Pollen Feeding Reduces Predation of Northern Corn Rootworm Eggs (Coleoptera: Chrysomelidae, Diabrotica barberi) by a Soil-Dwelling Mite (Acari: Laelapidae: Stratiolaelaps scimitus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Observational Field Surveys of Diabroticite Beetles
2.1.1. Seasonal Survey
2.1.2. Geographical Survey
2.2. NCR Egg Predation Experiments
2.2.1. Pollen Collection
2.2.2. Collection of NCR Eggs
2.2.3. Confirmation of NCR Pollen Feeding
2.2.4. Predation Experiments
2.3. Statistical Analyses
2.3.1. Seasonal Survey
2.3.2. Geographical Survey
2.3.3. Confirmation of NCR Pollen Feeding
2.3.4. Predation Experiments
3. Results
3.1. Seasonal Survey
3.2. Geographical Survey
3.3. Confirmation of NCR Pollen Feeding
3.4. Predation Experiments
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burchfield, E.K.; Nelson, K.S.; Spangler, K. The impact of agricultural landscape diversification on U.S. crop production. Agric. Ecosyst. Environ. 2019, 285, 106615. [Google Scholar] [CrossRef]
- Letourneau, D.K.; Armbrecht, I.; Rivera, B.S.; Lerma, J.M.; Carmona, E.J.; Daza, M.C.; Escobar, S.; Galindo, V.; Gutiérrez, C.; López, S.D.; et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 2011, 21, 9–21. [Google Scholar] [CrossRef]
- Lu, Z.-X.; Zhu, P.-Y.; Gurr, G.M.; Zheng, X.-S.; Read, D.M.Y.; Heong, K.L.; Yang, Y.-J.; Xu, H.-X. Mechanisms for flowering plants to benefit arthropod natural enemies of insect pests: Prospects for enhanced use in agriculture. Insect Sci. 2014, 21, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Holland, J.M.; Douma, J.C.; Crowley, L.; James, L.; Kor, L.; Stevenson, D.R.W.; Smith, B.M. Semi-natural habitats support biological control, pollination and soil conservation in Europe. A review. Agron. Sustain. Dev. 2017, 37, 31. [Google Scholar] [CrossRef] [Green Version]
- Lichtenberg, E.M.; Kennedy, C.M.; Kremen, C.; Batáry, P.; Berendse, F.; Bommarco, R.; Bosque-Pérez, N.A.; Carvalheiro, L.G.; Snyder, W.E.; Williams, N.M.; et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Chang. Biol. 2017, 23, 4946–4957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, S.M.; LeDoux, D.G.; Seeno, T.N.; Riley, E.G.; Gilbert, A.J.; Sullivan, J.M. Host Plants of Leaf Beetle Species Occurring in the United States and Canada (Coleoptera: Orsodacnidae, Megalopodidae, Chrysomelidae, Exclusive of Bruchinae); No. 2; The Coleopterists Society: Brookings, SD, USA, 2004. [Google Scholar]
- Romeis, J.; Städler, E.; Wäckers, F.L. Nectar- and pollen-feeding by adult herbivorous insects. In Plant-Provided Food for Carnivorous Insects; Cambridge University Press: Cambridge, UK, 2005; pp. 178–220. [Google Scholar]
- Lavandero, B.; Wratten, S.D.; Didham, R.K.; Gurr, G. Increasing floral diversity for selective enhancement of biological control agents: A double-edged sward? Basic Appl. Ecol. 2006, 7, 236–243. [Google Scholar] [CrossRef]
- Wäckers, F.L.; Romeis, J.; van Rijn, P. Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. Annu. Rev. Èntomol. 2007, 52, 301–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrié, R.J.G.; George, D.R.; Wäckers, F.L. Selection of floral resources to optimise conservation of agriculturally-functional insect groups. J. Insect Conserv. 2012, 16, 635–640. [Google Scholar] [CrossRef]
- Roulston, T.H.; Cane, J.H. Pollen nutritional content and digestibility for animals. Plant Syst. Evol. 2000, 222, 187–209. [Google Scholar] [CrossRef]
- Lundgren, J.G. Relationships of Natural Enemies and Non-Prey Foods; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Dobson, H.E.M.; Bergström, G. The ecology and evolution of pollen odors. Plant Syst. Evol. 2000, 222, 63–87. [Google Scholar] [CrossRef]
