Integrated Pest Management of Wireworms (Coleoptera: Elateridae) and the Rhizosphere in Agroecosystems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Implementation of IPM Principles to Control Wireworms
2.1. World Fauna and Species Identification
2.2. Monitoring
2.2.1. Adult Monitoring
2.2.2. Wireworm Monitoring
2.3. The Risk of Wireworm Damage
2.3.1. Wireworm Economic Threshold
2.3.2. Soil Properties and the Risk of Wireworm Damage
2.3.3. Landscape and Field History and the Risk of Wireworm Damage
3. Wireworm Control Tactics and Impacts on the Rhizosphere
3.1. Cultural Practices
3.1.1. Trap Crop and Intercropping
3.1.2. Crop Rotation
3.1.3. Tillage
3.1.4. Soil Flooding and Drying
3.2. Host Plant Resistance and Tolerance
3.3. Biological Control
3.3.1. Predators
3.3.2. Entomopathogenic Bacteria
3.3.3. Entomopathogenic Nematodes
3.3.4. Entomopathogenic Fungi (EPF)
3.4. Cover Crops and Plant-Derived Biocides as Green Manure
3.5. Insecticides
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vernon, R.S.; van Herk, W.G. Wireworms as Pests of Potato. In Insect Pests of Potato: Global Perspectives on Biology and Management; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2013; pp. 103–164. [Google Scholar]
- Traugott, M.; Benefer, C.M.; Blackshaw, R.P.; van Herk, W.G.; Vernon, R.S. Biology, Ecology, and Control of Elaterid Beetles in Agricultural Land. Annu. Rev. Entomol. 2015, 60, 313–334. [Google Scholar] [CrossRef]
- Blackshaw, R.P.; Vernon, R.S. Spatial Relationships between Two Agriotes Click-Beetle Species and Wireworms in Agricultural Fields. Agric. For. Entomol. 2008, 10, 1–11. [Google Scholar] [CrossRef]
- Gough, H.C.; Evans, A.C. Some Notes on the Biology of the Click Beetles Agriotes obscurus L. and A. sputator L. Ann. Appl. Biol. 1942, 29, 275–279. [Google Scholar] [CrossRef]
- Furlan, L. The Biology of Agriotes ustulatus Schäller (Col., Elateridae). II. Larval Development, Pupation, Whole Cycle Description and Practical Implications. J. Appl. Entomol. 1998, 122, 71–78. [Google Scholar] [CrossRef]
- Traugott, M.; Schallhart, N.; Kaufmann, R.; Juen, A. The Feeding Ecology of Elaterid Larvae in Central European Arable Land: New Perspectives Based on Naturally Occurring Stable Isotopes. Soil Biol. Biochem. 2008, 40, 342–349. [Google Scholar] [CrossRef]
- Parker, W.E.; Howard, J.J. The Biology and Management of Wireworms (Agriotes spp.) on Potato with Particular Reference to the U.K. Agric. For. Entomol. 2001, 3, 85–98. [Google Scholar] [CrossRef]
- Jansson, R.K.; Seal, D.R. Biology and Management of Wireworm on Potato. In Proceedings of the International Conference on Potato; APS Press: St.Paul, MN, USA; Jakson Hole, WY, USA, 1994; pp. 31–53. [Google Scholar]
- Vernon, R.S.; Van Herk, W.G.; Clodius, M.; Harding, C. Wireworm Management I: Stand Protection versus Wireworm Mortality with Wheat Seed Treatments. J. Econ. Entomol. 2009, 102, 2126–2136. [Google Scholar] [CrossRef]
- Vernon, R.S.; van Herk, W.G.; Clodius, M.; Harding, C. Crop Protection and Mortality of Agriotes obscurus Wireworms with Blended Insecticidal Wheat Seed Treatments. J. Pest Sci. 2013, 86, 137–150. [Google Scholar] [CrossRef]
- Vernon, R.S.; Van Herk, W.; Tolman, J.; Ortiz Saavedra, H.; Clodius, M.; Gage, B. Transitional Sublethal and Lethal Effects of Insecticides after Dermal Exposures to Five Economic Species of Wireworms (Coleoptera: Elateridae). J. Econ. Entomol. 2008, 101, 365–374. [Google Scholar] [CrossRef]
- Stern, V.M.; Smith, R.F.; van den Bosch, R.; Hagen, K.S. The Integrated Control Concept. Hilgardia 1959, 29, 81–101. [Google Scholar] [CrossRef] [Green Version]
- Godfray, H.C.J.; Blacquiere, T.; Field, L.M.; Hails, R.S.; Petrokofsky, G.; Potts, S.G.; Raine, N.E.; Vanbergen, A.J.; McLean, A.R. A Restatement of the Natural Science Evidence Base Concerning Neonicotinoid Insecticides and Insect Pollinators. Proc. R. Soc. B Biol. Sci. 2014, 281, 20140558. [Google Scholar] [CrossRef] [PubMed]
- Barzman, M.; Bàrberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; Kudsk, P.; et al. Eight Principles of Integrated Pest Management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Veres, A.; Wyckhuys, K.A.; Kiss, J.; Tóth, F.; Burgio, G.; Pons, X.; Avilla, C.; Vidal, S.; Razinger, J.; Bazok, R. An Update of the Worldwide Integrated Assessment (WIA) on Systemic Pesticides. Part 4: Alternatives in Major Cropping Systems. Environ. Sci. Pollut. Res. 2020, 27, 29867–29899. [Google Scholar] [CrossRef]
- Johnson, S.N.; Benefer, C.M.; Frew, A.; Griffiths, B.S.; Hartley, S.E.; Karley, A.J.; Rasmann, S.; Schumann, M.; Sonnemann, I.; Robert, C.A.M. New Frontiers in Belowground Ecology for Plant Protection from Root-Feeding Insects. Appl. Soil Ecol. 2016, 108, 96–107. [Google Scholar] [CrossRef]
- Lynch, J.M.; Brimecombe, M.J.; De Leij, F.A. Rhizosphere. In eLS; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2001; ISBN 978-0-470-01590-2. [Google Scholar]
- Dessaux, Y.; Grandclément, C.; Faure, D. Engineering the Rhizosphere. Trends Plant Sci. 2016, 21, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.R.; Lundberg, D.S.; del Rio, T.G.; Tringe, S.G.; Dangl, J.L.; Mitchell-Olds, T. Host Genotype and Age Shape the Leaf and Root Microbiomes of a Wild Perennial Plant. Nat. Commun. 2016, 7, 12151. [Google Scholar] [CrossRef]
- Strano, C.P.; Malacrinò, A.; Campolo, O.; Palmeri, V. Influence of Host Plant on Thaumetopoea pityocampa Gut Bacterial Community. Microb. Ecol. 2018, 75, 487–494. [Google Scholar] [CrossRef]
- Malacrinò, A.; Karley, A.J.; Schena, L.; Bennett, A.E. Soil Microbial Diversity Impacts Plant Microbiota More than Herbivory. Phytobiomes J. 2021, 5, 408–417. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Hayatsu, M.; Hosokawa, T.; Nagayama, A.; Tago, K.; Fukatsu, T. Symbiont-Mediated Insecticide Resistance. Proc. Natl. Acad. Sci. USA 2012, 109, 8618–8622. [Google Scholar] [CrossRef]
- Hannula, S.E.; Zhu, F.; Heinen, R.; Bezemer, T.M. Foliar-Feeding Insects Acquire Microbiomes from the Soil Rather than the Host Plant. Nat. Commun. 2019, 10, 1254. [Google Scholar] [CrossRef] [Green Version]
- Lupwayi, N.Z.; Rice, W.A.; Clayton, G.W. Soil Microbial Diversity and Community Structure under Wheat as Influenced by Tillage and Crop Rotation. Soil Biol. Biochem. 1998, 30, 1733–1741. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, B.; Zhang, X.; Yang, X.; Zhang, X. Effects of Tillage and Crop Rotation on Soil Microbial Residues in a Rainfed Agroecosystem of Northeast China. Soil Tillage Res. 2011, 114, 43–49. [Google Scholar] [CrossRef]
- Chagnon, M.; Kreutzweiser, D.; Mitchell, E.A.D.; Morrissey, C.A.; Noome, D.A.; Van der Sluijs, J.P. Risks of Large-Scale Use of Systemic Insecticides to Ecosystem Functioning and Services. Environ. Sci. Pollut. Res. 2015, 22, 119–134. [Google Scholar] [CrossRef]
- Filimon, M.N.; Voia, S.O.; Popescu, R.; Dumitrescu, G.; Ciochina, L.P.; Mituletu, M.; Vlad, D.C. The Effect of Some Insecticides on Soil Microorganisms Based on Enzymatic and Bacteriological Analyses. Romanian Biotechnol. Lett. 2015, 20, 10439. [Google Scholar]
- Pisa, L.; Goulson, D.; Yang, E.-C.; Gibbons, D.; Sánchez-Bayo, F.; Mitchell, E.; Aebi, A.; van der Sluijs, J.; MacQuarrie, C.J.K.; Giorio, C.; et al. An Update of the Worldwide Integrated Assessment (WIA) on Systemic Insecticides. Part 2: Impacts on Organisms and Ecosystems. Environ. Sci. Pollut. Res. 2021, 28, 11749–11797. [Google Scholar] [CrossRef]
- Cycoń, M.; Piotrowska-Seget, Z.; Kaczyńska, A.; Kozdrój, J. Microbiological Characteristics of a Sandy Loam Soil Exposed to Tebuconazole and λ-Cyhalothrin under Laboratory Conditions. Ecotoxicology 2006, 15, 639–646. [Google Scholar] [CrossRef]
- Vig, K.; Singh, D.K.; Agarwal, H.C.; Dhawan, A.K.; Dureja, P. Soil Microorganisms in Cotton Fields Sequentially Treated with Insecticides. Ecotoxicol. Environ. Saf. 2008, 69, 263–276. [Google Scholar] [CrossRef]
