Land-Use Effect on Olive Groves Pest Prays oleae and on Its Potential Biocontrol Agent Chrysoperla carnea
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites and Landscape Analyses
2.2. Insect Sampling
2.3. Statistical Analyses
3. Results
3.1. The Effect of Different Land-Uses on P. oleae Population
3.2. The Effect of Different Land-Uses and P. oleae Abundance on C. carnea Abundance
3.3. The Effect of Landscape Metrics on the Level of Infestation in Olive Groves
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. United Nations General Assembly. 2015. Available online: https://www.un.org/sustainabledevelopment/hunger/ (accessed on 12 March 2020).
- Meehan, T.D.; Werling, B.P.; Landis, D.A.; Gratton, C. Agricultural landscape simplification and insecticide use in the Midwestern United States. In Proceedings of the National Academy of Sciences, Washington, DC, USA, 12 July 2011; pp. 11500–11505. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D.; Acquay, H.; Biltonen, M.; Rice, P.; Silva, M.; Nelson, J.; Lipner, V.; Giordano, S.; Horowitz, A.; D’amore, M. Environmental and economic costs of pesticide use. BioScience 1992, 42, 750–760. [Google Scholar] [CrossRef]
- DeBach, P. Biological Control of Insect Pests and Weeds; Chapman and Hall: London, UK, 1964. [Google Scholar]
- Coll, M. Conservation biological control and the management of biological control services: Are they the same? Phytoparasitica 2009, 37, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Eilenberg, J.; Hajek, A.; Lomer, C. Suggestions for unifying the terminology in biological control. BioControl 2001, 46, 387–400. [Google Scholar] [CrossRef]
- Bianchi, F.J.J.A.; Booij, C.J.H.; Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. Royal Soc. B Biol. Sci. 2006, 273, 1715–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 2000, 45, 175–201. [Google Scholar] [CrossRef]
- Paredes, D.; Cayuela, L.; Campos, M. Synergistic effects of ground cover and adjacent vegetation on natural enemies of olive insect pests. Agric. Ecosyst. Environ. 2013, 173, 72–80. [Google Scholar] [CrossRef]
- Szentkirályi, F. Lacewings in fruit and nut crops. In Lacewings in the Crop Environment; McEwen, P.K., New, T.R., Whittington, A.E., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 172–238. [Google Scholar]
- Alcalá Herrera, R.; Ruano, F.; Gálvez Ramírez, C.; Frischie, S.; Campos, M. Attraction of green lacewings (Neuroptera: Chrysopidae) to native plants used as ground cover in woody Mediterranean agroecosystems. Biol. Control. 2019, 139, 104066. [Google Scholar] [CrossRef] [Green Version]
- Villa, M.; Santos, S.A.P.; Benhadi-Marín, J.; Mexia, A.; Bento, A.; Pereira, J.A. Life-history parameters of C. carnea s.l. fed on spontaneous plant species and insect honeydews: Importance for conservation biological control. BioControl 2016, 61, 533–543. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; O’Rourke, M.; Schellhorn, N.; Zhang, W.; Robinson, B.E.; Gratton, C.; Rosenheim, J.A.; Tscharntke, T.; Karp, D.S. Measuring What Matters: Actionable Information for Conservation Biocontrol in Multifunctional Landscapes. Front. Sustain. Food Syst. 2019, 3, 60. [Google Scholar] [CrossRef] [Green Version]