- Johnson, R.M. Honey bee toxicology. Annu. Rev. Entomol. 2015, 60, 415–434. [Google Scholar] [CrossRef] [Green Version]
- Palmer-Young, E.C.; Farrell, I.W.; Adler, L.S.; Milano, N.J.; Egan, P.A.; Junker, R.R.; Irwin, R.E.; Stevenson, P.C. Chemistry of floral rewards: Intra- and interspecific variability of nectar and pollen secondary metabolites across taxa. Ecol. Monogr. 2019, 89, e01335. [Google Scholar] [CrossRef] [Green Version]
- Rivest, S.; Forrest, J.R.K. Defence compounds in pollen: Why do they occur and how do they affect the ecology and evolution of bees? New Phytol. 2020, 225, 1053–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, P.C. For antagonists and mutualists: The paradox of insect toxic secondary metabolites in nectar and pollen. Phytochem. Rev. 2020, 19, 603–614. [Google Scholar] [CrossRef] [Green Version]
- Opitz, S.E.W.; Müller, C. Plant chemistry and insect sequestration. Chemoecology 2009, 19, 117–154. [Google Scholar] [CrossRef]
- Pasteels, J.M.; Braekman, J.-C.; Daloze, D. Chemical defense in chrysomelid larvae and adults. Tetrahedon 1982, 38, 1891–1897. [Google Scholar] [CrossRef]
- Pasteels, J.M.; Braekman, J.-C.; Daloze, D. Chemical defense in the Chrysomelidae. In Biology of Chrysomelidae; Jolivet, P., Petitpierre, E., Hsiao, T.H., Eds.; Series Entomologica; Springer Netherlands: Dordrecht, The Netherlands, 1988; pp. 233–252. [Google Scholar]
- Pasteels, J.M.; Duffey, S.; Rowell-Rahier, M. Toxins in chrysomelid beetles: Possible evolutionary sequence from de novo synthesis to derivation from food-plant chemicals. J. Chem. Ecol. 1990, 16, 211–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert, C.A.; Zhang, X.; Machado, R.A.; Schirmer, S.; Lori, M.; Mateo, P.; Erb, M.; Gershenzon, J. Sequestration and activation of plant toxins protect the western corn rootworm from enemies at multiple trophic levels. eLife 2017, 6, e29307. [Google Scholar] [CrossRef]
- Rowell-Rahier, M.; Pasteels, J.M. Economics of chemical defense in Chrysomelinae. J. Chem. Ecol. 1986, 12, 1189–1203. [Google Scholar] [CrossRef] [Green Version]
- Tallamy, D.W.; Whittington, D.P.; Defurio, F.; Fontaine, D.A.; Gorski, P.M.; Gothro, P.W. Sequestered cucurbitacins and pathogenicity of Metarhizium anisopliae (Moniliales: Moniliaceae) on spotted cucumber beetle eggs and larvae (Coleoptera: Chrysomelidae). Environ. Entomol. 1998, 27, 366–372. [Google Scholar] [CrossRef]
- Tallamy, D.W.; Gorski, P.M.; Burzon, J.K. Fate of male-derived cucurbitacins in spotted cucumber beetle females. J. Chem. Ecol. 2000, 26, 413–427. [Google Scholar] [CrossRef]
- Blum, M.S.; Hilker, M. Chemical protection of insect eggs. In Chemoecology of Insect Eggs and Egg Deposition; Blackwell Publishing: Berlin, Germany, 2003; pp. 61–90. [Google Scholar]
- Levine, E.; Oloumi-Sadeghi, H. Management of Diabroticite rootworms in corn. Annu. Rev. Entomol. 1991, 36, 229–255. [Google Scholar] [CrossRef]
- Gray, M.E.; Sappington, T.W.; Miller, N.J.; Moeser, J.; Bohn, M.O. Adaptation and invasiveness of western corn rootworm: Intensifying research on a worsening pest. Annu. Rev. Èntomol. 2009, 54, 303–321. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.R. Comparison of emergence of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) from cut and uncut corn plants in artificial and natural infestations. J. Kans. Entomol. Soc. 1984, 57, 405–408. [Google Scholar]
- Ellsbury, M.M.; Woodson, W.D.; Clay, S.A.; Malo, D.; Schumacher, J.; Clay, D.E.; Carlson, C.G. Geostatistical characterization of the spatial distribution of adult corn rootworm (Coleoptera: Chrysomelidae) emergence. Environ. Entomol. 1998, 27, 910–917. [Google Scholar] [CrossRef] [Green Version]