- Badri, D.V.; Zolla, G.; Bakker, M.G.; Manter, D.K.; Vivanco, J.M. Potential Impact of Soil Microbiomes on the Leaf Metabolome and on Herbivore Feeding Behavior. New Phytol. 2013, 198, 264–273. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Z.; Ma, Y.; Luo, J.; Gao, X.; Ning, J.; Mei, X.; She, D. Influence of the Neonicotinoid Insecticide Thiamethoxam on Soil Bacterial Community Composition and Metabolic Function. J. Hazard. Mater. 2021, 405, 124275. [Google Scholar] [CrossRef]
- Johnson, P.J.; Arnett, R.J.R.; Thomas, C.M.; Skelley, P.E. Family 58. Elateridae Leach 1815. Am. Beetles 2002, 2, 160–173. [Google Scholar]
- Marske, K.A.; Ivie, M.A. Beetle Fauna of the United States and Canada. Coleopt. Bull. 2003, 57, 495–503. [Google Scholar] [CrossRef]
- Bousquet, Y. Family Elateridae: Click Beetles. In Checklist of Beetles of Canada and Alaska; Agriculture Canada, Ottawa, Ontario, Publication 1861/E; Agriculture Canada, Research Branch: Ottawa, ON, Canada, 1991; pp. 175–185. [Google Scholar]
- Benefer, C.M.; Knight, M.E.; Ellis, J.S.; Hicks, H.; Blackshaw, R.P. Understanding the Relationship between Adult and Larval Agriotes Distributions: The Effect of Sampling Method, Species Identification and Abiotic Variables. Appl. Soil Ecol. 2012, 53, 39–48. [Google Scholar] [CrossRef]
- Andrews, N.; Ambrosino, M.D.; Fisher, G.C.; Rondon, S.I. Wireworm: Biology and Nonchemical Management in Potatoes in the Pacific Northwest; OSU Extension Service: Grants Pass, OR, USA, 2008. [Google Scholar]
- Morales-Rodriguez, A.; O’Neill, R.P.; Wanner, K.W. A Survey of Wireworm (Coleoptera: Elateridae) Species Infesting Cereal Crops in Montana. Pan-Pac. Entomol. 2014, 90, 116–125. [Google Scholar] [CrossRef]
- Rashed, A.; Etzler, F.; Rogers, C.W.; Marshall, J.M. Wireworms in Idaho Cereals: Monitoring and Identification. Univ. Ida. Ext. Bull. 2015, 898. [Google Scholar]
- Milosavljević, I.; Esser, A.D.; Crowder, D.W. Seasonal Population Dynamics of Wireworms in Wheat Crops in the Pacific Northwestern United States. J. Pest Sci. 2017, 90, 77–86. [Google Scholar] [CrossRef]
- Barsics, F.; Haubruge, E.; Verheggen, F.J. Wireworms’ Management: An Overview of the Existing Methods, with Particular Regards to Agriotes spp.(Coleoptera: Elateridae). Insects 2013, 4, 117–152. [Google Scholar] [CrossRef]
- Burghause, F.; Schmitt, M. Monitoring of the Clickbeetle Genus Agriotes (Elateridae, Coleoptera) in Rhineland-Palatinate in the Years 2008 to 2010. Gesunde Pflanz. 2011, 63, 27–32. [Google Scholar] [CrossRef]
- Ritter, C.; Richter, E. Control Methods and Monitoring of Agriotes Wireworms (Coleoptera: Elateridae). J. Plant Dis. Prot. 2013, 120, 4–15. [Google Scholar] [CrossRef]
- LaGasa, E.; Murray, T.; Mudge, A. Exotic Wireworm Survey and Impact Update 2005-Agriotes lineatus and A. obscurus in Western Washington and Oregon. Wash. State Univ. Ext. Bull. 2006, 44–46. [Google Scholar]
- Toba, H.H.; Campbell, J.D. Wireworm (Coleoptera: Elateridae) Survey in Wheat-Growing Areas of Northcentral and Northeastern Oregon. J. Entomol. Soc. Br. Columbia 1992, 89, 25–30. [Google Scholar]
- Emden, F. van Keys to the Ethiopian Tachinidæ.—I. Phasiinæ. In Proceedings of the Proceedings of the Zoological Society of London; Wiley Online Library: Hoboken, NJ, USA, 1945; Volume 114, pp. 389–436. [Google Scholar]
- Glen, R. Larvae of the Elaterid Beetles of the Tribe Lepturoidini (Coleoptera: Elateridae). Smithson. Misc. Collect. 1950, 111, 1–246. [Google Scholar]
- Wilkinson, A.T. Wireworms of Cultivated Land in British Columbia. J. Entomol. Soc. Br. Columbia 1963, 60, 3–17. [Google Scholar]
- Becker, E.C.; Dogger, J.R.; Stehr, F.W. Elateridae (Elateroidea)(Including Dicronychidae, Lissomidae). Immature Insects 1991, 2, 410–418. [Google Scholar]
- Ellis, J.S.; Blackshaw, R.; Parker, W.; Hicks, H.; Knight, M.E. Genetic Identification of Morphologically Cryptic Agricultural Pests. Agric. For. Entomol. 2009, 11, 115–121. [Google Scholar] [CrossRef]
- Benefer, C.M.; Van Herk, W.G.; Ellis, J.S.; Blackshaw, R.P.; Vernon, R.S.; Knight, M.E. The Molecular Identification and Genetic Diversity of Economically Important Wireworm Species (Coleoptera: Elateridae) in Canada. J. Pest Sci. 2013, 86, 19–27. [Google Scholar] [CrossRef]
- Etzler, F.E.; Wanner, K.W.; Morales-Rodriguez, A.; Ivie, M.A. DNA Barcoding to Improve the Species-Level Management of Wireworms (Coleoptera: Elateridae). J. Econ. Entomol. 2014, 107, 1476–1485. [Google Scholar] [CrossRef]
- Andrews, K.R.; Gerritsen, A.; Rashed, A.; Crowder, D.W.; Rondon, S.I.; van Herk, W.G.; Vernon, R.; Wanner, K.W.; Wilson, C.M.; New, D.D. Wireworm (Coleoptera: Elateridae) Genomic Analysis Reveals Putative Cryptic Species, Population Structure, and Adaptation to Pest Control. Commun. Biol. 2020, 3, 489. [Google Scholar] [CrossRef]
- Balkenhol, N.; Cushman, S.; Storfer, A.; Waits, L. Landscape Genetics: Concepts, Methods, Applications; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Furlan, L.; Tóth, M. Occurrence of Click Beetle Pest spp.(Coleoptera, Elateridae) in Europe as Detected by Pheromone Traps: Survey Results of 1998-2006. IOBC WPRS Bull. 2007, 30, 19. [Google Scholar]
- Serrano, J.M.; Collignon, R.M.; Zou, Y.; Millar, J.G. Identification of Sex Pheromones and Sex Pheromone Mimics for Two North American Click Beetle Species (Coleoptera: Elateridae) in the Genus Cardiophorus Esch. J. Chem. Ecol. 2018, 44, 327–338. [Google Scholar] [CrossRef]
- Gries, R.; Alamsetti, S.K.; van Herk, W.G.; Catton, H.A.; Meers, S.; Lemke, E.; Gries, G. Limoniic Acid-Major Component of the Sex Pheromones of the Click Beetles Limonius canus and L. californicus. J. Chem. Ecol. 2021, 47, 123–133. [Google Scholar] [CrossRef]
- Van Herk, W.G.; Lemke, E.; Gries, G.; Gries, R.; Serrano, J.M.; Catton, H.; Wanner, K.; Landolt, P.J.; Cooper, W.R.; Meers, S. Limoniic Acid and Its Analog as Trap Lures for Pest Limonius Species (Coleoptera: Elateridae) in North America. J. Econ. Entomol. 2021, 114, 2108–2120. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.; Serrano, J.M.; Johnson, P.J.; Millar, J.G. 13-Tetradecenyl Acetate, a Female-Produced Sex Pheromone Component of the Economically Important Click Beetle Melanotus Communis (Gyllenhal)(Coleoptera: Elateridae). Sci. Rep. 2019, 9, 16197. [Google Scholar] [CrossRef] [PubMed]
- Furlan, L.; Contiero, B.; Chiarini, F.; Benvegnù, I.; Tóth, M. The Use of Click Beetle Pheromone Traps to Optimize the Risk Assessment of Wireworm (Coleoptera: Elateridae) Maize Damage. Sci. Rep. 2020, 10, 8780. [Google Scholar] [CrossRef] [PubMed]
- Blackshaw, R.P.; Vernon, R.S. Spatiotemporal Stability of Two Beetle Populations in Non-Farmed Habitats in an Agricultural Landscape. J. Appl. Ecol. 2006, 43, 680–689. [Google Scholar] [CrossRef]
- Schallhart, N.; Wallinger, C.; Juen, A.; Traugott, M. Dispersal Abilities of Adult Click Beetles in Arable Land Revealed by Analysis of Carbon Stable Isotopes. Agric. For. Entomol. 2009, 11, 333–339. [Google Scholar] [CrossRef]
- Sufyan, M.; Neuhoff, D.; Furlan, L. Assessment of the Range of Attraction of Pheromone Traps to Agriotes lineatus and Agriotes obscurus. Agric. For. Entomol. 2011, 13, 313–319. [Google Scholar] [CrossRef]
- Blackshaw, R.P.; van Herk, W.G.; Vernon, R.S. Determination of Agriotes obscurus (C Oleoptera: E Lateridae) Sex Pheromone Attraction Range Using Target Male Behavioural Responses. Agric. For. Entomol. 2018, 20, 228–233. [Google Scholar] [CrossRef]
- Furlan, L.; Tóth, M.; Yatsynin, V.; Ujváry, I. The Project to Implement IPM Strategies against Agriotes Species in Europe: What Has Been Done and What Is Still to Be Done. In Proceedings of the XXI IWGO Conference, Venice, Italy, 27 November 2001; Volume 27, pp. 253–262. [Google Scholar]
