Resistance to Bt Maize by Western Corn Rootworm: Effects of Pest Biology, the Pest–Crop Interaction and the Agricultural Landscape on Resistance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Bt Maize and Resistance Management
3. Time Course and Current Status of Field-Evolved Resistance
4. Factors Affecting Resistance Evolution
5. Resistance to Bt maize in the Agricultural Landscape
6. Approaches for Improving Resistance Management and for Managing Resistant Populations
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegfried, B.D.; Hellmich, R.L. Understanding successful resistance management: The European corn borer and Bt corn in the United States. GM Crops Food 2012, 3, 184–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabashnik, B.E.; Patin, A.L.; Dennehy, T.J.; Liu, Y.-B.; Carrière, Y.; Sims, M.A.; Antilla, L. Frequency of resistance to Bacillus thuringiensis in field populations of pink bollworm. Proc. Natl. Acad. Sci. USA 2000, 97, 12980–12984. [Google Scholar] [CrossRef] [Green Version]
- Gassmann, A.J.; Petzold-Maxwell, J.L.; Keweshan, R.S.; Dunbar, M.W. Field-evolved resistance to Bt maize by western corn rootworm. PLoS ONE 2011, 6, e22629. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, R.B.; Dunbar, M.W.; French, B.W.; Gassmann, A.J. Effects of field history on resistance to Bt maize by western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae). PLoS ONE 2018, 13, e0200156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinders, J.D.; Hitt, B.D.; Stroup, W.W.; French, B.W.; Meinke, L.J. Spatial variation in western corn rootworm (Coleoptera: Chrysomelidae) susceptibility to Cry3 toxins in Nebraska. PLoS ONE 2018, 3, e0208266. [Google Scholar] [CrossRef]
- St. Clair, C.R.; Head, G.P.; Gassmann, A.J. Western corn rootworm abundance, injury to corn, and resistance to Cry3Bb1 in the local landscape of previous problem fields. PLoS ONE 2020, 15, e0237094. [Google Scholar] [CrossRef] [PubMed]
- St. Clair, C.R.; Head, G.P.; Gassmann, A.J. Comparing populations of western corn rootworm (Coleoptera: Chrysomelidae) in regions with and without a history of injury to Cry3 corn. J. Econ. Entomol. 2020, 113, 1839–1849. [Google Scholar] [CrossRef]
- Gray, M.E.; Sappington, T.W.; Miller, N.J.; Moeser, J.; Bohn, M.O. Adaptation and invasiveness of western corn rootworm: Intensifying research on a worsening pest. Annu. Rev. Entomol. 2009, 54, 303–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meinke, L.J.; Sappington, T.W.; Onstad, D.W.; Guillemaud, T.; Miller, N.J.; Komáromi, J.; Levay, N.; Furlan, L.; Kiss, J.; Toth, F. Western corn rootworm (Diabrotica virgifera virgifera LeConte) population dynamics. Agric. For. Entomol. 2009, 11, 29–46. [Google Scholar] [CrossRef] [Green Version]
- Tinsley, N.A.; Estes, R.E.; Gray, M.E. Validation of a nested error component model to estimate damage caused by corn rootworm larvae. J. Appl. Entomol. 2013, 137, 161–169. [Google Scholar] [CrossRef]
- Dun, Z.; Mitchell, P.D.; Agosti, M. Estimating Diabrotica virgifera virgifera damage functions with field trial data: Applying an unbalanced nested error component model. J. Appl. Entomol. 2010, 134, 409–419. [Google Scholar] [CrossRef]
- Wechsler, S.; Smith, D. Has resistance taken root in U.S. Corn Fields? Demand for insect control. Am. J. Agric. Econ. 2018, 100, 1136–1150. [Google Scholar] [CrossRef]
- Moeser, J.; Hibbard, B.E. A synopsis of the nutritional ecology of larvae and adults of Diabrotica virgifera virgifera (LeConte) in the New and Old World—Nouvelle cuisine for the invasive maize pest Diabrotica virgifera virgifera in Europe? In Western Corn Rootworm: Ecology and Management; Vidal, S., Kuhlmann, U., Edwards, C.R., Eds.; CABI Publishing: Wallingford, CT, USA, 2005. [Google Scholar]
- Jurat-Fuentes, J.L.; Heckel, D.G.; Ferré, J. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis. Annu. Rev. Entomol. 2021, 66, 121–140. [Google Scholar] [CrossRef] [PubMed]
- EPA [Environmental Protection Agency]. Biopesticides Registration Action Document: Bacillus thuringiensis Cry3Bb1 Protein and the Genetic Material Necessary for Its Production (Vector PV-ZMIR13L) in MON 863 Corn (OECD Unique Identifier: MON-ØØ863-5). 2010. Available online: http://www3.epa.gov/pesticides/chem_search/reg_actions/pip/cry3bb1-brad.pdf (accessed on 30 November 2020).