- Cinereski, J.E.; Chiang, H.C. The pattern of movements of adults of the northern corn rootworm inside and outside of corn fields. J. Econ. Entomol. 1968, 61, 1531–1536. [Google Scholar] [CrossRef]
- Ludwig, K.A.; Hill, R.E. Comparison of gut contents of adult western and northern cora rootworms in Northeast Nebraska. Environ. Entomol. 1975, 4, 435–438. [Google Scholar] [CrossRef]
- Lance, D.R.; Elliott, N.C.; Hein, G.L. Flight activity of Diabrotica spp. at the borders of cornfields and its relation to ovarian stage in D. barberi. Entomol. Exp. Appl. 1989, 50, 61–67. [Google Scholar] [CrossRef]
- Naranjo, S.E.; Sawyer, A.J. Impact of host plant phenology on the population dynamics and oviposition of northern corn rootworms, Diabrotica barberi (Coleoptera: Chrysomelidae), in field corn. Environ. Entomol. 1988, 17, 508–521. [Google Scholar] [CrossRef]
- Moeser, J.; Vidal, S. Nutritional resources used by the invasive maize pest Diabrotica virgifera virgifera in its new South-east-European distribution range. Entomol. Exp. Appl. 2005, 114, 55–63. [Google Scholar] [CrossRef]
- Campbell, L.A.; Meinke, L.J. Seasonality and adult habitat use by four Diabrotica species at prairie-corn interfaces. Environ. Entomol. 2006, 35, 922–936. [Google Scholar] [CrossRef] [Green Version]
- Levay, N.; Terpo, I.; Kiss, J.; Toepfer, S. Quantifying inter-field movements of the western corn rootworm (Diabrotica virgifera virgifera LeConte)—A central European field study. Cereal Res. Commun. 2015, 43, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, R.L.; Lampman, R.L. The chemical ecology of Diabroticites and Cucurbitaceae. Experientia 1989, 45, 240–247. [Google Scholar] [CrossRef]
- Grozea, I.; Trusca, R.; Stef, R.; Virteiu, A.M.; Carabet, A. Beans and pumpkin as attractive plants for Diabrotica virgifera virgifera LeConte adults. Res. J. Agric. Sci. 2011, 43, 3–7. [Google Scholar]
- Andersen, J.F.; Metcalf, R.L. Factors influencing distribution of Diabrotica spp. in blossoms of cultivated Cucurbita spp. J. Chem. Ecol. 1987, 13, 681–699. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, R.L.; Metcalf, R.A.; Rhodes, A.M. Cucurbitacins as kairomones for Diabroticite beetles. Proc. Natl. Acad. Sci. USA 1980, 77, 3769–3772. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.F.; Plattner, R.D.; Weisleder, D. Metabolic transformations of cucurbitacins by Diabrotica virgifera virgifera LeConte and D. undecimpunctata howardi Barber. Insect Biochem. 1988, 18, 71–77. [Google Scholar] [CrossRef]
- Ferguson, J.E.; Metcalf, R.L.; Fischer, D.C. Disposition and fate of cucurbitacin B in five species of Diabroticites. J. Chem. Ecol. 1985, 11, 1307–1321. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.E.; Metcalf, R.L. Cucurbitacins: Plant-derived defense compounds for Diabroticites (Coleoptera: Chrysomelidae). J. Chem. Ecol. 1985, 11, 311–318. [Google Scholar] [CrossRef]
- Nishida, R.; Yokoyama, M.; Fukami, H. Sequestration of cucurbitacin analogs by New and Old World chrysomelid leaf beetles in the tribe Luperini. Chemoecology 1992, 3, 19–24. [Google Scholar] [CrossRef]
- Howe, W.L.; Ortman, E.E.; George, B.W. Observations of the northern and western corn rootworms in South Dakota. Proc. North-Cent. Branch ESA 1963, 18, 83. [Google Scholar]
- Fisher, J.R.; Branson, T.F.; Sutter, G.R. Use of common squash cultivars, Cucurbita spp., for mass collection of corn rootworm beetles, Diabrotica spp. (Coleoptera: Chrysomelidae). J. Kans. Entomol. Soc. 1984, 57, 409–412. [Google Scholar]
- Metcalf, R.L. Coevolutionary adaptations of rootworm beetles (Coleoptera: Chrysomelidae) to cucurbitacins. J. Chem. Ecol. 1986, 12, 1109–1124. [Google Scholar] [CrossRef]