- Reddy, G.V.; Tangtrakulwanich, K.; Wu, S.; Miller, J.H.; Ophus, V.L.; Prewett, J.; Jaronski, S.T. Evaluation of the Effectiveness of Entomopathogens for the Management of Wireworms (Coleoptera: Elateridae) on Spring Wheat. J. Invertebr. Pathol. 2014, 120, 43–49. [Google Scholar] [CrossRef]
- Lafrance, J.; Tremblay, R. An Apparatus for Separating Grass and Soil from Turf for Collecting Wireworm Larvae (Coleoptera: Elateridae) in Organic Soils. Can. J. Plant Sci. 1964, 44, 212–213. [Google Scholar] [CrossRef] [Green Version]
- Furlan, L. An IPM Approach Targeted against Wireworms: What Has Been Done and What Has to Be Done. IOBCwprs Bull 2005, 28, 91–100. [Google Scholar]
- Horton, D.R.; Landolt, P.J. Orientation Response of Pacific Coast Wireworm (Coleoptera: Elateridae) to Food Baits in Laboratory and Effectiveness of Baits in Field. Can. Entomol. 2002, 134, 357–367. [Google Scholar] [CrossRef]
- Brunner, N.; Kromp, B.; Meindl, P.; Pázmándi, C.; Traugott, M. Evaluation of Different Sampling Techniques for Wireworms (Coleoptera, Elateridae) in Arable Land. IOBCwprs Bull. 2005, 28, 117–122. [Google Scholar]
- Arakaki, N.; Hokama, Y.; Yamamura, K. Efficient Bait for Sampling the Wireworm Melanotus okinawensis (Coleoptera: Elateridae) in a Sugarcane Field. Appl. Entomol. Zool. 2009, 44, 561–568. [Google Scholar] [CrossRef]
- Doane, J.F.; Lee, Y.W.; Klingler, J.; Westcott, N.D. The Orientation Response of Ctencera destructor and Other Wireworms (Coleoptera: Elateridae) to Geminating Grain and to Carbon Dioxide. Can. Entomol. 1975, 107, 1233–1252. [Google Scholar] [CrossRef]
- Ward, R.H.; Keaster, A.J. Wireworm Baiting: Use of Solar Energy to Enhance Early Detection of Melanotus depressus, M. verberans, and Aeolus mellillus in Midwest Cornfields. J. Econ. Entomol. 1977, 70, 403–406. [Google Scholar] [CrossRef]
- Simmons, C.L.; Pedigo, L.P.; Rice, M.E. Evaluation of Seven Sampling Techniques for Wireworms (Coleoptera: Elateridae). Environ. Entomol. 1998, 27, 1062–1068. [Google Scholar] [CrossRef]
- Parker, W.E. Practical Implementation of a Wireworm Management Strategy–Lessons from the UK Potato Industry. Int. Organ. Biol. Integr. Control West Palaearct. Reg. Sect. Bull. 2005, 28, 87–90. [Google Scholar]
- Parker, W.E. Evaluation of the Use of Food Baits for Detecting Wireworms (Agriotes spp., Coleoptera: Elateridae) in Fields Intended for Arable Crop Production. Crop Prot. 1994, 13, 271–276. [Google Scholar] [CrossRef]
- Furlan, L. The Biology of Agriotes ustulatus Schäller (Col., Elateridae). I. Adults and Oviposition. J. Appl. Entomol. 1996, 120, 269–274. [Google Scholar] [CrossRef]
- Campbell, R.E.; Stone, M.W. Dichloroethyl Ether for Wireworm Control. Jour Econ Ent 1937, 30, 212–213. [Google Scholar]
- Jung, J.; Racca, P.; Schmitt, J.; Kleinhenz, B. SIMAGRIO-W: Development of a Prediction Model for Wireworms in Relation to Soil Moisture, Temperature and Type. J. Appl. Entomol. 2014, 138, 183–194. [Google Scholar] [CrossRef]
- Schallhart, N.; Tusch, M.J.; Staudacher, K.; Wallinger, C.; Traugott, M. Stable Isotope Analysis Reveals Whether Soil-Living Elaterid Larvae Move between Agricultural Crops. Soil Biol. Biochem. 2011, 43, 1612–1614. [Google Scholar] [CrossRef] [PubMed]
- Cherry, R.; Stansly, P. Abundance and Spatial Distribution of Wireworms (Coleoptera: Elateridae) in Florida Sugarcane Fields on Muck versus Sandy Soils. Fla. Entomol. 2008, 91, 383–387. [Google Scholar] [CrossRef]
- Saussure, S.; Plantegenest, M.; Thibord, J.-B.; Larroudé, P.; Poggi, S. Management of Wireworm Damage in Maize Fields Using New, Landscape-Scale Strategies. Agron. Sustain. Dev. 2015, 35, 793–802. [Google Scholar] [CrossRef]
- Milosavljević, I.; Esser, A.D.; Crowder, D.W. Effects of Environmental and Agronomic Factors on Soil-Dwelling Pest Communities in Cereal Crops. Agric. Ecosyst. Environ. 2016, 225, 192–198. [Google Scholar] [CrossRef]
- Parker, W.E. The Development of Baiting Techniques to Detect Wireworms (Agriotes spp., Coleoptera: Elateridae) in the Field, and the Relationship between Bait-Trap Catches and Wireworm Damage to Potato. Crop Prot. 1996, 15, 521–527. [Google Scholar] [CrossRef]
- Hinkin, S. Determining the Density of Wireworms. Rastit. Zashchita 1976, 24, 22–25. [Google Scholar]
- Chabert, A.; Blot, Y. Estimation Des Populations Larvaires de Taupins Par Un Piège Attractif. Phytoma 1992, 436, 26–30. [Google Scholar]
- Furlan, L. IPM Thresholds for Agriotes Wireworm Species in Maize in Southern Europe. J. Pest Sci. 2014, 87, 609–617. [Google Scholar] [CrossRef]
- Cherry, R.; Grose, P.; Barbieri, E. Validation of a Sequential Sampling Plan for Wireworms (Coleoptera: Elateridae) at Sugarcane Planting. J. Pest Sci. 2013, 86, 29–32. [Google Scholar] [CrossRef]
- Bechinski, E.; Sandvol, L.; Carpenter, G.; Homan, H. Integrated Pest Management Guide to Wireworms in Potatoes. Univ. Ida. Ext. Bull. 1994, 760. [Google Scholar]
- Lange Jr, W.H.; Carlson, E.C.; Leach, L.D. Seed Treatments for Wireworm Control with Particular Reference to the Use of Lindane. J. Econ. Entomol. 1949, 42, 942–955. [Google Scholar] [CrossRef]
- Jones, E.W. Laboratory Studies on the Moisture Relations of Limonius (Coleoptera: Elaterida). Ecology 1951, 32, 284–293. [Google Scholar] [CrossRef]
- Lefko, S.A.; Pedigo, L.P.; Batchelor, W.D.; Rice, M.E. Spatial Modeling of Preferred Wireworm (Coleoptera: Elateridae) Habitat. Environ. Entomol. 1998, 27, 184–190. [Google Scholar] [CrossRef]
- Poggi, S. A Mechanistic Model for the Population Dynamics of Invertebrate Pests with Above-Belowground Life Stages: Case Study of Click Beetles and Wireworms. In Proceedings of the Annual Meeting ElatPro Project, Mumbai, India, 25 June 2018. [Google Scholar]
- Lafrance, J. The Seasonal Movements of Wireworms (Coleoptera: Elateridae) in Relation to Soil Moisture and Temperature in the Organic Soils of Southwestern Quebec. Can. Entomol. 1968, 100, 801–807. [Google Scholar] [CrossRef]
- Hermann, A.; Brunner, N.; Hann, P.; Wrbka, T.; Kromp, B. Correlations between Wireworm Damages in Potato Fields and Landscape Structure at Different Scales. J. Pest Sci. 2013, 86, 41–51. [Google Scholar] [CrossRef]
- Jones, E.W.; Shirck, F.H. The Seasonal Vertical Distribution of Wireworms in the Soil in Relation to Their Con. J. Agric. Res. 1942, 65, 125. [Google Scholar]
- Parker, W.E.; Seeney, F.M. An Investigation Inot the Use of Multiple Site Characteristics to Predict the Presence and Infestation Level of Wireworms (Agriotes Sup., Coleoptera: Elateridae) in Individual Grass Fields. Ann. Appl. Biol. 1997, 130, 409–425. [Google Scholar] [CrossRef]
- Van Herk, W.G.; Vernon, R.S. Effect of Temperature and Soil on the Control of a Wireworm, Agriotes obscurus L.(Coleoptera: Elateridae) by Flooding. Crop Prot. 2006, 25, 1057–1061. [Google Scholar] [CrossRef]
- Gfeller, A.; Laloux, M.; Barsics, F.; Kati, D.E.; Haubruge, E.; Du Jardin, P.; Verheggen, F.J.; Lognay, G.; Wathelet, J.-P.; Fauconnier, M.-L. Characterization of Volatile Organic Compounds Emitted by Barley (Hordeum Vulgare L.) Roots and Their Attractiveness to Wireworms. J. Chem. Ecol. 2013, 39, 1129–1139. [Google Scholar] [CrossRef]
- Rashed, A.; Rogers, C.W.; Rashidi, M.; Marshall, J.M. Sugar Beet Wireworm Limonius californicus Damage to Wheat and Barley: Evaluations of Plant Damage with Respect to Soil Media, Seeding Depth, and Diatomaceous Earth Application. Arthropod-Plant Interact. 2017, 11, 147–154. [Google Scholar] [CrossRef]
- Kozina, A.; Lemic, D.; Bazok, R.; Mikac, K.M.; McLean, C.M.; Ivezić, M.; Igrc Barčić, J. Climatic, Edaphic Factors and Cropping History Help Predict Click Beetle (Coleoptera: Elateridae)(Agriotes spp.) Abundance. J. Insect Sci. 2015, 15, 100. [Google Scholar] [CrossRef] [PubMed]