- Margosian, M.L.; Garrett, K.A.; Hutchinson, J.M.S.; With, K.A. Connectivity of the American agricultural landscape: Assessing the national risk of crop pest and disease spread. BioScience 2009, 59, 141–151. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; O’Rourke, M.; Blitzer, E.; Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 2011, 14, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Liere, H.; Kim, T.N.; Werling, B.P.; Meehan, T.D.; Landis, D.A.; Gratton, C. Trophic cascades in agricultural landscapes: Indirect effects of landscape composition on crop yield. Ecol. Appl. 2015, 25, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Rusch, A.; Valantin-Morison, M.; Sarthou, J.P.; Roger-Estrade, J. Biological control of insect pests in agroecosystems. Effects of crop management, farming systems, and seminatural habitats at the landscape scale: A review. Adv. Agron. 2010, 109. [Google Scholar] [CrossRef]
- Steffan-Dewenter, I.; Tscharntke, T.; Thies, C. Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 2003, 101, 18–25. [Google Scholar]
- Tscharntke, T.; Bommarco, R.; Clough, Y.; Crist, T.O.; Kleijn, D.; Rand, T.A.; Tylianakis, J.M.; Van Nouhuys, S.; Vidal, S. Conservation biological control and enemy diversity on a landscape scale. Biol. Control. 2007, 43, 294–309. [Google Scholar] [CrossRef]
- Jervis, M.A.; Kidd, N.A.C.; Fitton, M.G.; Huddleston, T.; Dawah, H.A. Flower-visiting by hymenopteran parasitoids. J. Nat. Hist. 1993, 27. [Google Scholar] [CrossRef]
- Wäckers, F.L. Suitability of (extra-)floral nectar, pollen, and honeydew as insect food sources. Plant Provid. Food Carniv. Insects Prot. Mutual. Appl. 2005. [Google Scholar] [CrossRef]
- Rusch, A.; Chaplin-Kramer, R.; Gardiner, M.M.; Hawro, V.; Holland, J.; Landis, D.; Thies, C.; Tscharntke, T.; Weisser, W.W.; Winqvist, C.; et al. Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agric. Ecosyst. Environ. 2016, 221, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Risch, S.J.; Andow, D.; Altieri, M.A. Agroecosystem Diversity and Pest Control: Data, Tentative Conclusions, and New Research Directions. Environ. Entomol. 1983, 12, 625–629. [Google Scholar] [CrossRef]
- Root, R.B. Organization of a Plant.-Arthropod Association in Simple and Diverse Habitats: The Fauna of Collards (Brassica Oleracea). Ecol. Monogr. 1973, 43, 95–124. Available online: http://www.jstor.org/stable/1942161 (accessed on 25 June 2020). [CrossRef]
- Arambourg, Y.; Pralavorio, R. Hyponomeutidae. P. oleae. In Traité d’Entomologie Oléicole; Arambourg, Y., Ed.; Conseil Oléicole International: Madrid, Spain, 1986; pp. 47–91. [Google Scholar]
- García, A.G. Nueva Olivicultura; Mundi-Prensa Libros: Madrid, Spain, 2003; 281p. [Google Scholar]
- Liñán-Vicente, D.E.C. Entomología Agroforestal; Ediciones Agrotécnicas S.L.: Madrid, Spain, 1998. [Google Scholar]
- Ramos, P.; Campos, M.; Ramos, J.M. Long-term study on the evaluation of yield and economic losses caused by P. oleae Bern. in the olive crop of Granada (southern Spain). Crop. Protect. 1998, 17, 645–647. [Google Scholar] [CrossRef]
- DRAPC—Direção Regional de Agricultura e Pescas do Centro (n.d.). Divisão de Apoio à Agricultura e Pescas. Estação de Avisos. Available online: http://www.drapc.min-agricultura.pt/base/documentos/traca_oliveira.pdf (accessed on 19 March 2020).
- Junta de Castilla y León. Boletín Fitosanitario 2006/6. P. Del Olivo. 2006. Available online: https://agriculturaganaderia.jcyl.es/web/jcyl/AgriculturaGanaderia/es/Plantilla100Detalle/1241432326693/Publicacion/1284255826059/Redaccion (accessed on 19 March 2020).