- Branson, T.F.; Krysan, J.L. Feeding and oviposition behavior and life cycle strategies of Diabrotica: An evolutionary view with implications for pest management. Environ. Entomol. 1981, 10, 826–831. [Google Scholar] [CrossRef]
- Ellsbury, M.M.; Clay, S.A.; Clay, D.E.; Malo, D. Within-field spatial variation of northern corn rootworm distributions. In Western Corn Rootworm: Ecology and Management; Vidal, S., Kuhlmann, U., Edwards, C.R., Eds.; CABI Publishing: Cambridge, MA, USA, 2005; pp. 145–153. [Google Scholar]
- Hill, R.E.; Mayo, Z.B. Distribution and abundance of corn rootworm species as influenced by topography and crop rotation in eastern Nebraska. Environ. Entomol. 1980, 9, 122–127. [Google Scholar] [CrossRef]
- Siegfried, B.D.; Mullin, C.A. Effects of alternative host plants on longevity, oviposition, and emergence of western and northern corn rootworms (Coleoptera: Chrysomelidae). Environ. Entomol. 1990, 19, 474–480. [Google Scholar] [CrossRef]
- Dickinson, J.A.; McKone, M.J. Insect floral visitors to four species of tall-grass prairie Composite (Asteraceae: Heliantheae). Prairie Nat. 1992, 24, 159–174. [Google Scholar]
- McKone, M.J.; McLauchlan, K.K.; Lebrun, E.G.; McCall, A.C. An edge effect caused by adult corn-rootworm beetles on sunflowers in tallgrass prairie remnants. Conserv. Biol. 2001, 15, 1315–1324. [Google Scholar] [CrossRef]
- Hollister, B.; Mullin, C.A. Isolation and identification of primary metabolite feeding stimulants for adult western corn rootworm, Diabrotica virgifera virgifera LeConte, from Host Pollens. J. Chem. Ecol. 1999, 25, 1263–1280. [Google Scholar] [CrossRef]
- Nicolson, S.W.; Human, H. Chemical composition of the ‘low quality’ pollen of sunflower (Helianthus annuus, Asteraceae). Apidologie 2013, 44, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Meinke, L.J.; Sappington, T.W.; Onstad, D.W.; Guillemaud, T.; Miller, N.J.; Komáromi, J.; Levay, N.; Furlan, L.; Kiss, J.; Toth, F. Western corn rootworm (Diabrotica virgifera virgifera LeConte) population dynamics. Agric. For. Entomol. 2009, 11, 29–46. [Google Scholar] [CrossRef] [Green Version]
- Spencer, J.L.; Hibbard, B.E.; Moeser, J.; Onstad, D.W. Behavior and ecology of the western corn rootworm (Diabrotica virgifera virgifera LeConte). Agric. For. Entomol. 2009, 11, 9–27. [Google Scholar] [CrossRef]
- Toepfer, S.; Kuhlmann, U. Constructing life-tables for the invasive maize pest Diabrotica virgifera virgifera (Col.; Chrysomelidae) in Europe. J. Appl. Èntomol. 2006, 130, 193–205. [Google Scholar] [CrossRef]
- Brust, G.E.; House, G.J. A study of Tyrophagus putrescentiae (Acari: Acaridae) as a facultative predator of southern corn rootworm eggs. Exp. Appl. Acarol. 1988, 4, 335–344. [Google Scholar] [CrossRef]
- Lundgren, J.G.; Ellsbury, M.E.; Prischmann, D.A. Analysis of the predator community of a subterranean herbivorous insect based on polymerase chain reaction. Ecol. Appl. 2009, 19, 2157–2166. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, J.G.; Nichols, S.; Prischmann, D.A.; Ellsbury, M.M. Seasonal and diel activity patterns of generalist predators associated with Diabrotica virgifera immatures (Coleoptera: Chrysomelidae). Biocontrol Sci. Technol. 2009, 19, 327–333. [Google Scholar] [CrossRef]
- Toepfer, S.; Haye, T.; Erlandson, M.; Goettel, M.; Lundgren, J.G.; Kleespies, R.G.; Weber, D.C.; Walsh, G.C.; Peters, A.; Ehlers, R.-U.; et al. A review of the natural enemies of beetles in the subtribe Diabroticina (Coleoptera: Chrysomelidae): Implications for sustainable pest management. Biocontrol Sci. Technol. 2009, 19, 1–65. [Google Scholar] [CrossRef]