- Traugott, M.; Pázmándi, C.; Kaufmann, R.; Juen, A. Evaluating 15N/14N and 13C/12C Isotope Ratio Analysis to Investigate Trophic Relationships of Elaterid Larvae (Coleoptera: Elateridae). Soil Biol. Biochem. 2007, 39, 1023–1030. [Google Scholar] [CrossRef]
- Furlan, L.; Vasileiadis, V.P.; Chiarini, F.; Huiting, H.; Leskovšek, R.; Razinger, J.; Holb, I.J.; Sartori, E.; Urek, G.; Verschwele, A. Risk Assessment of Soil-Pest Damage to Grain Maize in Europe within the Framework of Integrated Pest Management. Crop Prot. 2017, 97, 52–59. [Google Scholar] [CrossRef]
- Furlan, L.; Contiero, B.; Chiarini, F.; Colauzzi, M.; Sartori, E.; Benvegnù, I.; Fracasso, F.; Giandon, P. Risk Assessment of Maize Damage by Wireworms (Coleoptera: Elateridae) as the First Step in Implementing IPM and in Reducing the Environmental Impact of Soil Insecticides. Environ. Sci. Pollut. Res. 2017, 24, 236–251. [Google Scholar] [CrossRef] [PubMed]
- Poggi, S.; Le Cointe, R.; Lehmhus, J.; Plantegenest, M.; Furlan, L. Alternative Strategies for Controlling Wireworms in Field Crops: A Review. Agriculture 2021, 11, 436. [Google Scholar] [CrossRef]
- Hokkanen, H.M. Trap Cropping in Pest Management. Annu. Rev. Entomol. 1991, 36, 119–138. [Google Scholar] [CrossRef]
- Vernon, R.S. Aggregation and Mortality of Agriotes obscurus (Coleoptera: Elateridae) at Insecticide-Treated Trap Crops of Wheat. J. Econ. Entomol. 2005, 98, 1999–2005. [Google Scholar] [CrossRef]
- Le Cointe, R.; Girault, Y.; Morvan, T.; Thibord, J.-B.; Larroudé, P.; Lecuyer, G.; Plantegenest, M.; Bouille, D.; Poggi, S. Feeding Pests as an IPM Strategy: Wireworms in Conservation Agriculture as a Case Study. In Proceedings of the 3rd Annual International Branch Virtual Symposium of the Entomological Society of America, Virtual Symposium, 27 April 2020. [Google Scholar]
- Vernon, R.S.; van Herk, W.G.; Clodius, M.; Tolman, J. Companion Planting Attract-and-Kill Method for Wireworm Management in Potatoes. J. Pest Sci. 2016, 89, 375–389. [Google Scholar] [CrossRef]
- Björkman, M.; Klingen, I.; Birch, A.N.; Bones, A.M.; Bruce, T.J.; Johansen, T.J.; Meadow, R.; Mølmann, J.; Seljåsen, R.; Smart, L.E. Phytochemicals of Brassicaceae in Plant Protection and Human Health–Influences of Climate, Environment and Agronomic Practice. Phytochemistry 2011, 72, 538–556. [Google Scholar] [CrossRef]
- Staudacher, K.; Schallhart, N.; Thalinger, B.; Wallinger, C.; Juen, A.; Traugott, M. Plant Diversity Affects Behavior of Generalist Root Herbivores, Reduces Crop Damage, and Enhances Crop Yield. Ecol. Appl. 2013, 23, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
- Chai, Q.; Huang, P.; Huang, G. Effect of intercropping on soil microbial and enzyme activity in the rhizospher. Acta Prataculturae Sin. 2005, 14, 105–110. [Google Scholar]
- Inal, A.; Gunes, A.; Zhang, F.; Cakmak, I. Peanut/Maize Intercropping Induced Changes in Rhizosphere and Nutrient Concentrations in Shoots. Plant Physiol. Biochem. 2007, 45, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Long, L. Intercropping enhances agroecosystem services and functioning: Current knowledge and perspectives. Zhongguo Shengtai Nongye Xuebao Chin. J. Eco-Agric. 2016, 24, 403–415. [Google Scholar]
- Yang, H.; Zhang, W.; Li, L. Intercropping: Feed More People and Build More Sustainable Agroecosystems. Front Agric Sci Eng 2021, 8, 373–386. [Google Scholar]
- Marschner, P.; Crowley, D.; Yang, C.H. Development of Specific Rhizosphere Bacterial Communities in Relation to Plant Species, Nutrition and Soil Type. Plant Soil 2004, 261, 199–208. [Google Scholar] [CrossRef]
- Song, Y.N.; Zhang, F.S.; Marschner, P.; Fan, F.L.; Gao, H.M.; Bao, X.G.; Sun, J.H.; Li, L. Effect of Intercropping on Crop Yield and Chemical and Microbiological Properties in Rhizosphere of Wheat (Triticum aestivum L.), Maize (Zea mays L.), and Faba Bean (Vicia faba L.). Biol. Fertil. Soils 2007, 43, 565–574. [Google Scholar] [CrossRef]
- Zhang, N.N.; Sun, Y.M.; Li, L.; Wang, E.T.; Chen, W.X.; Yuan, H.L. Effects of Intercropping and Rhizobium Inoculation on Yield and Rhizosphere Bacterial Community of Faba Bean (Vicia faba L.). Biol. Fertil. Soils 2010, 46, 625–639. [Google Scholar] [CrossRef]
- Duchene, O.; Vian, J.-F.; Celette, F. Intercropping with Legume for Agroecological Cropping Systems: Complementarity and Facilitation Processes and the Importance of Soil Microorganisms. A Review. Agric. Ecosyst. Environ. 2017, 240, 148–161. [Google Scholar] [CrossRef]
- Rodriguez, C.; Carlsson, G.; Englund, J.-E.; Flöhr, A.; Pelzer, E.; Jeuffroy, M.-H.; Makowski, D.; Jensen, E.S. Grain Legume-Cereal Intercropping Enhances the Use of Soil-Derived and Biologically Fixed Nitrogen in Temperate Agroecosystems. A Meta-Analysis. Eur. J. Agron. 2020, 118, 126077. [Google Scholar] [CrossRef]
- Bedoussac, L.; Journet, E.-P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological Principles Underlying the Increase of Productivity Achieved by Cereal-Grain Legume Intercrops in Organic Farming. A Review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Schneider, K.D.; Thiessen Martens, J.R.; Zvomuya, F.; Reid, D.K.; Fraser, T.D.; Lynch, D.H.; O’Halloran, I.P.; Wilson, H.F. Options for Improved Phosphorus Cycling and Use in Agriculture at the Field and Regional Scales. J. Environ. Qual. 2019, 48, 1247–1264. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Bandara, M.; Hamel, C.; Knight, J.D.; Gan, Y. Intensifying Crop Rotations with Pulse Crops Enhances System Productivity and Soil Organic Carbon in Semi-Arid Environments. Field Crops Res. 2020, 248, 107657. [Google Scholar] [CrossRef]
- Li, X.; Mu, Y.; Cheng, Y.; Liu, X.; Nian, H. Effects of Intercropping Sugarcane and Soybean on Growth, Rhizosphere Soil Microbes, Nitrogen and Phosphorus Availability. Acta Physiol. Plant. 2013, 35, 1113–1119. [Google Scholar] [CrossRef]
- Gogoi, N.; Baruah, K.K.; Meena, R.S. Grain Legumes: Impact on Soil Health and Agroecosystem. In Legumes for Soil Health and Sustainable Management; Meena, R.S., Das, A., Yadav, G.S., Lal, R., Eds.; Springer: Singapore, 2018; pp. 511–539. ISBN 9789811302534. [Google Scholar]
- Landl, M.; Glauninger, J. Preliminary Investigations into the Use of Trap Crops to Control Agriotes spp.(Coleoptera: Elateridae) in Potato Crops. J. Pest Sci. 2013, 86, 85–90. [Google Scholar] [CrossRef]
- Adhikari, A.; Reddy, G.V. Evaluation of Trap Crops for the Management of Wireworms in Spring Wheat in Montana. Arthropod-Plant Interact. 2017, 11, 755–766. [Google Scholar] [CrossRef]
- Sharma, A.; Sandhi, R.K.; Briar, S.S.; Miller, J.H.; Reddy, G.V.P. Assessing the Performance of Pea and Lentil at Different Seeding Densities as Trap Crops for the Management of Wireworms in Spring Wheat. J. Appl. Entomol. 2019, 143, 460–469. [Google Scholar] [CrossRef]
- Samoilova, E.S.; Kostina, N.V.; Striganova, B.R. Effects of the Vital Activity of Soil Insect Larvae on Microbial Processes in the Soil. Biol. Bull. 2015, 42, 563–569. [Google Scholar] [CrossRef]
- Samoylova, E.S.; Kostina, N.V.; Striganova, B.R. Non-Symbiotic Nitrogen Fixation in the Intestine of Click Beetle Larvae (Coleoptera, Elateridae). In Proceedings of the Doklady Biological Sciences; Springer Nature BV: Dordrecht, The Netherlands, 2015; Volume 461, p. 92. [Google Scholar]
- Susurluk, A. Effectiveness of the Entomopathogenic Nematodes Heterorhabditis bacteriophora and Steinernema feltiae against Tenebrio molitor (Yellow Mealworm) Larvae in Different Soil Types at Different Temperatures. Turk. J. Biol. 2006, 30, 199–205. [Google Scholar]
- Shah, S.; Ash, G.J.; Wilson, B.A. Resporulation of Metarhizium anisopliae Granules on Soil and Mortality of Tenebrio Molitor: Implications for Wireworm Management in Sweetpotato. Ann. Appl. Biol. 2022. [Google Scholar] [CrossRef]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.-F.; Ferrer, A.; Peigné, J. Agroecological Practices for Sustainable Agriculture. A Review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed Dynamics and Conservation Agriculture Principles: A Review. Field Crops Res. 2015, 183, 56–68. [Google Scholar] [CrossRef]