- EPA [Environmental Protection Agency]. Biopesticides Registration Action Document: Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 Proteins and the Genetic Material Necessary for Their Production (PHP17662 T-DNA) in Event DAS-59122-7 Corn (OECD Unique Identifier: DAS-59122-7). 2005. Available online: http://www3.epa.gov/pesticides/chem_search/reg_actions/pip/cry3435ab1-brad.pdf (accessed on 30 November 2020).
- EPA [Environmental Protection Agency]. Biopesticides Registration Action Document: Modified Cry3A Protein and the Genetic Material Necessary for Its Production (Via Elements of pZM26) in Event MIR604 Corn SYN-IR604-8. 2006. Available online: https://www3.epa.gov/pesticides/chem_search/reg_actions/pip/mcry3a-brad.pdf (accessed on 30 November 2020).
- EPA [Environmental Protection Agency]. Draft Biopesticides Registration Action Document: Bacillus thuringiensis eCry3.1Ab Protein and the Genetic Material Necessary for Its Production (via elements of vector PSYN12274) in 5307 Corn (SYN-05307-1). 2012. Available online: https://www.regulations.gov/document?D=EPA-HQ-OPP-2012-0108-0010 (accessed on 30 November 2020).
- EPA [Environmental Protection Agency]. Current and Previously Registered Section 3 Plant-Incorporated Protectant (PIP) Registrations. 2020. Available online: http://www.epa.gov/ingredients-used-pesticide-products/current-previously-registered-section-3-plant-incorporated (accessed on 20 November 2020).
- EPA [Environmental Protection Agency]. Current & Previously Registered Section 3 Plant-Incorporated Protectant (PIP) Registrations. 2015. Available online: https://archive.epa.gov/pesticides/reregistration/web/html/current-previously-registered-section-3-plant-incorporated.html (accessed on 30 November 2020).
- Gassmann, A.J. Resistance to Bt maize by western corn rootworm: Insights from the laboratory and the field. Curr. Opin. Insect Sci. 2016, 15, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Dunbar, M.W.; O’Neal, M.E.; Gassmann, A.J. Effects of field history on corn root injury and adult abundance of northern and western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 2016, 109, 2096–2104. [Google Scholar] [CrossRef] [PubMed]
- Gassmann, A.J.; Petzold-Maxwell, J.L.; Clifton, E.H.; Dunbar, M.W.; Hoffmann, A.M.; Ingber, D.A.; Keweshan, R.S. Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize. Proc. Natl. Acad. Sci. USA 2014, 111, 5141–5146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrière, Y.; Crowder, D.W.; Tabashnik, B.E. Evolutionary ecology of insect adaptation to Bt crops. Evol. Appl. 2010, 3, 561–573. [Google Scholar] [CrossRef]
- Roush, R.T. Bt-transgenic crops: Just another pretty insecticide or a chance for a new start in resistance management? Pestic. Sci. 1997, 51, 328–334. [Google Scholar] [CrossRef]
- Taylor, C.E.; Georghiou, G.P. Suppression of insecticide resistance by alteration of gene dominance and migration. J. Econ. Entomol. 1979, 72, 105–109. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Gould, F.; Carrière, Y. Delaying evolution of insect resistance to transgenic crops by decreasing dominance and heritability. J. Evol. Biol. 2004, 17, 904–912. [Google Scholar] [CrossRef]
- Gould, F. Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology. Annu. Rev. Entomol. 1998, 43, 701–726. [Google Scholar] [CrossRef] [Green Version]
- EPA [Environmental Protection Agency]. Final Report of the FIFRA Scientific Advisory Panel Subpanel on Bacillus thuringiensis (Bt) Plant-Pesticides and Resistance Management. 1998. Available online: http://archive.epa.gov/scipoly/sap/meetings/web/pdf/finalfeb.pdf (accessed on 30 November 2020).