- Prischmann, D.A.; Knutson, E.M.; Dashiell, K.E.; Lundgren, J.G. Generalist-feeding subterranean mites as potential biological control agents of immature corn rootworms. Exp. Appl. Acarol. 2011, 55, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Prischmann-Voldseth, D.A.; Lundgren, J.G. Tracking predation of subterranean pests: Digestion of corn rootworm DNA by a generalist mite. Biocontrol Sci. Technol. 2011, 21, 1507–1510. [Google Scholar] [CrossRef]
- Prischmann-Voldseth, D.A.; Dashiell, K.E. Effects of releasing a generalist predator (Acari: Gaeolaelaps aculeifer) on a subterranean insect herbivore (Coleoptera: Diabrotica virgifera virgifera). Biol. Control 2013, 65, 190–199. [Google Scholar] [CrossRef]
- Gould, F.; Massey, A. Cucurbitacins and predation of the spotted cucumber beetle, Diabrotica undecimpunctata howardi. Èntomol. Exp. Appl. 1984, 36, 273–278. [Google Scholar] [CrossRef]
- Schneiter, A.A.; Miller, J.F. Description of sunflower growth stages. Crop Sci. 1981, 21, 901–903. [Google Scholar] [CrossRef]
- Hammack, L.; French, B.W. Sexual dimorphism of basitarsi in pest species of Diabrotica and Cerotoma (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 2007, 100, 59–63. [Google Scholar] [CrossRef]
- Jones, G.D. Pollen extraction from insects. Palynology 2012, 36, 86–109. [Google Scholar] [CrossRef]
- Kapp, R.O. How to Know Pollen and Spores; WM. C. Brown Company Publishers: Dubuque, IO, USA, 1969. [Google Scholar]
- Faegri, K.; Iversen, J. Textbook of Pollen Analysis, 4th ed.; John Wiley & Sons: Chichester, UK, 1989. [Google Scholar]
- Van Bruggen, T. Wildflowers Grasses & Other Plants of the Northern Great Plains and Black Hills, 4th ed.; Badlands Natural History Association: Interior, SD, USA, 1992. [Google Scholar]
- CABI. Invasive Species Compendium, Helianthus tuberosus (Jerusalem Artichoke). 2020. Available online: https://www.cabi.org/isc/datasheet/26716 (accessed on 1 September 2021).
- Branson, T.F.; Guss, P.L.; Krysan, J.L.; Sutter, G.R. Corn Rootworms: Laboratory Rearing and Manipulation, ARS-NC-28; Agricultural Research Service, U.S. Department of Agriculture: Washington, DC, USA, 1975.
- Jackson, J.J. Rearing and handling of Diabrotica virgifera and Diabrotica undecimpunctata howardi. In Methods for the Study of Pest Diabrotica; Krysan, J.R., Miller, T.A., Eds.; Springer: New York, NY, USA, 1986; pp. 25–47. [Google Scholar]
- Kearns, C.A.; Inouye, D.W. Techniques for Pollination Biologists; University Press of Colorado: Niwot, CO, USA, 1993. [Google Scholar]
- Walter, D.E.; Campbell, N.J.H. Exotic vs. endemic biocontrol agents: Would the real Stratiolaelaps miles (Berlese) (Acari: Mesostigmata: Laelapidae), please stand up? Biol. Control 2003, 26, 253–269. [Google Scholar] [CrossRef]
- Berndt, O.; Poehling, H.-M.; Meyhofer, R. Predation capacity of two predatory laelapid mites on soil-dwelling thrips stages. Èntomol. Exp. Appl. 2004, 112, 107–115. [Google Scholar] [CrossRef]
- Krantz, G.W.; Walter, D.E. A Manual of Acarology, 3rd ed.; Texas Tech University Press: Lubbock, TX, USA, 2009. [Google Scholar]
- Da Silva, G.L.; Esswein, I.Z.; Radaelli, T.F.D.S.; Rocha, M.S.; Ferla, N.J.; da Silva, O.S. Influence of various diets on development, life table parameters and choice oviposition test of Tyrophagus putrescentiae (Acari: Acaridae): An illustration using scanning electron microscopy (SEM). J. Stored Prod. Res. 2018, 76, 77–84. [Google Scholar] [CrossRef]
- Krantz, G.W.; Ainscough, B.D. Acarina: Mesostigmata (Gamasida). In Soil Biology Guide; Dindal, D.L., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1990; pp. 583–665. [Google Scholar]
- Smiley, R.L. Mites (Acari). In Insect and Mite Pests in Food: An Illustrated Key; Gorham, J.R., Ed.; Agricultural Handbook Number 655; U.S. Department of Agriculture: Washington, DC, USA, 1991; pp. 3–44. [Google Scholar]