- Doltra, J.; Olesen, J.E. The Role of Catch Crops in the Ecological Intensification of Spring Cereals in Organic Farming under Nordic Climate. Eur. J. Agron. 2013, 44, 98–108. [Google Scholar] [CrossRef]
- Town, J.R.; Gregorich, E.G.; Drury, C.F.; Lemke, R.; Phillips, L.A.; Helgason, B.L. Diverse Crop Rotations Influence the Bacterial and Fungal Communities in Root, Rhizosphere and Soil and Impact Soil Microbial Processes. Appl. Soil Ecol. 2022, 169, 104241. [Google Scholar] [CrossRef]
- Furlan, L.; Kreutzweiser, D. Alternatives to Neonicotinoid Insecticides for Pest Control: Case Studies in Agriculture and Forestry. Environ. Sci. Pollut. Res. 2015, 22, 135–147. [Google Scholar] [CrossRef]
- Griffiths, D.C. Susceptibility of Plants to Attack by Wireworms (Agriotes spp.). Ann. Appl. Biol. 1974, 78, 7–13. [Google Scholar] [CrossRef]
- Shirck, F.H. Crop Rotations and Cultural Practices as Related to Wireworm Control in Idaho. J. Econ. Entomol. 1945, 38, 627–633. [Google Scholar] [CrossRef]
- Shirck, F.H. Growth of the Sugar-Beet Wireworm on Different Food Plants. J. Econ. Entomol. 1946, 39, 648–651. [Google Scholar] [CrossRef]
- Dorr de Quadros, P.; Zhalnina, K.; Davis-Richardson, A.; Fagen, J.R.; Drew, J.; Bayer, C.; Camargo, F.A.O.; Triplett, E.W. The Effect of Tillage System and Crop Rotation on Soil Microbial Diversity and Composition in a Subtropical Acrisol. Diversity 2012, 4, 375–395. [Google Scholar] [CrossRef]
- Venter, Z.S.; Jacobs, K.; Hawkins, H.-J. The Impact of Crop Rotation on Soil Microbial Diversity: A Meta-Analysis. Pedobiologia 2016, 59, 215–223. [Google Scholar] [CrossRef]
- Lu, S.; Lepo, J.E.; Song, H.-X.; Guan, C.-Y.; Zhang, Z.-H. Increased Rice Yield in Long-Term Crop Rotation Regimes through Improved Soil Structure, Rhizosphere Microbial Communities, and Nutrient Bioavailability in Paddy Soil. Biol. Fertil. Soils 2018, 54, 909–923. [Google Scholar] [CrossRef]
- Ryan, M.H.; Kirkegaard, J.A.; Angus, J.F. Brassica Crops Stimulate Soil Mineral N Accumulation. Soil Res. 2006, 44, 367–377. [Google Scholar] [CrossRef]
- Dong, W.-Y.; Zhang, X.-Y.; Dai, X.-Q.; Fu, X.-L.; Yang, F.-T.; Liu, X.-Y.; Sun, X.-M.; Wen, X.-F.; Schaeffer, S. Changes in Soil Microbial Community Composition in Response to Fertilization of Paddy Soils in Subtropical China. Appl. Soil Ecol. 2014, 84, 140–147. [Google Scholar] [CrossRef]
- O’sullivan, O.S.; Heskel, M.A.; Reich, P.B.; Tjoelker, M.G.; Weerasinghe, L.K.; Penillard, A.; Zhu, L.; Egerton, J.J.; Bloomfield, K.J.; Creek, D. Thermal Limits of Leaf Metabolism across Biomes. Glob. Change Biol. 2017, 23, 209–223. [Google Scholar] [CrossRef]
- Zhalnina, K.; Louie, K.B.; Hao, Z.; Mansoori, N.; da Rocha, U.N.; Shi, S.; Cho, H.; Karaoz, U.; Loqué, D.; Bowen, B.P. Dynamic Root Exudate Chemistry and Microbial Substrate Preferences Drive Patterns in Rhizosphere Microbial Community Assembly. Nat. Microbiol. 2018, 3, 470–480. [Google Scholar] [CrossRef]
- Nettles, W.C. Effects of Substitute Crops and Rotations on Wireworm Control. J. Econ. Entomol. 1940, 33, 644–646. [Google Scholar] [CrossRef]
- Jansson, R.K.; Lecrone, S.H. Effects of Summer Cover Crop Management on Wireworm (Coleoptera: Elateridae) Abundance and Damage to Potato. J. Econ. Entomol. 1991, 84, 581–586. [Google Scholar] [CrossRef]
- Seal, D.R.; Chalfant, R.B.; Hall, M.R. Effects of Cultural Practices and Rotational Crops on Abundance of Wireworms (Coleoptera: Elateridae) Affecting Sweetpotato in Georgia. Environ. Entomol. 1992, 21, 969–974. [Google Scholar] [CrossRef]
- Salt, G.; Hollick, F.S.J. Studies of Wireworm Population III. Some Effects of Cultivation. Ann. Appl. Biol. 1949, 36, 169–186. [Google Scholar] [CrossRef]
- Kumar, D.; Shivay, Y.S.; Dhar, S.; Kumar, C.; Prasad, R. Rhizospheric Flora and the Influence of Agronomic Practices on Them: A Review. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2013, 83, 1–14. [Google Scholar] [CrossRef]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation Agriculture and Ecosystem Services: An Overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Schwilch, G.; Lemann, T.; Berglund, Ö.; Camarotto, C.; Cerdà, A.; Daliakopoulos, I.N.; Kohnová, S.; Krzeminska, D.; Marañón, T.; Rietra, R. Assessing Impacts of Soil Management Measures on Ecosystem Services. Sustainability 2018, 10, 4416. [Google Scholar] [CrossRef]
- Rosa-Schleich, J.; Loos, J.; Mußhoff, O.; Tscharntke, T. Ecological-Economic Trade-Offs of Diversified Farming Systems–a Review. Ecol. Econ. 2019, 160, 251–263. [Google Scholar] [CrossRef]
- Balota, E.L.; Colozzi-Filho, A.; Andrade, D.S.; Dick, R.P. Microbial Biomass in Soils under Different Tillage and Crop Rotation Systems. Biol. Fertil. Soils 2003, 38, 15–20. [Google Scholar] [CrossRef]
- Furlan, L.; Milosavljević, I.; Chiarini, F.; Benvegnù, I. Effects of Conventional versus No-Tillage Systems on the Population Dynamics of Elaterid Pests and the Associated Damage at Establishment of Maize Crops. Crop Prot. 2021, 149, 105751. [Google Scholar] [CrossRef]
- Campbell, R.E.; Stone, M.W. Flooding for the Control of Wireworms in California. J. Econ. Entomol. 1938, 31, 286–291. [Google Scholar] [CrossRef]
- Onsager, J.A.; Landis, B.J.; Rusk, H.W. Control of Wireworms on Potatoes in Eastern Washington by Soil Fumigants and Organophosphorous Insecticides. J. Econ. Entomol. 1966, 59, 441–443. [Google Scholar] [CrossRef]
- Strickland, E.H. Wireworms of Alberta, a Preliminary Report. University of Alberta. Univ. Alta. Bull. Edmenton Alta. 1927, 2. [Google Scholar]
- Unger, I.M.; Kennedy, A.C.; Muzika, R.-M. Flooding Effects on Soil Microbial Communities. Appl. Soil Ecol. 2009, 42, 1–8. [Google Scholar] [CrossRef]
- Lestan, D.; Lamar, R.T. Development of Fungal Inocula for Bioaugmentation of Contaminated Soils. Appl. Environ. Microbiol. 1996, 62, 2045–2052. [Google Scholar] [CrossRef]
- Mazzola, M. Manipulation of Rhizosphere Bacterial Communities to Induce Suppressive Soils. J. Nematol. 2007, 39, 213. [Google Scholar]
- Nguyen, L.T.T.; Osanai, Y.; Lai, K.; Anderson, I.C.; Bange, M.P.; Tissue, D.T.; Singh, B.K. Responses of the Soil Microbial Community to Nitrogen Fertilizer Regimes and Historical Exposure to Extreme Weather Events: Flooding or Prolonged-Drought. Soil Biol. Biochem. 2018, 118, 227–236. [Google Scholar] [CrossRef]
- Johnson, S.N.; Anderson, E.A.; Dawson, G.; Griffiths, D.W. Varietal Susceptibility of Potatoes to Wireworm Herbivory. Agric. For. Entomol. 2008, 10, 167–174. [Google Scholar] [CrossRef]
- La Forgia, D.; Thibord, J.-B.; Larroudé, P.; Francis, F.; Lognay, G.; Verheggen, F. Linking Variety-Dependent Root Volatile Organic Compounds in Maize with Differential Infestation by Wireworms. J. Pest Sci. 2020, 93, 605–614. [Google Scholar] [CrossRef]
- Barsics, F.; Delory, B.M.; Delaplace, P.; Francis, F.; Fauconnier, M.-L.; Haubruge, É.; Verheggen, F.J. Foraging Wireworms Are Attracted to Root-Produced Volatile Aldehydes. J. Pest Sci. 2017, 90, 69–76. [Google Scholar] [CrossRef]
- Milosavljević, I.; Esser, A.D.; Murphy, K.M.; Crowder, D.W. Effects of Imidacloprid Seed Treatments on Crop Yields and Economic Returns of Cereal Crops. Crop Prot. 2019, 119, 166–171. [Google Scholar] [CrossRef]
- Osbourn, A.E. Saponins in Cereals. Phytochemistry 2003, 62, 1–4. [Google Scholar] [CrossRef]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The Role of Root Exudates in Rhizosphere Interactions with Plants and Other Organisms. Annu Rev Plant Biol 2006, 57, 233–266. [Google Scholar] [CrossRef]
- Bertin, C.; Yang, X.; Weston, L.A. The Role of Root Exudates and Allelochemicals in the Rhizosphere. Plant Soil 2003, 256, 67–83. [Google Scholar] [CrossRef]