- Roush, R.T. Two-toxin strategies for management of insecticidal transgenic crops: Can pyramiding succeed where pesticide mixtures have not? Philos. Trans. R. Soc. Lond. B Biol. Sci. 1998, 353, 1777–1786. [Google Scholar] [CrossRef] [Green Version]
- Carrière, Y.; Crickmore, N.; Tabashnik, B.E. Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat. Biotechnol. 2015, 33, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Gressel, J.; Gassmann, A.J.; Owen, M.D.K. How well will stacked transgenic pest/herbicide resistances delay pests from evolving resistance? Pest Manag. Sci. 2017, 73, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E.; Gassmann, A.J.; Crowder, D.W.; Carrière, Y. Insect resistance to Bt crops: Evidence versus theory. Nat. Biotechnol. 2008, 26, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Gassmann, A.J.; Carrière, Y.; Tabashnik, B.E. Fitness costs of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 2009, 54, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Carrière, Y.; Tabashnik, B.E. Reversing insect adaptation to transgenic insecticidal plants. Proc. R. Soc. Lond. B Biol. Sci. 2001, 268, 1475–1480. [Google Scholar] [CrossRef] [Green Version]
- Pittendrigh, B.R.; Gaffney, P.J.; Huesing, J.E.; Onstad, D.W.; Roush, R.T.; Murdock, L.L. “Active” refuges can inhibit the evolution of resistance in insects towards transgenic insect-resistant plants. J. Theor. Biol. 2004, 231, 461–474. [Google Scholar] [CrossRef]
- Pittendrigh, B.R.; Huesing, J.; Walters, K.; Olds, B.; Steele, L.D.; Sun, L.; Gaffney, P.; Gassmann, A.J. Negative cross-resistance: History, present status, and emerging opportunities. In Insect Resistance Management: Biology, Economics and Predictions, 2nd ed.; Onstad, D.W., Ed.; Elsevier: London, UK, 2014. [Google Scholar]
- Gassmann, A.J.; Petzold-Maxwell, J.L.; Keweshan, R.S.; Dunbar, M.W. Western corn rootworm and Bt maize: Challenges of pest resistance in the field. GM Crops Food 2012, 3, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Jakka, S.R.K.; Shrestha, R.B.; Gassmann, A.J. Broad-spectrum resistance to Bacillus thuringiensis toxins by western corn rootworm (Diabrotica virgifera virgifera). Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Wangila, D.S.; Gassmann, A.J.; Petzold-Maxwell, J.L.; French, B.W.; Meinke, L.J. Susceptibility of Nebraska western corn rootworm populations (Coleoptera: Chrysomelidae) populations to Bt corn events. J. Econ. Entomol. 2015, 108, 742–751. [Google Scholar] [CrossRef] [Green Version]
- Zukoff, S.N.; Ostlie, K.R.; Potter, B.; Meihls, L.N.; Zukoff, A.L.; French, L.; Ellersieck, M.R.; French, B.W.; Hibbard, B.E. Multiple Assays indicate varying levels of cross resistance in Cry3Bb1-selected field populations of the western corn rootworm to mCry3A, eCry3.1Ab, and Cry34/35Ab1. J. Econ. Entomol. 2016, 109, 1387–1398. [Google Scholar] [CrossRef] [Green Version]
- Schrader, P.M.; Estes, R.E.; Tinsley, N.A.; Gassmann, A.J.; Gray, M.E. Evaluation of adult emergence and larval root injury for Cry3Bb1-resistant populations of the western corn rootworm. J. Appl. Entomol. 2016, 141, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Calles-Torrez, V.; Knodel, J.J.; Boetel, M.A.; French, B.W.; Fuller, B.W.; Ransom, J.K. Field-evolved resistance of northern and western corn rootworm (Coleoptera: Chrysomelidae) populations to corn hybrids expressing single and pyramided Cry3Bb1 and Cry34/35Ab1 Bt proteins in North Dakota. J. Econ. Entomol. 2019, 112, 1875–1886. [Google Scholar] [CrossRef]
- USDA [United States Department of Agriculture, National Agricultural Statistics Service]. Corn for All Purposes 2019 Planted Acres by County for Selected States. 2020. Available online: https://www.nass.usda.gov/Charts_and_Maps/graphics/CR-PL-RGBChor.pdf (accessed on 1 December 2020).
