | Immature Survival (%) (n = 20) | Developmental Time (Days) (n = 25) | Body Weight (mg) (n = 15) | ||
---|---|---|---|---|---|
Male | Female | Male | Female | ||
AD1 | 64.33 ± 4.13 a | 14.07 ± 1.88 b | 14.86 ± 1.86 a | 0.123 ± 0.007 a | 0.132 ± 0.009 b |
AD2 | 67.01 ± 2.28 a | 13.86 ± 1.46 b | 14.60 ± 0.97 a | 0.144 ± 0.011 a | 0.158 ± 0.012 ab |
AD3 | 70.23 ± 4.23 a | 15.13 ± 1.88 a | 15.50 ± 1.32 a | 0.147 ± 0.014 a | 0.180 ± 0.015 a |
Diet | Male Longevity (Days) | Female Longevity (Days) | Preoviposition Period (Days) | Oviposition Period (Days) | Postoviposition Period (Days) | Total Fecundity (Eggs/Female) | Egg Hatch (%) | Sex Ratio (% Females) |
---|---|---|---|---|---|---|---|---|
AD1 | 21.92 ± 2.77 b (n = 13) | 24.40 ± 2.75 b (n = 10) | 5.10 ± 0.35 a (n = 10) | 8.30 ± 0.42 b (n = 10) | 1.20 ± 0.25 a (n = 10) | 25.20 ± 2.97 c (n = 10) | 66.33 ± 2.91 a (n = 45) | 45.00 ± 3.51 a (n = 26) |
AD2 | 26.82 ± 1.60 a (n = 11) | 30.15 ± 2.79 a (n = 13) | 4.00 ± 0.30 b (n = 13) | 9.46 ± 1.45 ab (n = 13) | 2.08 ± 0.26 a (n = 13) | 37.62 ± 1.65 b (n = 13) | 67.33 ± 3.06 a (n = 45) | 49.33 ± 5.24 a (n = 25) |
AD3 | 26.08 ± 1.32 a (n = 13) | 31.18 ± 3.12 a (n = 11) | 4.82 ± 0.30 ab (n = 11) | 10.09 ± 1.87 a (n = 11) | 1.36 ± 0.24 a (n = 11) | 42.09 ± 2.72 a (n = 11) | 72.00 ± 4.82 a (n = 45) | 48.00 ± 4.00 a (n = 30) |
Diet | Parameter | |||||
---|---|---|---|---|---|---|
Intrinsic Rate of Increase (d−1) | Finite Rate of Increase (d−1) | Net Reproductive Rate (Offspring/Female) | Gross Reproductive Rate (Offspring/Female) | Mean Generation Time (d) | Doubling Time (d) | |
AD1 | 0.089 ± 0.013 b | 1.093 ± 0.014 a | 8.40 ± 2.36 b | 14.76 ± 3.46 b | 26.94 ± 2.59 a | 8.20 ± 2.99 a |
AD2 | 0.111 ± 0.011 ab | 1.117 ± 0.012 a | 15.43 ± 3.83 a | 25.26 ± 4.29 a | 24.70 ± 1.62 ab | 6.41 ± 0.74 b |
AD3 | 0.119 ± 0.013 a | 1.26 ± 0.011 a | 16.30 ± 3.52 a | 32.38 ± 5.05 a | 23.45 ± 1.56 b | 5.92 ± 0.55 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebrahimifar, J.; Shishehbor, P.; Rasekh, A.; Hemmati, S.A.; Riddick, E.W. Effects of Three Artificial Diets on Life History Parameters of the Ladybird Beetle Stethorus gilvifrons, a Predator of Tetranychid Mites. Insects 2020, 11, 579. https://doi.org/10.3390/insects11090579
Ebrahimifar J, Shishehbor P, Rasekh A, Hemmati SA, Riddick EW. Effects of Three Artificial Diets on Life History Parameters of the Ladybird Beetle Stethorus gilvifrons, a Predator of Tetranychid Mites. Insects. 2020; 11(9):579. https://doi.org/10.3390/insects11090579
Chicago/Turabian StyleEbrahimifar, Jafar, Parviz Shishehbor, Arash Rasekh, Seyed Ali Hemmati, and Eric W. Riddick. 2020. "Effects of Three Artificial Diets on Life History Parameters of the Ladybird Beetle Stethorus gilvifrons, a Predator of Tetranychid Mites" Insects 11, no. 9: 579. https://doi.org/10.3390/insects11090579
APA StyleEbrahimifar, J., Shishehbor, P., Rasekh, A., Hemmati, S. A., & Riddick, E. W. (2020). Effects of Three Artificial Diets on Life History Parameters of the Ladybird Beetle Stethorus gilvifrons, a Predator of Tetranychid Mites. Insects, 11(9), 579. https://doi.org/10.3390/insects11090579