- Houlden, A.; Timms-Wilson, T.M.; Day, M.J.; Bailey, M.J. Influence of Plant Developmental Stage on Microbial Community Structure and Activity in the Rhizosphere of Three Field Crops. FEMS Microbiol. Ecol. 2008, 65, 193–201. [Google Scholar] [CrossRef]
- Rudrappa, T.; Czymmek, K.J.; Paré, P.W.; Bais, H.P. Root-Secreted Malic Acid Recruits Beneficial Soil Bacteria. Plant Physiol. 2008, 148, 1547–1556. [Google Scholar] [CrossRef] [PubMed]
- Doornbos, R.F.; van Loon, L.C.; Bakker, P.A. Impact of Root Exudates and Plant Defense Signaling on Bacterial Communities in the Rhizosphere. A Review. Agron. Sustain. Dev. 2012, 32, 227–243. [Google Scholar] [CrossRef]
- Hyslop, J.A. Wireworms Attacking Cereal and Forage Crops; US Department of Agriculture: Washington, DC, USA, 1915. [Google Scholar]
- Fox, C.J.S.; MacLellan, C.R. Some Carabidae and Staphylinidae Shown to Feed on a Wireworm, Agriotes Sputator (L.), by the Precipitin Test1. Can. Entomol. 1956, 88, 228–231. [Google Scholar] [CrossRef]
- Frank, J.H. Carabidae (Coleoptera) as Predators of the Red-Backed Cutworm (Lepidoptera: Noctuidae) in Central Alberta. Can. Entomol. 1971, 103, 1039–1044. [Google Scholar] [CrossRef]
- Van Herk, W.G.; Vernon, R.S.; Cronin, E.M.L.; Gaimari, S.D. Predation of Thereva nobilitata (Fabricius) (Diptera: Therevidae) on Agriotes obscurus L. (Coleoptera: Elateridae). J. Appl. Entomol. 2015, 139, 154–157. [Google Scholar] [CrossRef]
- Zacharuk, R.Y. Penetration of the Cuticular Layers of Elaterid Larvae (Coleoptera) by the Fungus Metarrhizium anisopliae, and Notes on a Bacterial Invasion. J. Invertebr. Pathol. 1973, 21, 101–106. [Google Scholar] [CrossRef]
- Danismazoglu, M.; Demir, İ.; Sevim, A.; Demirbag, Z.; Nalcacioglu, R. An Investigation on the Bacterial Flora of Agriotes Lineatus (Coleoptera: Elateridae) and Pathogenicity of the Flora Members. Crop Prot. 2012, 40, 1–7. [Google Scholar] [CrossRef]
- Kleespies, R.G.; Ritter, C.; Zimmermann, G.; Burghause, F.; Feiertag, S.; Leclerque, A. A Survey of Microbial Antagonists of Agriotes Wireworms from Germany and Italy. J. Pest Sci. 2013, 86, 99–106. [Google Scholar] [CrossRef]
- Lacey, L.A.; Unruh, T.R.; Simkins, H.; Thomsen-Archer, K. Gut Bacteria Associated with the Pacific Coast Wireworm, Limonius canus, Inferred from 16s RDNA Sequences and Their Implications for Control. Phytoparasitica 2007, 35, 479–489. [Google Scholar] [CrossRef]
- Lewis, E.E.; Campbell, J.; Griffin, C.; Kaya, H.; Peters, A. Behavioral Ecology of Entomopathogenic Nematodes. Biol. Control 2006, 38, 66–79. [Google Scholar] [CrossRef]
- Campos-Herrera, R.; Gutiérrez, C. A Laboratory Study on the Activity of Steinernema feltiae (Rhabditida: Steinernematidae) Rioja Strain against Horticultural Insect Pests. J. Pest Sci. 2009, 82, 305–309. [Google Scholar] [CrossRef]
- Eidt, D.C.; Thurston, G.S. Physical Deterrents to Infection by Entomopathogenic Nematodes in Wireworms (Coleoptera: Elateridae) and Other Soil Insects. Can. Entomol. 1995, 127, 423–429. [Google Scholar] [CrossRef]
- Sandhi, R.K.; Shapiro-Ilan, D.; Sharma, A.; Reddy, G.V. Efficacy of Entomopathogenic Nematodes against the Sugarbeet Wireworm, Limonius californicus (Mannerheim)(Coleoptera: Elateridae). Biol. Control 2020, 143, 104190. [Google Scholar] [CrossRef]
- Toba, H.H.; Lindegren, J.E.; Turner, J.E.; Vail, P.V. Susceptibility of the Colorado Potato Beetle and the Sugarbeet Wireworm to Steinernema feltiae and S. Glaseri. J. Entomol. 1983, 15, 597–601. [Google Scholar]
- Ester, A.; Huiting, H. Controlling Wireworms (Agriotes Spp.) in a Potato Crop with Biologicals. IOBCwprs Bull. 2007, 30, 189–196. [Google Scholar]
- Ansari, M.A.; Evans, M.; Butt, T.M. Identification of Pathogenic Strains of Entomopathogenic Nematodes and Fungi for Wireworm Control. Crop Prot. 2009, 28, 269–272. [Google Scholar] [CrossRef]
- Lehmhus, J. Wireworm Biology in Middle Europe—What Are We Facing? Microbial and Nematode Control of Invertebrate Pests. IOBCwprs Bull. 2020, 150, 96–99. [Google Scholar]
- Griffin, C.T.; Boemare, N.E.; Lewis, E.E. Biology and Behaviour. In Nematode as Biocontrol Agents; CABI: Wallingford, UK, 2005. [Google Scholar]
- Ensafi, P.; Crowder, D.W.; Esser, A.D.; Zhao, Z.; Marshall, J.M.; Rashed, A. Soil Type Mediates the Effectiveness of Biological Control Against Limonius californicus (Coleoptera: Elateridae). J. Econ. Entomol. 2018, 111, 2058–2253. [Google Scholar] [CrossRef]
- Kaspi, R.; Ross, A.; Hodson, A.K.; Stevens, G.N.; Kaya, H.; Lewis, E.E. Foraging Efficacy of the Entomopathogenic Nematode Steinernema riobrave in Different Soil Types from California Citrus Groves. Appl. Soil Ecol. 2010, 45, 243–253. [Google Scholar] [CrossRef]
- Kung, S.; Gaugler, R.; Kaya, H.K. Effects of Soil Temperature, Moisture, and Relative Humidity on Entomopathogenic Nematode Persistence. J. Invertebr. Pathol. 1991, 57, 242–249. [Google Scholar] [CrossRef]
- Nikoukar, A.; Ensafi, P.; Lewis, E.E.; Crowder, D.W.; Rashed, A. Efficacy of Naturally Occurring and Commercial Entomopathogenic Nematodes Against Sugar Beet Wireworm (Coleoptera: Elateridae). J. Econ. Entomol. 2021, 114, 2241–2244. [Google Scholar] [CrossRef] [PubMed]
- Rojht, H.; Kač, M.; Trdan, S. Nontarget Effect of Entomopathogenic Nematodes on Larvae of Twospotted Lady Beetle (Coleoptera: Coccinellidae) and Green Lacewing (Neuroptera: Chrysopidae) under Laboratory Conditions. J. Econ. Entomol. 2009, 102, 1440–1443. [Google Scholar] [CrossRef]
- Sandhi, R.K.; Shapiro-Ilan, D.; Reddy, G.V. Montana Native Entomopathogenic Nematode Species against Limonius californicus (Coleoptera: Elateridae). J. Econ. Entomol. 2020, 113, 2104–2111. [Google Scholar] [CrossRef]
- Tinline, R.D.; Zacharuk, R.Y. Pathogenicity of Metarrhizium anisopliae (Metch.) Sor. and Beauveria bassiana (Bals.) Vuill. to Two Species of Elateridae. Nature 1960, 187, 794–795. [Google Scholar] [CrossRef]
- Ladurner, E.; Quentin, U.; Franceschini, S.; Benuzzi, M.; Ehlers, R. Efficacy Evaluation of the Entomopathogenic Fungus Beauveria bassiana Strain ATCC 74040 against Wireworms (Agriotes spp.) on Potato. IOBCwprs Bull 2009, 45, 445–448. [Google Scholar]
- Kölliker, U.; Biasio, L.; Jossi, W. Potential Control of Swiss Wireworms with Entomopathogenic Fungi. IOBCwprs Bull 2011, 66, 517–520. [Google Scholar]
- Kabaluk, T.; Vernon, R.; Goettel, M.S. Mortality and Infection of Wireworm, Agriotes obscurus [Coleoptera: Elateridae], with Inundative Field Applications of Metarhizium anisopliae. Phytoprotection 2007, 88, 51–56. [Google Scholar] [CrossRef]
- Sufyan, M.; Abbasi, A.; Gogi, M.D.; Arshad, M.; Nawaz, A.; Neuhoff, D. Efficacy of Beauveria bassiana for the Management of Economically Important Wireworm Species (Coleoptera: Elateridae) in Organic Farming. Gesunde Pflanz. 2017, 69, 197–202. [Google Scholar] [CrossRef]
- Tharp, C.I.; Blodgett, S.L.; Jaronski, S. Control of Wireworm (Elateridae) in potato with Microbial Metarhizium. Arthropod Manag. Tests 2007, 32, E43. [Google Scholar] [CrossRef]
- Razinger, J.; Praprotnik, E.; Schroers, H.-J. Bioaugmentation of Entomopathogenic Fungi for Sustainable Agriotes Larvae (Wireworms) Management in Maize. Front. Plant Sci. 2020, 11, 535005. [Google Scholar] [CrossRef]
- Luz, C.; Fargues, J. Temperature and Moisture Requirements for Conidial Germination of an Isolate of Beauveria bassiana, Pathogenic to Rhodnius prolixus. Mycopathologia 1997, 138, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Kabaluk, T.; Ericsson, J. Environmental and Behavioral Constraints on the Infection of Wireworms by Metarhizium anisopliae. Environ. Entomol. 2014, 36, 1415–1420. [Google Scholar] [CrossRef]
- Antwi, F.B.; Shrestha, G.; Reddy, G.V.; Jaronski, S.T. Entomopathogens in Conjunction with Imidacloprid Could Be Used to Manage Wireworms (Coleoptera: Elateridae) on Spring Wheat. Can. Entomol. 2018, 150, 124–139. [Google Scholar] [CrossRef]
