Methyl Benzoate Is Superior to Other Natural Fumigants for Controlling the Indian Meal Moth (Plodia interpunctella)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects and Chemicals
2.2. Fumigant Toxicity of MBe against Adults of P. interpunctella: Glass Bottle Bioassay
2.3. Fumigant Toxicity of MBe against Adults of P. interpunctella: Cardboard Box Bioassay
2.4. Comparison of the Fumigation Toxicity of MBe with That of Other Monoterpenes
2.5. Statistical Analysis
3. Results
3.1. Fumigant Toxicity of MBe against Adults of P. interpunctella: Glass Bottle Bioassay
3.2. Fumigant Toxicity of MBe against Adults of P. interpunctella: Cardboard Box Bioassay
3.3. Fumigant Toxicity of MBe Compared to That of Other Monoterpenes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rees, D.P. Insects of Stored Grain: A Pocket Reference, 2nd ed.; CSIRO Publishing: Collingwood, VIC, Australia, 2007; ISBN 978-0-643-093850. [Google Scholar]
- Nasir, M.F.; Ulrichs, C.; Prozell, S.; Scholler, M. Laboratory studies on parasitism of Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) by two species of Trichogramma Westwood (Hymenoptera: Trichogrammatidae) in different grains, and evaluation of traps for their monitoring. J. Stored Prod. Res. 2017, 74, 6–12. [Google Scholar] [CrossRef]
- Loschiavo, S.R.; Okumura, G.T. A survey of stored product insects in Hawaii. Proc. Hawaii. Entomol. Soc. 1979, 13, 95–118. [Google Scholar]
- Arbogast, R.T.; Kendra, P.E.; Mankin, R.W.; McGovern, J.E. Monitoring insect pests in retail stores by trapping and spatial Analysis. J. Econ. Entomol. 2000, 93, 1531–1542. [Google Scholar] [CrossRef]
- Roesli, R.; Subramanyam, B.; Campbell, J.F.; Kemp, K. Stored-product insects associated with a retail pet store chain in Kansas. J. Econ. Entomol. 2003, 96, 1958–1966. [Google Scholar] [CrossRef]
- Hagstrum, D.W.; Klejdysz, T.; Subramanyam, B.; Nawrot, J. Atlas of Stored-Product Insects and Mites; AACC International: St. Paul, MN, USA, 2013; ISBN 9781891127755. [Google Scholar]
- Mohandass, S.; Arthur, F.H.; Zhu, K.Y.; Throne, J.E. Biology and management of Plodia interpunctella (Lepidoptera: Pyralidae) in stored products. J. Stored Prod. Res. 2007, 43, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Hubert, J.; Stejskal, V.; Athanassiou, C.G.; Throne, J.E. Health hazards associated with arthropod infestation of stored products. Annu. Rev. Entomol. 2018, 63, 553–573. [Google Scholar] [CrossRef] [PubMed]
- Mbata, G.N.; Shapiro-Ilan, D.I. Compatibility of Heterorhabditis indica (Rhabditida: Heterorhabditidae) and Habrobracon hebetor (Hymenoptera: Braconidae) for biological control of Plodia interpunctella (Lepidoptera: Pyralidae). Biol. Control 2010, 54, 75–82. [Google Scholar] [CrossRef]
- Kim, H.; Yu, Y.S.; Lee, K.Y. Synergistic effects of heat and diatomaceous earth treatment for the control of Plodia interpunctella (Lepidoptera: Pyralidae). Entomol. Res. 2014, 44, 130–136. [Google Scholar] [CrossRef]
- Hagstrum, D.W.; Phillips, T.W. Evolution of stored-product entomology: Protecting the world food supply. Annu. Rev. Entomol. 2017, 62, 379–397. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, S.; Sriranjini, V. Plant products as fumigants for stored-product insect control. J. Stored Prod. Res. 2008, 44, 126–135. [Google Scholar] [CrossRef]
- Aulicky, R.; Stejskal, V.; Frydova, B.; Athanassiou, C.G. Susceptibility of two strains of the confused flour beetle (Coleoptera: Tenebrionidae) following phosphine structural mill fumigation: Effects of concentration, temperature, and flour deposits. J. Econ. Entomol. 2015, 108, 2823–2830. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.W.D. Phosphine-a major fumigant at risk. Int. Pest Control 1989, 31, 10–14. [Google Scholar]