- SYSTAT Software Inc. SYSTAT; Version 12.02; SYSTAT Software Inc.: Chicago, IL, USA, 2007. [Google Scholar]
- SAS Institute Inc. JMP®; Version 13; SAS Institute Inc.: Cary, NC, USA, 2016. [Google Scholar]
- Critchlow, D.E.; Fligner, M.A. On distribution-free multiple comparisons in the one-way analysis of variance. Commun. Stat.-Theory Methods 1991, 20, 127–139. [Google Scholar] [CrossRef]
- Neuhäuser, M.; Bretz, F. Nonparametric all-pairs multiple comparisons. Biom. J. 2001, 43, 571–580. [Google Scholar] [CrossRef]
- Porter, E.K. Origins and genetic nonvariability of the proteins which diffuse from maize pollen. Environ. Health Perspect. 1981, 37, 53–59. [Google Scholar] [CrossRef]
- Buchmann, S.L.; O’Rourke, M.K. Importance of pollen grain volumes for calculating bee diets. Grana 1991, 30, 591–595. [Google Scholar] [CrossRef] [Green Version]
- Yaro, N.; Krysan, J.L. Host relationships of Diabrotica cristata (Coleoptera: Chrysomelidae). Ent. News 1986, 97, 11–16. [Google Scholar]
- Wiesenborn, W.D.; Krysan, J.L. A survey for Diabrotica cristata (Coleoptera: Chrysomelidae) on relict prairies of eastern South Dakota and south-western Minnesota. Proc. SD Acad. Sci. 1980, 59, 130–137. [Google Scholar]
- Barna, G.Y.; Edwards, C.R.; Kiss, J.; Gerber, C.; Bledsoe, L.W. Study of behavioral change of western corn rootworm beetle by crop and sex in maize and soybean fields in Northwestern Indiana, USA. Acta Phytopathol. Entomol. Hung. 2000, 34, 393–402. [Google Scholar] [CrossRef]
- Grozea, I.; Trusca, R.; Virteiu, A.M.; Stef, R.; Butnariu, M. Interaction between Diabrotica virgifera virgifera and host plants determined by feeding behavior and chemical composition. Rom. Agric. Res. 2017, 34, 144. [Google Scholar]
- Horváth, Z.; Hatvani, A. Diabrotica virgifera virgifera LeConte, a new sunflower pest from America. Helia 2003, 26, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Bažok, R.; Lemić, D.; Chiarini, F.; Furlan, L. Western corn rootworm (Diabrotica virgifera virgifera LeConte) in Europe: Current status and sustainable pest management. Insects 2021, 12, 195. [Google Scholar] [CrossRef] [PubMed]
- Naranjo, S.E. Flight orientation of Diabrotica virgifera virgifera and D. barberi (Coleoptera: Chrysomelidae) at habitat interfaces. Ann. Entomol. Soc. Am. 1994, 87, 383–394. [Google Scholar] [CrossRef]
- Bredeson, M.M.; Lundgren, J.G. A survey of the foliar and soil arthropod communities in sunflower (Helianthus annuus) fields of central and eastern South Dakota. J. Kans. Entomol. Soc. 2015, 88, 305–315. [Google Scholar] [CrossRef]
- Prischmann, D.A.; Dashiell, K.E. Parasitism of northern corn rootworms (Chrysomelidae: Diabrotica barberi) by Celatoria diabroticae (Tachinidae) in South Dakota: New geographic record. J. Kans. Entomol. Soc. 2008, 81, 392–393. [Google Scholar] [CrossRef]
- Gustin, R.D. Effect of crop cover on oviposition of the northern corn rootworm, Diabrotica longicornis barberi Smith and Lawrence. J. Kans. Entomol. Soc. 1984, 57, 515–516. [Google Scholar]
- Krysan, J.L.; Smith, R.F.; Guss, P.L. Diabrotica barberi (Coleoptera: Chrysomelidae) elevated to species rank based on behavior, habitat choice, morphometrics, and geographical variation of color. Ann. Entomol. Soc. Am. 1983, 76, 197–204. [Google Scholar] [CrossRef]
- Smith, R.F.; Lawrence, J.F. Clarification of the status of the type specimens of Diabroticites (Coleoptera, Chrysomelidae, Galerucinae). In University of California Publications in Entomology; U. California Press: Los Angeles, CA, USA, 1967; Volume 45. [Google Scholar]
- Hesler, L.S. New records of leaf-feeding for adult Diabrotica barberi (Coleoptera: Chrysomelidae). Great Lakes Entomol. 1993, 26, 241–243. [Google Scholar]