- Sharma, A.; Jaronski, S.; Reddy, G.V. Impact of Granular Carriers to Improve the Efficacy of Entomopathogenic Fungi against Wireworms in Spring Wheat. J. Pest Sci. 2020, 93, 275–290. [Google Scholar] [CrossRef]
- Brandl, M.A.; Schumann, M.; Przyklenk, M.; Patel, A.; Vidal, S. Wireworm Damage Reduction in Potatoes with an Attract-and-Kill Strategy Using Metarhizium brunneum. J. Pest Sci. 2017, 90, 479–793. [Google Scholar] [CrossRef]
- Helmberger, M.; Shields, E.J.; Wicking, K.G. Ecology of Belowground Biological Control: Entomopathogenic Nematode Interactions with Soil Biota. Appl. Soil Ecol. 2017, 121, 201–213. [Google Scholar] [CrossRef]
- Quesada-Moraga, E.; Navas-Cortés, J.A.; Maranhao, E.A.A.; Ortiz-Urquiza, A.; Santiago-Álvarez, C. Factors Affecting the Occurrence and Distribution of Entomopathogenic Fungi in Natural and Cultivated Soils. Mycol. Res. 2007, 111, 947–966. [Google Scholar] [CrossRef]
- Rohde, C.; Moino Jr, A.; da Silva, M.A.; Carvalho, F.D.; Ferreira, C.S. Influence of Soil Temperature and Moisture on the Infectivity of Entomopathogenic Nematodes (Rhabditida: Heterorhabditidae, Steinernematidae) against Larvae of Ceratitis capitata (Wiedemann)(Diptera: Tephritidae). Neotrop. Entomol. 2010, 39, 608–611. [Google Scholar] [CrossRef] [Green Version]
- Kabaluk, T.; Ericsson, J. Metarhizium anisopliae Seed Treatment Increases Yield of Field Corn When Applied for Wireworm Control. Agron. J. 2007, 99, 1377–1381. [Google Scholar] [CrossRef]
- Barelli, L.; Waller, A.S.; Behie, S.W.; Bidochka, M.J. Plant Microbiome Analysis after Metarhizium Amendment Reveals Increases in Abundance of Plant Growth-Promoting Organisms and Maintenance of Disease-Suppressive Soil. PLoS ONE 2020, 15, e0231150. [Google Scholar] [CrossRef]
- Reinbacher, L.; Bacher, S.; Knecht, F.; Schweizer, C.; Sostizzo, T.; Grabenweger, G. Preventive Field Application of Metarhizium brunneum in Cover Crops for Wireworm Control. Crop Prot. 2021, 150, 105811. [Google Scholar] [CrossRef]
- Kabaluk, T.; Li-Leger, E.; Nam, S. Metarhizium brunneum–an Enzootic Wireworm Disease and Evidence for Its Suppression by Bacterial Symbionts. J. Invertebr. Pathol. 2017, 150, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Milosavljević, I.; Esser, A.D.; Rashed, A.; Crowder, D.W. The Composition of Soil-Dwelling Pathogen Communities Mediates Effects on Wireworm Herbivores and Wheat Productivity. Biol. Control 2020, 149, 104317. [Google Scholar] [CrossRef]
- Ansari, M.A.; Shah, F.A.; Tirry, L.; Moens, M. Field Trials against Hoplia philanthus (Coleoptera: Scarabaeidae) with a Combination of an Entomopathogenic Nematode and the Fungus Metarhizium anisopliae CLO 53. Biol. Control 2006, 39, 453–459. [Google Scholar] [CrossRef]
- Jabbour, R.; Crowder, D.W.; Aultman, E.A.; Snyder, W.E. Entomopathogen Biodiversity Increases Host Mortality. Biol. Control 2011, 59, 277–283. [Google Scholar] [CrossRef]
- Shapiro-Ilan, D.; Jackson, M.; Reilly, C.C.; Hotchkiss, M.W. Effects of Combining an Entomopathogenic Fungi or Bacterium with Entomopathogenic Nematodes on Mortality of Curculio caryae (Coleoptera: Curculionidae). Biol. Control 2004, 30, 19–126. [Google Scholar] [CrossRef]
- Wakil, W.; Yasin, M.; Shapiro-Ilan, D. Effects of Single and Combined Applications of Entomopathogenic Fungi and Nematodes against Rhynchophorus ferrugineus (Olivier). Sci. Rep. 2017, 7, 5971. [Google Scholar] [CrossRef]
- Acevedo, J.P.M.; Samuels, R.I.; Machado, I.R.; Dolinski, C. Interactions between Isolates of the Entomopathogenic Fungus Metarhizium anisopliae and the Entomopathogenic Nematode Heterorhabditis bacteriophora JPM4 during Infection of the Sugar Cane Borer Diatraea saccharalis (Lepidoptera: Pyralidae). J. Invertebr. Pathol. 2007, 96, 187–192. [Google Scholar] [CrossRef]
- Barberchek, M.E.; Kaya, H.K. Interactions between Beauveria bassiana and the Entomogenous Nematodes, Steinernema feltiae and Heterorhabditis heliothidis. J. Invertebr. Pathol. 1990, 55, 225–234. [Google Scholar] [CrossRef]
- Ericsson, J.; Kabaluk, T.; Goettel, M.S.; Myers, J.H. Spinosad Interacts Synergistically with the Insect Pathogen Metarhizium anisopliae against the Exotic Wireworms Agriotes lineatus and Agriotes obscurus (Coleoptera: Elateridae). J. Econ. Entomol. 2007, 100, 31–38. [Google Scholar] [CrossRef]
- La Forgia, D.; Bruno, P.; Campos-Herrera, R.; Turlings, T.; Verheggen, F. The Lure of Hidden Death: Development of an Attract-and-Kill Strategy against Wireworms Combining Semiochemical and Entomopathogenic Nematodes. Turk. J. Zool. 2021, 45, 347–355. [Google Scholar] [CrossRef]
- Botelho, A.B.; Alves-Pereira, A.; Prado, R.; Zucchi, M.; Júnior, I. Metarhizium Species in Soil from Brazilian Biomes: A Study of Diversity, Distribution, and Association with Natural and Agricultural Environments.". Fungal Ecol. 2019, 41, 289–300. [Google Scholar] [CrossRef]
- Lundgren, J.G.; Fergen, J.K. Enhancing Predation of a Subterranean Insect Pest: A Conservation Benefit of Winter Vegetation in Agroecosystems. Appl. Soil Ecol. 2011, 51, 9–16. [Google Scholar] [CrossRef]
- Ryan, M.R.; Mirsky, S.B.; Mortensen, D.A.; Teasdale, J.R.; Curran, W.S. Potential Synergistic Effects of Cereal Rye Biomass and Soybean Planting Density on Weed Suppression. Weed Sci. 2011, 59, 238–246. [Google Scholar] [CrossRef]
- Schipanski, M.E.; Barbercheck, M.; Douglas, M.R.; Finney, D.M.; Haider, K.; Kaye, J.P.; Kemanian, A.R.; Mortensen, D.A.; Ryan, M.R.; Tooker, J. A Framework for Evaluating Ecosystem Services Provided by Cover Crops in Agroecosystems. Agric. Syst. 2014, 125, 12–22. [Google Scholar] [CrossRef]
- Schipanski, M.E.; Drinkwater, L.E. Nitrogen Fixation of Red Clover Interseeded with Winter Cereals across a Management-Induced Fertility Gradient. Nutr. Cycl. Agroecosystems 2011, 90, 105–119. [Google Scholar] [CrossRef]
- Tonitto, C.; David, M.B.; Drinkwater, L.E. Replacing Bare Fallows with Cover Crops in Fertilizer-Intensive Cropping Systems: A Meta-Analysis of Crop Yield and N Dynamics. Agric. Ecosyst. Environ. 2006, 112, 58–72. [Google Scholar] [CrossRef]
- Lazzeri, L.; Curto, G.; Leoni, O.; Dallavalle, E. Effects of Glucosinolates and Their Enzymatic Hydrolysis Products via Myrosinase on the Root-Knot Nematode Meloidogyne Incognita (Kofoid et White) Chitw. J. Agric. Food Chem. 2004, 52, 6703–6707. [Google Scholar] [CrossRef]
- Lichtenstein, E.P.; Morgan, D.G.; Mueller, C.H. Insecticides in Nature, Naturally Occurring Insecticides in Cruciferous Crops. J. Agric. Food Chem. 1964, 12, 158–161. [Google Scholar] [CrossRef]
- Manici, L.M.; Lazzeri, L.; Palmieri, S. In Vitro Fungitoxic Activity of Some Glucosinolates and Their Enzyme-Derived Products toward Plant Pathogenic Fungi. J. Agric. Food Chem. 1997, 45, 2768–2773. [Google Scholar] [CrossRef]
- Matthiessen, J.N.; Kirkegaard, J.A. Biofumigation and Enhanced Biodegradation: Opportunity and Challenge in Soilborne Pest and Disease Management. Crit. Rev. Plant Sci. 2006, 25, 235–265. [Google Scholar] [CrossRef]
- Popova, I.; Dubie, J.S.; Morra, M.J. Optimization of Hydrolysis Conditions for Release of Biopesticides from Glucosinolates in Brassica juncea and Sinapis alba Seed Meal Extract. Ind. Crops Prod. 2017, 97, 354–359. [Google Scholar] [CrossRef]
- Borek, V.; Morra, M.J. Ionic Thiocyanate (SCN-) Production from 4-Hydroxybenzyl Glucosinolate Contained in Sinapis alba Seed Meal. J. Agric. Food Chem. 2005, 53, 8650–8654. [Google Scholar] [CrossRef] [PubMed]
- Furlan, L.; Bonetto, C.; Patalano, G.; Lazzeri, L. Potential of Biocidal Meals to Control Wireworm Populations. In Proceedings of the Proceedings of the first International Symposium on “Biofumigation: A possible alternative to methyl bromide; Firenze, Italy, 31 April 2004, Volume 31, pp. 313–316.