- Sayaboc, P.; Gibe, A.; Caliboso, F. Resistance of Rhizopertha dominica (F.) (Coleoptera: Bostrychidae) to phosphine in the Philippines. Philipp. Entomol. 1998, 12, 91–95. [Google Scholar]
- Benhalima, H.; Chaudhry, M.Q.; Mills, K.A.; Price, N.R. Phosphine resistance in stored-product insects collected from various grain storage facilities in Morocco. J. Stored Prod. Res. 2004, 40, 241–249. [Google Scholar] [CrossRef]
- Pimentel, M.A.G.; Faroni, L.R.D.; Guedes, R.N.C.; Sousa, A.H.; Tótola, M.R. Phosphine resistance in Brazilian populations of Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). J. Stored Prod. Res. 2009, 45, 71–74. [Google Scholar] [CrossRef]
- Jagadeesan, R.; Collins, P.J.; Daglish, G.J.; Ebert, P.R.; Schlipalius, D.I. Phosphine resistance in the rust red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae): Inheritance, gene interactions and fitness costs. PLoS ONE 2012, 7, e31582. [Google Scholar] [CrossRef] [Green Version]
- Opit, G.P.; Phillips, T.W.; Aikins, M.J.; Hasan, M.M. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. J. Econ. Entomol. 2012, 105, 1107–1114. [Google Scholar] [CrossRef] [Green Version]
- Afful, E.; Elliott, B.; Nayak, M.K.; Phillips, T.W. Phosphine resistance in North American field populations of the lesser grain borer, Rhyzopertha dominica (Coleoptera: Bostrichidae). J. Econ. Entomol. 2018, 111, 463–469. [Google Scholar] [CrossRef]
- Barakat, D.; Flingelli, G.; Reichmuth, C. Lethal effect of sulfuryl fluoride on eggs of different age of the Indian meal moth Plodia interpunctella (Hübner)—Demonstration of the no constancy of the ct products for control. J. Fur Kult. 2011, 63, 323–332. [Google Scholar]
- Haritos, V.S.; Damcevski, K.A.; Dojchinov, G. Improved efficacy of ethyl formate against stored grain insects by combination with carbon dioxide in a ‘dynamic’ application. Pest Manag. Sci. 2006, 62, 325–333. [Google Scholar] [CrossRef]
- Rambeau, M.; Benitez, D.; Dupuis, S.; Ducom, P. Hydrogen cyanide as an immediate alterative to methyl bromide for structural fumigations. In Proceedings of the International Conference on Controlled Atmosphere and Fumigation in Stored Products, Fresno, CA, USA, 29 October–3 November 2000; Donahaye, E.J., Navarro, S., Leesch, J.G., Eds.; Executive Printing Services: Clovis, CA, USA, 2001; pp. 101–111. [Google Scholar]
- Liu, Y.B. Nitric oxide as a potent fumigant for postharvest pest control. J. Econ. Entomol. 2013, 106, 2267–2274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copping, L.G.; Duke, S.O. Natural products that have been used commercially as crop protection agents. Pest Manag. Sci. 2007, 63, 524–554. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wang, K.; Huang, Q.; Lei, C. Evaluation toxicity of monoterpenes to subterranean termite, Reticulitermes chinensis Snyder. Ind. Crop. Prod. 2014, 53, 163–166. [Google Scholar] [CrossRef]
- Lee, B.-H.; Annis, P.C.; Tumaalii, F.; Choi, W.-S. Fumigant toxicity of essential oils from the Myrtaceae family and 1,8-cineole against 3 major stored-grain insects. J. Stored Prod. Res. 2004, 40, 553–564. [Google Scholar] [CrossRef]
- Borzoui, E.; Naseri, B.; Abedi, Z.; Karimi-Pormehr, M.S. Lethal and sublethal effects of essential oils from Artemisia khorassanica and Vitex pseudo-negundo against Plodia interpunctella (Lepidoptera: Pyralidae). Environ. Entomol. 2016, 45, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Park, C.G.; Shin, E.; Kim, J. Insecticidal activities of essential oils, Gaultheria fragrantissima and Illicium verum, their components and analogs against Callosobruchus chinensis adults. J. Asia-Pac. Entomol. 2016, 19, 269–273. [Google Scholar] [CrossRef]