- Lin, S.; Mullin, C.A. Lipid, polyamide, and flavonol phagostimulants for adult western corn rootworm from sunflower (Helianthus annuus L.) pollen. J. Agric. Food Chem. 1999, 47, 1223–1229. [Google Scholar] [CrossRef] [PubMed]
- Mullin, C.A.; Alfatafta, A.A.; Harman, J.L.; Everett, S.L.; Serino, A.A. Feeding and toxic effects of floral sesquiterpene lactones, diterpenes, and phenolics from sunflower (Helianthus annuus L.) on western corn rootworm. J. Agric. Food Chem. 1991, 39, 2293–2299. [Google Scholar] [CrossRef]
- Gámez-Virués, S.; Eben, A. Comparison of beetle diversity and incidence of parasitism in Diabroticina (Coleoptera: Chrysomelidae) species collected on cucurbits. Fla. Entomol. 2005, 88, 72–76. [Google Scholar] [CrossRef]
- Brust, G.E.; Barbercheck, M.E. Effect of dietary cucurbitacin C on southern corn rootworm (Coleoptera: Chrysomelidae) egg survival. Environ. Entomol. 1992, 21, 1466–1471. [Google Scholar] [CrossRef]
- Wallace, J.B.; Blum, M.S. Reflex Bleeding: A highly refined defensive mechanism in Diabrotica larvae (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 1971, 64, 1021–1024. [Google Scholar] [CrossRef]
- Lundgren, J.G.; Fergen, J.K. Predator community structure and trophic linkage strength to a focal prey. Mol. Ecol. 2014, 23, 3790–3798. [Google Scholar] [CrossRef]
- Lundgren, J.G.; Toepfer, S.; Haye, T.; Kuhlmann, U. Haemolymph defence of an invasive herbivore: Its breadth of effectiveness against predators. J. Appl. Entomol. 2010, 134, 439–448. [Google Scholar] [CrossRef]
- Pasquier, A.; Andrieux, T.; Martinez-Rodiguez, P.; Vercken, E.; Ferrero, M. Predation capacity of soil-dwelling predatory mites on two major maize pests. Acarologia 2021, 61, 577–580. [Google Scholar] [CrossRef]
- Erban, T.; Rybanska, D.; Hubert, J. Population growth of the generalist mite Tyrophagus putrescentiae (Acari: Acaridida) following adaptation to high- or low-fat and high- or low-protein diets and the effect of dietary switch. Environ. Entomol. 2015, 44, 1599–1604. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.G.; Potts, M.F.; Patterson, C.G. Allelochemic effects of some flavoring components on the acarid, Tyrophagus putrescentiae. In Recent Advances in Acarology; Elsevier BV: Amsterdam, The Netherlands, 1979; Volume 1, pp. 251–261. [Google Scholar]
- Estrada, C.; Jiggins, C.D. Patterns of pollen feeding and habitat preference among Heliconius species. Ecol. Entomol. 2002, 27, 448–456. [Google Scholar] [CrossRef]
- Young, F.J.; Montgomery, S.H. Pollen feeding in Heliconius butterflies: The singular evolution of an adaptive suite. Proc. R. Soc. B Biol. Sci. 2020, 287, 20201304. [Google Scholar] [CrossRef]
- Nahrstedt, A.; Davis, R.H. Biosynthesis and quantitative relationships of the cyanogenic glucosides, linamarin and lotaustralin, in genera of the Heliconiini (Insecta: Lepidoptera). Comp. Biochem. Physiol. Part B Comp. Biochem. 1985, 82, 745–749. [Google Scholar] [CrossRef]
- Cardoso, M.Z.; Gilbert, L.E. Pollen feeding, resource allocation and the evolution of chemical defence in passion vine butterflies. J. Evol. Biol. 2013, 26, 1254–1260. [Google Scholar] [CrossRef] [PubMed]
- Sénéchal, H.; Visez, N.; Charpin, D.; Shahali, Y.; Peltre, G.; Biolley, J.-P.; Lhuissier, F.; Couderc, R.; Yamada, O.; Malrat-Domenge, A.; et al. A review of the effects of major atmospheric pollutants on pollen grains, pollen content, and allergenicity. Sci. World J. 2015, 2015, 940243. [Google Scholar] [CrossRef] [Green Version]
- Gershenzon, J.; Rossiter, M.; Mabry, T.J.; Rogers, C.E.; Blust, M.H.; Hopkins, T.L. Insect antifeedant terpenoids in wild sunflower. In Bioregulators for Pest Control; ACS Symposium Series; American Chemical Society (ACS): Washington, DC, USA, 1985; Volume 276, pp. 433–446. [Google Scholar]