- Deitloff, J.; Dunbar, M.W.; Ingber, D.A.; Hibbard, B.E.; Gassmann, A.J. Effects of refuges on the evolution of resistance to transgenic corn by the western corn rootworm, Diabrotica virgifera virgifera LeConte. Pest Manag. Sci. 2016, 72, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Lefko, S.A.; Nowatzki, T.M.; Thompson, S.D.; Binning, R.R.; Pascual, M.A.; Peters, M.L.; Simbro, E.J.; Stanley, B.H. Characterizing laboratory colonies of western corn rootworm (Coleoptera: Chrysomelidae) selected for survival on maize containing event DAS-59122-7. J. Appl. Entomol. 2008, 132, 189–204. [Google Scholar] [CrossRef]
- Meihls, L.N.; Higdon, M.L.; Siegfried, B.D.; Miller, N.J.; Sappington, T.W.; Ellersieck, M.R.; Spencer, T.A.; Hibbard, B.E. Increased survival of western corn rootworm on transgenic corn within three generations of on-plant greenhouse selection. Proc. Natl. Acad. Sci. USA 2008, 105, 19177–19182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oswald, K.J.; French, B.W.; Nielson, C.; Bagley, M. Selection for Cry3Bb1 resistance in a genetically diverse population of nondiapausing western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 2011, 104, 1038–1044. [Google Scholar] [CrossRef] [PubMed]
- Gassmann, A.J.; Shrestha, R.B.; Jakka, S.R.K.; Dunbar, M.W.; Clifton, E.H.; Paolino, A.R.; Ingber, D.A.; French, B.W.; Masloski, K.E.; Doudna, J.W.; et al. Evidence of resistance to Cry34/35Ab1 corn by western corn rootworm (Coleoptera: Chrysomelidae): Root injury in the field and larval survival in plant-based bioassays. J. Econ. Entomol. 2016, 109, 1872–1880. [Google Scholar] [CrossRef] [PubMed]
- Ludwick, D.C.; Meihls, L.N.; Ostlie, K.R.; Potter, B.D.; French, L.; Hibbard, B.E. Minnesota field population of western corn rootworm (Coleoptera: Chrysomelidae) shows incomplete resistance to Cry34Ab1/Cry35Ab1 and Cry3Bb1. J. Appl. Entomol. 2017, 141, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Gassmann, A.J.; Shrestha, R.B.; Kropf, A.L.; St. Clair, C.R.; Brenizer, B.D. Field-evolved resistance by western corn rootworm to Cry34/35Ab1 and other Bacillus thuringiensis traits in transgenic maize. Pest Manag. Sci. 2020, 76, 268–276. [Google Scholar] [CrossRef]
- Spencer, J.L.; Mabry, T.R.; Vaughn, T.T. Use of transgenic plants to measure insect herbivore movement. J. Econ. Entomol. 2003, 96, 1738–1749. [Google Scholar] [CrossRef]
- Hughson, S.A.; Spencer, J.L. Emergence and abundance of western corn rootworm (Coleoptera: Chrysomelidae) in Bt cornfields with structured and seed blend refuges. J. Econ. Entomol. 2015, 108, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Spencer, J.; Onstad, D.; Krupke, C.; Hughson, S.; Pan, Z.; Stanley, B.; Flexner, L. Isolated females and limited males: Evolution of insect resistance in structured landscapes. Entomol. Exp. Appl. 2013, 146, 38–49. [Google Scholar] [CrossRef]
- Jaffe, G. Complacency on the Farm: Significant Noncompliance with EPA’s Refuge Requirements Threatens the Future Effectiveness of Genetically Engineered Pest-Protected Corn; Center for Science in the Public Interest: Washington, DC, USA, 2009. [Google Scholar]
- Denholm, I.; Rowland, M.W. Tactics for managing pesticide resistance in arthropods: Theory and practice. Annu. Rev. Entomol. 1992, 37, 91–112. [Google Scholar] [CrossRef] [PubMed]
- Frank, D.L.; Zukoff, A.L.; Barry, J.; Higdon, M.L.; Hibbard, B.E. Development of resistance to eCry3.1Ab-expressing transgenic maize in a laboratory-selected population of western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 2013, 106, 2506–2513. [Google Scholar] [CrossRef] [PubMed]