- Campos, M. Lacewings in Andalusian olive orchards. In Lacewings in the Crop Environment; McEwen, P.K., New, T.R., Whittington, A.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 492–497. [Google Scholar]
- Pappas, M.L.; Broufas, G.D.; Koveos, D.S. Chrysopid predators and their role in biological control. J. Entomol. 2011, 8, 301–326. [Google Scholar] [CrossRef] [Green Version]
- Sacchetti, P. Observations on the activity and bioethology of the natural enemies of P. oleae (Bern.) in Tuscany. I. Predators. Redia 1990, 73, 243–259. [Google Scholar]
- Bozsik, A. Natural Adult Food of Some Important Chrysopa Species (Planipennia, Chrysopidae). Acta Phytopathol. Entomol. Hung. 1992, 27, 141–146. [Google Scholar]
- Villenave, J.; Deutsch, B.; Lodé, T.; Rat-Morris, E. Pollen preference of the Chrysoperla species (Neuroptera: Chrysopidae) occurring in the crop environment in western France. Eur. J. Entomol. 2006, 103, 771–777. [Google Scholar] [CrossRef] [Green Version]
- Hogervorst, P.A.M.; Wäckers, F.L.; Romeis, J. Detecting nutritional state and food source use in field-collected insects that synthesize honeydew oligosaccharides. Funct. Ecol. 2007, 21, 936–946. [Google Scholar] [CrossRef]
- Bond, A.B. Optimal foraging in a uniform habitat: The search mechanism of the green lacewing. Anim. Behav. 1980, 28, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Kremen, C.; Williams, N.M.; Aizen, M.A.; Gemmill-Herren, B.; LeBuhn, G.; Minckley, R.; Packer, L.; Potts, S.G.; Roulston, T.; Steffan-Dewenter, I.; et al. Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecol. Lett. 2007, 10, 299–314. [Google Scholar] [CrossRef]
- Serée, L.; Rouzes, R.; Thiéry, D.; Rusch, A. Temporal variation of the effects of landscape composition on lacewings (Chrysopidae: Neuroptera) in vineyards. Agric. For. Entomol. 2020, 22, 274–283. [Google Scholar] [CrossRef]
- Shannon, C.; Weaver, W. The mathematical theory of communication. In Urbana; University of Illinois Press: Champaign, IL, USA, 1964. [Google Scholar] [CrossRef]
- Wood, S. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011, 73, 3–36. [Google Scholar] [CrossRef] [Green Version]
- Henry, C.S.; Brooks, S.J.; Thierry, D.; Duelli, P.; Johnson, J.B. The common green lacewing (Chrysoperla carnea s. lat.) and the sibling species problem. In Lacewings in the Crop Environment; McEwen, P.K., New, T.R., Whittington, A.E., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 29–42. [Google Scholar]
- Lourenço, P.; Brito, C.; Backeljau, T.; Thierry, D.; Ventura, M.A. Molecular systematics of the Chrysoperla carnea group (Neuroptera: Chrysopidae) in Europe. J. Zool. Syst. Evolut. Res. 2006, 44, 180–184. [Google Scholar] [CrossRef]
- Zurr, A.; Ieno, E.; Walker, N.; Saveliev, A.; Smith, G. Mixed Effects Models and Extensions in Ecology with R; Springer Science & Business Media: Berlin, Germany, 2009. [Google Scholar]
- Kleiber, C.; Zeileis, A. Applied econometrics with R. In Applied Spatial Data Analysis with R; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. arXiv 2015, arXiv:1406.5823. [Google Scholar]
- Bento, A.; Lopes, J.; Torres, L.; Passos-Carvalho, P. Biological control of P. oleae (Bern.) By chrysopids in tras-os-Montes region (Northeastern Portugal). Acta Hortic. 1999, 474, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Porcel, M.; Cotes, B.; Castro, J.; Campos, M. The effect of resident vegetation cover on abundance and diversity of green lacewings (Neuroptera: Chrysopidae) on olive trees. J. Pest. Sci. 2017, 90, 195–206. [Google Scholar] [CrossRef]
- Duelli, P. Dispersal and oviposition strategies in Chrysoperla carnea. In Progress in World’s Neuropterology: Proceedings of the 1st International Symposium of Neuropterology in Graz (Austria): Insecta, Megaloptera, Raphidioptera, Planipennia); Gepp, J., AspGck, H., HGlzel, H., Eds.; Smithsonian Libraries: Washington, DC, USA, 1984; pp. 133–145. [Google Scholar]