- McCaffrey, J.P.; Williams III, L.; Borek, V.; Brown, P.D.; Morra, M.J. Toxicity of Ionic Thiocyanate-Amended Soil to the Wireworm Limonius californicus (Coleoptera: Elateridae). J. Econ. Entomol. 1995, 88, 793–797. [Google Scholar] [CrossRef]
- Brown, J.; Brown, A.P.; Davis, J.B.; Erickson, D. Intergeneric Hybridization between Sinapis alba and Brassica napus. Euphytica 1997, 93, 163–168. [Google Scholar] [CrossRef]
- Morra, M.J.; Popova, I.; Boydston, R.A. Bioherbicidal Activity of Sinapis alba Seed Meal Extracts. Ind. Crops Prod. 2018, 115, 174–181. [Google Scholar] [CrossRef]
- Williams, L.; Morra, M.J.; Brown, P.D.; McCaffrey, J.P. Toxicity of Allyl Isothiocyanate-Amended Soil To Limonius californicus (Mann.)(Coleoptera: Elateridae) Wireworms. J. Chem. Ecol. 1993, 19, 1033–1046. [Google Scholar] [CrossRef]
- Brown, P.D.; Morra, M.J.; McCaffrey, J.P.; Auld, D.L.; Williams, L. Allelochemicals Produced during Glucosinolate Degradation in Soi. J. Chem. Ecol. 1991, 17, 2021–2034. [Google Scholar] [CrossRef]
- Elberson, L.R.; Borek, V.; McCaffrey, J.P.; Morra, M.J. Toxicity of Rapeseed Meal-Amended Soil to Wireworms, Limonius californicus (Coleoptera: Elateridae). J. Agric. Entomol. 1996, 13, 232–330. [Google Scholar]
- Furlan, L.; Bonetto, C.; Finotto, A.; Lazzeri, L.; Malaguti, L.; Patalano, G.; Parker, W. The Efficacy of Biofumigant Meals and Plants to Control Wireworm Populations. Ind. Crops Prod. 2010, 31, 245–254. [Google Scholar] [CrossRef]
- Dandurand, L.-M.; Morra, M.J.; Zasada, I.A.; Phillips, W.S.; Popova, I.; Harder, C. Control of Globodera spp. Using Brassica Juncea Seed Meal and Seed Meal Extract. J. Nematol. 2017, 49, 437. [Google Scholar] [CrossRef]
- Sarwar, M.; Kirkegaard, J.A.; Wong, P.T.W.; Desmarchelier, J. Biofumigation Potential of Brassicas. Plant Soil 1998, 201, 103–112. [Google Scholar] [CrossRef]
- Hansen, J.C.; Schillinger, W.F.; Sullivan, T.S.; Paulitz, T.C. Soil Microbial Biomass and Fungi Reduced with Canola Introduced into Long-Term Monoculture Wheat Rotations. Front. Microbiol. 2019, 1488. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.C.; Schillinger, W.F.; Sullivan, T.S.; Paulitz, T.C. Rhizosphere Microbial Communities of Canola and Wheat at Six Paired Field Sites. Appl. Soil Ecol. 2018, 130, 185–193. [Google Scholar] [CrossRef]
- Trudgill, P.W.; Widdus, R.; Rees, J.S. Effects of Organochlorine Insecticides on Bacterial Growth, Respiration and Viability. Microbiology 1971, 69, 1–13. [Google Scholar] [CrossRef]
- Digrak, M.; Kazanici, F. Effect of Some Organophosphorus Insecticides on Soil Microorganisms. Turk. J. Biol. 2001, 25, 51–58. [Google Scholar]
- Van Herk, W.G.; Vernon, R.S. Soil Bioassay for Studying Behavioral Responses of Wireworms (Coleoptera: Elateridae) to Insecticide-Treated Wheat Seed. Environ. Entomol. 2007, 36, 1441–1449. [Google Scholar] [CrossRef]
- Van Herk, W.G.; Vernon, R.S. Categorization and Numerical Assessment of Wireworm Mobility over Time Following Exposure to Bifenthrin. J. Pest Sci. 2013, 86, 115–123. [Google Scholar] [CrossRef]
- Van Herk, W.; Vernon, R.S.; Vojtko, B.; Snow, S.; Fortier, J.; Fortin, C. Contact Behaviour and Mortality of Wireworms Exposed to Six Classes of Insecticide Applied to Wheat Seed. J. Pest Sci. 2015, 88, 717–739. [Google Scholar] [CrossRef]
- Morales-Rodriguez, A.; Wanner, K.W. Efficacy of Thiamethoxam and Fipronil, Applied Alone and in Combination, to Control Limonius californicus and Hypnoidus bicolor (Coleoptera: Elateridae). Pest Manag. Sci. 2015, 71, 584–591. [Google Scholar] [CrossRef]
- Cycoń, M.; Markowicz, A.; Borymski, S.; Wójcik, M.; Piotrowska-Seget, Z. Imidacloprid Induces Changes in the Structure, Genetic Diversity and Catabolic Activity of Soil Microbial Communities. J. Environ. Manage. 2013, 131, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; An, J.; Dang, Z.; Lv, H.; Pan, W.; Gao, Z. Treating Wheat Seeds with Neonicotinoid Insecticides Does Not Harm the Rhizosphere Microbial Community. PLoS ONE 2018, 13, e0205200. [Google Scholar] [CrossRef]
- Parizadeh, M.; Mimee, B.; Kembel, S.W. Effects of Neonicotinoid Seed Treatments on Soil Microbial Gene Expression Vary with Time in an Agricultural Ecosystem. bioRxiv 2022, arXiv:2022.01.20.477174. [Google Scholar] [CrossRef]
- Broderick, N.A.; Raffa, K.F.; Handelsman, J. Midgut Bacteria Required for Bacillus thuringiensis Insecticidal Activity. Proc. Natl. Acad. Sci. USA 2006, 103, 15196–15199. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, Y.; Hosokawa, T.; Fukatsu, T. Insect-Microbe Mutualism without Vertical Transmission: A Stinkbug Acquires a Beneficial Gut Symbiont from the Environment Every Generation. Appl. Environ. Microbiol. 2007, 73, 4308–4316. [Google Scholar] [CrossRef]
- Azhar, S.; Ahmad, K.S. Pedospheric Adsorption–Desorption of Anti-Moulting Agent Chlorfluazuron and Transfer in Agriculturally Significant Arcadian Soils. Sādhanā 2019, 44, 212. [Google Scholar] [CrossRef]
- Xie, G.; Li, B.; Tang, L.; Rao, L.; Dong, Z. Adsorption-Desorption and Leaching Behaviors of Broflanilide in Four Texturally Different Agricultural Soils from China. J. Soils Sediments 2021, 21, 724–735. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Rosi, E.J.; Gessner, M.O. Synthetic Chemicals as Agents of Global Change. Front. Ecol. Environ. 2017, 15, 84–90. [Google Scholar] [CrossRef]
- Peiffer, J.A.; Spor, A.; Koren, O.; Jin, Z.; Tringe, S.G.; Dangl, J.L.; Buckler, E.S.; Ley, R.E. Diversity and Heritability of the Maize Rhizosphere Microbiome under Field Conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 6548–6553. [Google Scholar] [CrossRef]
- Donn, S.; Wheatley, R.E.; McKenzie, B.M.; Loades, K.W.; Hallett, P.D. Improved Soil Fertility from Compost Amendment Increases Root Growth and Reinforcement of Surface Soil on Slopes. Ecol. Eng. 2014, 71, 458–465. [Google Scholar] [CrossRef]
- Edwards, J.; Johnson, C.; Santos-Medellín, C.; Lurie, E.; Podishetty, N.K.; Bhatnagar, S.; Eisen, J.A.; Sundaresan, V. Structure, Variation, and Assembly of the Root-Associated Microbiomes of Rice. Proc. Natl. Acad. Sci. USA 2015, 112, E911–E920. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, A.K.; Yin, C.; Hulbert, S.H. Community Structure, Species Variation, and Potential Functions of Rhizosphere-Associated Bacteria of Different Winter Wheat (Triticum aestivum) Cultivars. Front. Plant Sci. 2017, 8, 132. [Google Scholar] [CrossRef] [PubMed]
- Samoilova, E.S.; Kostina, N.V.; Striganova, B.R. Microbial Population of the Digestive Tract of Click Beetle Larvae (Elateridae, Coleoptera). Biol. Bull. 2016, 43, 457–467. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikoukar, A.; Rashed, A. Integrated Pest Management of Wireworms (Coleoptera: Elateridae) and the Rhizosphere in Agroecosystems. Insects 2022, 13, 769. https://doi.org/10.3390/insects13090769
Nikoukar A, Rashed A. Integrated Pest Management of Wireworms (Coleoptera: Elateridae) and the Rhizosphere in Agroecosystems. Insects. 2022; 13(9):769. https://doi.org/10.3390/insects13090769
Chicago/Turabian StyleNikoukar, Atoosa, and Arash Rashed. 2022. "Integrated Pest Management of Wireworms (Coleoptera: Elateridae) and the Rhizosphere in Agroecosystems" Insects 13, no. 9: 769. https://doi.org/10.3390/insects13090769
APA StyleNikoukar, A., & Rashed, A. (2022). Integrated Pest Management of Wireworms (Coleoptera: Elateridae) and the Rhizosphere in Agroecosystems. Insects, 13(9), 769. https://doi.org/10.3390/insects13090769