- Meihls, L.N.; Frank, D.L.; Ellersieck, M.R.; Hibbard, B.E. Development and characterization of MIR604 resistance in a western corn rootworm population (Coleoptera: Chrysomelidae). Environ. Entomol. 2016, 45, 526–536. [Google Scholar] [CrossRef] [Green Version]
- Onstad, D.W.; Meinke, L.J. Modeling evolution of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) to transgenic corn with two insecticidal traits. J. Econ. Entomol. 2010, 103, 849–860. [Google Scholar] [CrossRef] [Green Version]
- Storer, N.P. A spatially explicit model simulating western corn rootworm (Coleoptera: Chrysomelidae) adaptation to insect-resistant maize. J. Econ. Entomol. 2003, 96, 1530–1547. [Google Scholar] [CrossRef]
- Gassmann, A.J.; Stock, S.P.; Sisterson, M.S.; Carrière, Y.; Tabashnik, B.E. Synergism between entomopathogenic nematodes and Bacillus thuringiensis crops: Integrating biological control and resistance management. J. Appl. Ecol. 2008, 45, 957–966. [Google Scholar] [CrossRef]
- Andow, D.A.; Pueppke, S.G.; Schaafsma, A.W.; Gassmann, A.J.; Sappington, T.W.; Meinke, L.J.; Mitchell, P.D.; Hurley, T.M.; Hellmich, R.L.; Porter, R.P. Early detection and mitigation of resistance to Bt maize by western corn rootworm (Coleoptera: Chrysomelidae) J. Econ. Entomol. 2016, 109, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petzold-Maxwell, J.L.; Cibils-Stewart, X.; French, B.W.; Gassmann, A.J. Adaptation by western corn rootworm (Coleoptera: Chrysomelidae) to Bt maize: Inheritance, fitness costs, and feeding preference. J. Econ. Entomol. 2012, 105, 1407–1418. [Google Scholar] [CrossRef] [Green Version]
- Geisert, R.W.; Ellersieck, M.R.; Hibbard, B.E. Tolerance of eCry3.1Ab in reciprocal cross offspring of eCry3.1Ab-selected and control colonies of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). J. Econ. Entomol. 2016, 109, 815–820. [Google Scholar] [CrossRef] [Green Version]
- Ingber, D.A.; Gassmann, A.J. Inheritance and fitness costs of resistance to Cry3Bb1 corn by western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 2015, 108, 2421–2432. [Google Scholar] [CrossRef] [PubMed]
- Paolino, A.R.; Gassmann, A.J. Assessment of inheritance and fitness costs associated with field-evolved resistance to Cry3Bb1 maize by western corn rootworm. Toxins 2017, 9, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, R.B.; Gassmann, A.J. Inheritance and fitness costs of Cry3Bb1 resistance in diapausing field strains of western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 2020, 113, 2873–2882. [Google Scholar] [CrossRef]
- Meihls, L.N.; Higdon, M.L.; Ellersieck, M.R.; Tabashnik, B.E.; Hibbard, B.E. Greenhouse-selected resistance to Cry3Bb1-producing corn in three western corn rootworm populations. PLoS ONE 2012, 7, e51055. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, A.M.; French, B.W.; Hellmich, R.L.; Lauter, N.; Gassmann, A.J. Fitness costs of resistance to Cry3Bb1 maize by western corn rootworm. J. Appl. Entomol. 2015, 139, 403–415. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, A.M.; French, B.W.; Jaronski, S.T.; Gassmann, A.J. Effects of entomopathogens on mortality of western corn rootworm and fitness costs of resistance to Cry3Bb1 maize. J. Econ. Entomol. 2014, 107, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Oswald, K.J.; French, B.W.; Nielson, C.; Bagley, M. Assessment of fitness costs in Cry3Bb1-resistant and susecptible western corn rootworm (Coleoptera: Chrysomelidae) laboratory colonies. J. Appl. Entomol. 2012, 136, 730–740. [Google Scholar] [CrossRef]