- Negre, F.; Kish, C.M.; Boatright, J.; Underwood, B.; Shibuya, K.; Wagner, C.; Clark, D.G.; Dudareva, N. Regulation of methyl benzoate emission after pollination in snapdragon and petunia flowers. Plant Cell 2003, 15, 2992–3006. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, M.I.; Naheed, N.; Abbaskhan, A.; Musharraf, S.G.; Siddiqui, H. Atta-Ur-Rahman Phenolic and other constituents of fresh water fern Salvinia molesta. Phytochemistry 2008, 69, 1018–1023. [Google Scholar] [CrossRef]
- Bickers, D.R.; Calow, P.; Greim, H.A.; Hanifin, J.M.; Rogers, A.E.; Saurat, J.-H.; Glenn Sipes, I.; Smith, R.L.; Tagami, H. The safety assessment of fragrance materials. Regul. Toxicol. Pharmacol. 2003, 37, 218–273. [Google Scholar] [CrossRef]
- Atkinson, R. A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds. Int. J. Chem. Kinet. 1987, 19, 799–828. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, A. A floral fragrance methyl benzoate is an efficient green pesticide. Sci. Rep. 2017, 7, 42168. [Google Scholar] [CrossRef] [PubMed]
- Mostafiz, M.M.; Jhan, P.K.; Shim, J.K.; Lee, K.Y. Methyl benzoate exhibits insecticidal and repellent activities against Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). PLoS ONE 2018, 13, e0208552. [Google Scholar] [CrossRef] [PubMed]
- Mostafiz, M.M.; Hassan, E.; Shim, J.K.; Lee, K.Y. Insecticidal efficacy of three benzoate derivatives against Aphis gossypii and its predator Chrysoperla carnea. Ecotoxicol. Environ. Saf. 2019, 184, 109653. [Google Scholar] [CrossRef] [PubMed]
- Mostafiz, M.M.; Shim, J.K.; Hwang, H.S.; Bunch, H.; Lee, K.Y. Acaricidal effects of methyl benzoate against Tetranychus urticae Koch (Acari: Tetranychidae) on common crop plants. Pest Manag. Sci. 2020, 76, 2347–2354. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Rashid, T.; Feng, G.; Feng, Y.; Zhang, A.; Grodowitz, M.J. Insecticidal activity of methyl benzoate analogs against red imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae). J. Econ. Entomol. 2019, 112, 691–698. [Google Scholar] [CrossRef] [Green Version]
- Morrison, W.R.; Larson, N.L.; Brabec, D.; Zhang, A. Methyl benzoate as a putative alternative, environmentally friendly fumigant for the control of stored product insects. J. Econ. Entomol. 2019, 112, 2458–2468. [Google Scholar] [CrossRef]
- Larson, N.R.; Zhang, A.; Feldlaufer, M.F. Fumigation activities of ethyl benzoate and its derivatives against the common bed bug (Hemiptera: Cimicidae). J. Med. Entomol. 2020, 57, 187–191. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.-B.; Feng, Y.; Zhang, A. Methyl benzoate fumigation for control of post-harvest pests and its effects on apple quality. J. Appl. Entomol. 2020, 144, 191–200. [Google Scholar] [CrossRef]
- SAS Institute Inc. Base SAS 9.4 Procedures Guide: High-Performance Procedures, 6th ed.; SAS Institute Inc.: Cary, NC, USA, 2016. [Google Scholar]
- Shaaya, E.; Kostjukovski, M.; Eilberg, J.; Sukprakarn, C. Plant oils as fumigants and contact insecticides for the control of stored-product insects. J. Stored Prod. Res. 1997, 33, 7–15. [Google Scholar] [CrossRef]
- Kedia, A.; Prakash, B.; Mishra, P.K.; Singh, P.; Dubey, N.K. Botanicals as eco friendly biorational alternatives of synthetic pesticides against Callosobruchus spp. (Coleoptera: Bruchidae)—A review. J. Food Sci. Technol. 2015, 52, 1239–1257. [Google Scholar] [CrossRef]
- Abdelgaleil, S.A.M.; Mohamed, M.I.E.; Badawy, M.E.I.; El-arami, S.A.A. Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. J. Chem. Ecol. 2009, 35, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, T.; Zhang, Y.; Wang, L.; Xie, Y. Fumigant toxicity of monoterpenes against fruitfly, Drosophila melanogaster. Ind. Crop. Prod. 2016, 81, 147–151. [Google Scholar] [CrossRef]
- Toloza, A.C.; Zygadlo, J.; Cueto, G.M.; Biurrun, F.; Zerba, E.; Picollo, M.I. Fumigant and repellent properties of essential oils and component compounds against permethrin-resistant Pediculus humanus capitis (Anoplura: Pediculidae) from Argentina. J. Med. Entomol. 2006, 43, 889–895. [Google Scholar] [CrossRef]