- Rossiter, M.; Gershenzon, J.; Mabry, T.J. Behavioral and growth responses of specialist herbivore, Homoeosoma electellum, to major terpenoid of its host, Helianthus spp. J. Chem. Ecol. 1986, 12, 1505–1521. [Google Scholar] [CrossRef]
- Naranjo, S.E.; Sawyer, A.J. Reproductive biology and survival of Diabrotica barberi (Coleoptera: Chrysomelidae): Effect of temperature, food, and seasonal time of emergence. Ann. ÈntomSool. c. Am. 1987, 80, 841–848. [Google Scholar] [CrossRef]
- Kim, J.H.; Mullin, C.A. Impact of cysteine proteinase inhibition in midgut fluid and oral secretion on fecundity and pollen consumption of western corn rootworm (Diabrotica virgifera virgifera). Arch. Insect Biochem. Physiol. 2003, 52, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Moeser, J.; Hibbard, B.E. A synopsis of the nutritional ecology of larvae and adults of Diabrotica virgifera virgifera (LeConte) in the New and Old World–nouvelle cuisine for the invasive corn pest Diabrotica virgifera virgifera in Europe? In Western Corn Rootworm: Ecology and Management; Vidal, S., Kuhlmann, U., Edwards, C.R., Eds.; CABI Publishing: Cambridge, MA, USA, 2005; pp. 41–65. [Google Scholar]
- Lance, D.R.; Fisher, J.R. Food quality of various plant tissues for adults of the northern corn rootworm (Coleoptera: Chrysomelidae). J. Kans. Entomol. Soc. 1987, 60, 462–466. [Google Scholar]
- Elliott, N.C.; Gustin, R.D.; Hanson, S.L. Influence of adult diet on the reproductive biology and survival of the western corn rootworm, Diabrotica virgifera virgifera. Entomol. Exp. Appl. 1990, 56, 15–21. [Google Scholar] [CrossRef]
- Fisher, J.R.; Jackson, J.J.; Sutter, G.R.; Branson, T.F. Influence of adult diet on damage to corn by larvae of the western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). J. Econ. Entomol. 1986, 79, 114–115. [Google Scholar] [CrossRef]
Pollen Offered | Number of Pollen Grains Recovered per NCR Beetle (Mean ± SE) | |||||
---|---|---|---|---|---|---|
All Beetles (n = 213) | Female Only (n = 88) | Male Only (n = 83) | ||||
S | C | S | C | S | C | |
S only | 603.9 ± 109.8b | 0.1 ± 0.1a | 414.0 ± 161.6b | 0.1 ± 0.03a | 717.3 ± 184.1b | 0.2 ± 0.1a |
C only | 1.2 ± 0.3a | 152.3 ± 29.4b | 1.1 ± 0.3a | 119.1 ± 41.7b | 1.5 ± 0.7a | 139.0 ± 48.8b |
S + C | 248.1 ± 40.5b | 106.1 ± 19.2b | 235.4 ± 65.9b | 143.2 ± 28.3b | 179.7 ± 42.3b | 63.3 ± 32.5b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prischmann-Voldseth, D.A.; Swenson, S.J.; Brenner, R. Pollen Feeding Reduces Predation of Northern Corn Rootworm Eggs (Coleoptera: Chrysomelidae, Diabrotica barberi) by a Soil-Dwelling Mite (Acari: Laelapidae: Stratiolaelaps scimitus). Insects 2021, 12, 979. https://doi.org/10.3390/insects12110979
Prischmann-Voldseth DA, Swenson SJ, Brenner R. Pollen Feeding Reduces Predation of Northern Corn Rootworm Eggs (Coleoptera: Chrysomelidae, Diabrotica barberi) by a Soil-Dwelling Mite (Acari: Laelapidae: Stratiolaelaps scimitus). Insects. 2021; 12(11):979. https://doi.org/10.3390/insects12110979
Chicago/Turabian StylePrischmann-Voldseth, Deirdre A., Stephanie J. Swenson, and Robert Brenner. 2021. "Pollen Feeding Reduces Predation of Northern Corn Rootworm Eggs (Coleoptera: Chrysomelidae, Diabrotica barberi) by a Soil-Dwelling Mite (Acari: Laelapidae: Stratiolaelaps scimitus)" Insects 12, no. 11: 979. https://doi.org/10.3390/insects12110979
APA StylePrischmann-Voldseth, D. A., Swenson, S. J., & Brenner, R. (2021). Pollen Feeding Reduces Predation of Northern Corn Rootworm Eggs (Coleoptera: Chrysomelidae, Diabrotica barberi) by a Soil-Dwelling Mite (Acari: Laelapidae: Stratiolaelaps scimitus). Insects, 12(11), 979. https://doi.org/10.3390/insects12110979