- Tscharntke, T.; Klein, A.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Andow, D.A. Vegetational diversity and arthropod population response. Annu. Rev. Entomol. 1991, 36, 561–586. [Google Scholar] [CrossRef]
- Langellotto, G.A.; Denno, R.F. Responses of invertebrate natural enemies to complex-structured habitats: A meta-analytical synthesis. Oecologia 2004, 139, 1–10. [Google Scholar] [CrossRef]
- Villa, M.; Santos, S.A.P.; Sousa, J.P.; Ferreira, A.; da Silva, P.M.; Patanita, I.; Ortega, M.; Pascual, S.; Pereira, J.A. Landscape composition and configuration affect the abundance of the olive moth (P. oleae, Bernard) in olive groves. Agric. Ecosyst. Environ. 2020, 294, 106854. [Google Scholar] [CrossRef]
- Paredes, D.; Cayuela, L.; Campos, M. Potential of ecological infrastructures to restore conservation biological control: Case study in Spanish olive groves. In Natural Enemies. Identification Protection Strategies and Ecological Impacts; Nova Publishers: New York, NY, USA, 2017. [Google Scholar]
- Lozano, C.; Morris, T.; Campos, M.; Pereira, J.A.; Bento, A.; Albareda, P. Detection by ELISA of Predators of P. oleae (Lepidoptera: Plutellidae) in a Portuguese Olive Orchard. Symp. Olive Grow. 2002, 527, 831–834. [Google Scholar] [CrossRef] [Green Version]
- Paredes, D.; Cayuela, L.; Gurr, G.M.; Campos, M. Is ground cover vegetation an effective biological control enhancement strategy against Olive Pests? PLoS ONE 2015, 10, e0117265. [Google Scholar] [CrossRef] [Green Version]
- Paredes, D.; Karp, D.S.; Chaplin-Kramer, R.; Benítez, E.; Campos, M. Natural habitat increases natural pest control in olive groves: Economic implications. J. Pest. Sci. 2019. [Google Scholar] [CrossRef]
Model Type | AICc |
---|---|
Null Model | 554.02 |
C. carnea | 550.58 |
Eucalyptus plantations | 549.72 |
Eucalyptus plantations + C. carnea | 549.82 |
Eucalyptus plantations × C. carnea | 538.85 |
Grasslands | 542.97 |
Grasslands + C. carnea | 532.63 |
Grasslands × C. carnea | 500.81 |
Oak forests | 555.71 |
Oak forests + C. carnea | 552.59 |
Oak forests × C. carnea | 551.89 |
Shrublands | 552.34 |
Shrublands + C. carnea | 546.73 |
Shrublands × C. carnea | 548.72 |
Vineyards | 513.40 |
Vineyards + C. carnea | 514.09 |
Vineyards × C. carnea | 506.92 |
Olive Groves | 537.42 |
Olive Groves + C. carnea | 530.84 |
Olive Groves × C. carnea | 449.71 |
Pine Forests | 545.28 |
Pine Forests + C. carnea | 538.09 |
Pine Forests × C. carnea | 538.72 |
Shannon’s diversity index | 543.25 |
Shannon’s diversity index + C. carnea | 536.85 |
Shannon’s diversity index × C. carnea | 505.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, J.F.; Mendes, S.; Alves da Silva, A.; Sousa, J.P.; Paredes, D. Land-Use Effect on Olive Groves Pest Prays oleae and on Its Potential Biocontrol Agent Chrysoperla carnea. Insects 2021, 12, 46. https://doi.org/10.3390/insects12010046
Alves JF, Mendes S, Alves da Silva A, Sousa JP, Paredes D. Land-Use Effect on Olive Groves Pest Prays oleae and on Its Potential Biocontrol Agent Chrysoperla carnea. Insects. 2021; 12(1):46. https://doi.org/10.3390/insects12010046
Chicago/Turabian StyleAlves, João Frederico, Sara Mendes, António Alves da Silva, José Paulo Sousa, and Daniel Paredes. 2021. "Land-Use Effect on Olive Groves Pest Prays oleae and on Its Potential Biocontrol Agent Chrysoperla carnea" Insects 12, no. 1: 46. https://doi.org/10.3390/insects12010046
APA StyleAlves, J. F., Mendes, S., Alves da Silva, A., Sousa, J. P., & Paredes, D. (2021). Land-Use Effect on Olive Groves Pest Prays oleae and on Its Potential Biocontrol Agent Chrysoperla carnea. Insects, 12(1), 46. https://doi.org/10.3390/insects12010046