- Gaire, S.; Scharf, M.E.; Gondhalekar, A.D. Toxicity and neurophysiological impacts of plant essential oil components on bed bugs (Cimicidae: Hemiptera). Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jesser, E.N.; Werdin-González, J.O.; Murray, A.P.; Ferrero, A.A. Efficacy of essential oils to control the Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). J. Asia-Pac. Entomol. 2017, 20, 1122–1129. [Google Scholar] [CrossRef] [Green Version]
- Phillips, A.K.; Appel, A.G.; Sims, S.R. Topical toxicity of essential oils to the German cockroach (Dictyoptera: Blattellidae). J. Econ. Entomol. 2010, 103, 448–459. [Google Scholar] [CrossRef]
- Lee, S.; Peterson, C.J.; Coats, J.R. Fumigation toxicity of monoterpenoids to several stored product insects. J. Stored Prod. Res. 2003, 39, 77–85. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Prajapati, V.; Khanuja, S.P.S.; Kumar, S. Effect of d-limonene on three stored-product beetles. J. Econ. Entomol. 2003, 96, 990–995. [Google Scholar] [CrossRef]
- Lima, R.K.; Cardoso, M.D.; Moraes, J.C.; Carvalho, S.M.; Rodrigues, V.G.; Guimarães, L.G.L. Chemical composition and fumigant effect of essential oil of Lippia sidoides Cham. and monoterpenes against Tenebrio molitor (L.) (Coleoptera: Tenebrionidae). Ciência E Agrotecnol. 2011, 35, 664–671. [Google Scholar] [CrossRef]
MBe Concentrations (μL/L air) | LT50 (h) | 95% CI (Lower–Upper) | Slope (SEM) | X2 (df) |
---|---|---|---|---|
0.1 | 3.8 | (3.6–4.2) | 6.5 (0.85) | 0.54 (2) |
0.3 | 3.3 | (2.3–16.4) | 4.9 (1.05) | 7.31 (2) |
0.5 | 2.8 | (1.33–6.0) | 4.9 (1.85) | 32.7 (2) |
1.0 | 2.0 | - | 3.9 (1.47) | 34.8 (2) |
Treatment | LC50 (μL/L air) | 95% CI (Lower–Upper) | Slope (SEM) | X2 (df) |
---|---|---|---|---|
Methyl benzoate | 0.1 | - | 1.8 (0.23) | 12.16 (2) |
Ethyl formate | 3.2 | (2.1–3.7) | 10.4 (1.87) | 4.98 (2) |
Source | Type III Sum of Squares | df | Mean Square | F | p |
---|---|---|---|---|---|
Corrected Model | 100,180 | 19 | 5272.632 | 113.39 | <0.0001 |
Intercept | 84,100 | 1 | 84,100 | 1808.6 | <0.0001 |
MBe concentrations | 34,330 | 4 | 8582.5 | 184.57 | <0.0001 |
Exposure times | 51,116 | 3 | 17,038.667 | 366.423 | <0.001 |
MBe concentrations × Exposure times | 14,734 | 12 | 1227.833 | 26.405 | <0.001 |
Error | 3720 | 80 | 46.5 | ||
Total | 188,000 | 100 | |||
Corrected Total | 103,900 | 99 |
Compound | Vapor Pressure (mmHg at 25 °C) | Boiling Point (°C at 760 mmHg) |
---|---|---|
Methyl benzoate | 0.38 | 199.0 |
Citronellal | 0.28 | 207.0 |
Linalool | 0.10 | 198.0 |
1,8 cineole | 1.60 | 176.0 |
Limonene | 1.50 | 175.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafiz, M.M.; Hassan, E.; Acharya, R.; Shim, J.-K.; Lee, K.-Y. Methyl Benzoate Is Superior to Other Natural Fumigants for Controlling the Indian Meal Moth (Plodia interpunctella). Insects 2021, 12, 23. https://doi.org/10.3390/insects12010023
Mostafiz MM, Hassan E, Acharya R, Shim J-K, Lee K-Y. Methyl Benzoate Is Superior to Other Natural Fumigants for Controlling the Indian Meal Moth (Plodia interpunctella). Insects. 2021; 12(1):23. https://doi.org/10.3390/insects12010023
Chicago/Turabian StyleMostafiz, Md Munir, Errol Hassan, Rajendra Acharya, Jae-Kyoung Shim, and Kyeong-Yeoll Lee. 2021. "Methyl Benzoate Is Superior to Other Natural Fumigants for Controlling the Indian Meal Moth (Plodia interpunctella)" Insects 12, no. 1: 23. https://doi.org/10.3390/insects12010023
APA StyleMostafiz, M. M., Hassan, E., Acharya, R., Shim, J. -K., & Lee, K. -Y. (2021). Methyl Benzoate Is Superior to Other Natural Fumigants for Controlling the Indian Meal Moth (Plodia interpunctella). Insects, 12(1), 23. https://doi.org/10.3390/insects12010023