- Geisert, R.W.; Hibbard, B.E. Evaluation of potential fitness costs associated with eCry3.1Ab resistance in Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). J. Econ. Entomol. 2016, 109, 1853–1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St. Clair, C.R.; Clifton, E.H.; Dunbar, M.W.; Masloski, K.E.; Paolino, A.R.; Shrestha, R.B.; Gassmann, A.J. Applying a selection experiment to test for fitness costs of Bt resistance in western corn rootworm and the effect of density on fitness costs. J. Econ. Entomol. 2020, 113, 2473–2479. [Google Scholar] [CrossRef]
- Pereira, E.J.G.; Lang, B.A.; Storer, N.P.; Siegfried, B.D. Selection for Cry1F resistance in the European corn borer and cross-resistance to other Cry toxins. Entomol. Exp. Appl. 2008, 126, 115–121. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Biggs, R.W.; Higginson, D.M.; Henderson, S.; Unnithan, D.C.; Unnithan, G.C.; Ellers-Kirk, C.; Sisterson, M.S.; Dennehy, T.J.; Carrière, Y.; et al. Association between resistance to Bt cotton and cadherin genotype in pink bollworm. J. Econ. Entomol. 2005, 98, 635–644. [Google Scholar] [CrossRef]
- St. Clair, C.R.; Gassmann, A.J. Linking land use patters and pest outbreaks in Bt maize. Ecol. Appl. 2021, e2295. [Google Scholar] [CrossRef]
- Petzold-Maxwell, J.L.; Meinke, L.J.; Gray, M.E.; Estes, R.E.; Gassmann, A.J. Effect of Bt maize and soil insecticides on yield, injury, and rootworm survival: Implications for resistance management. J. Econ. Entomol. 2013, 106, 1941–1951. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, R.B.; Jakka, S.R.K.; French, B.W.; Gassmann, A.J. Field-based assessment of resistance to Bt corn by western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 2016, 109, 1399–1409. [Google Scholar] [CrossRef] [Green Version]
- Tabashnik, B.E.; Gould, F. Delaying corn rootworm resistance to Bt corn. J. Econ. Entomol. 2012, 105, 767–776. [Google Scholar] [CrossRef] [Green Version]
- Cullen, E.M.; Gray, M.E.; Gassmann, A.J.; Hibbard, B.E. Resistance to Bt corn by western corn rootworm (Coleoptera: Chrysomelidae) in the U.S. Corn Belt. J. Integ. Pest Manag. 2013, 4, D1–D6. [Google Scholar] [CrossRef] [Green Version]
- Gray, M.E.; Felsot, A.S.; Steffey, K.L.; Levine, E. Planting time application of soil insecticides and western corn rootworm (Coleoptera: Chrysomelidae) emergence: Implications for long-term management programs. J. Econ. Entomol. 1992, 85, 544–553. [Google Scholar] [CrossRef]
- Martinez, J.C.; Caprio, M.A. IPM use with the deployment of a non-high dose Bt pyramid and mitigation of resistance for western corn rootworm (Diabrotica virgifera virgifera). Environ. Entomol. 2016, 45, 747–761. [Google Scholar] [CrossRef] [Green Version]
- Carrière, Y.; Brown, Z.; Aglasanb, S.; Dutilleul, P.; Carroll, M.; Head, G.; Tabashnik, B.E.; Jørgensen, P.S.; Carroll, S.P. Crop rotation mitigates impacts of corn rootwormresistance to transgenic Bt corn. Proc. Natl. Acad. Sci. USA 2020, 117, 18385–18392. [Google Scholar] [CrossRef] [PubMed]
- Baum, J.A.; Bogaert, T.; Clinton, W.; Heck, G.R.; Feldmann, P.; Ilagan, O.; Johnson, S.; Plaetinck, G.; Munyikwa, T.; Pleau, M.; et al. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 2007, 25, 1322–1326. [Google Scholar] [CrossRef] [PubMed]
- Bolognesi, R.; Ramaseshadri, R.; Anderson, J.; Bachman, P.; Clinton, W.; Flannagan, R.; Ilagan, O.; Lawrence, C.; Levine, S.; Moar, W.; et al. Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PLoS ONE 2012, 7, e47534. [Google Scholar] [CrossRef] [PubMed]
- Head, G.P.; Carroll, M.W.; Evans, S.P.; Rule, D.M.; Willse, A.R.; Clark, T.L.; Storer, N.P.; Flannagan, R.D.; Samuel, L.W.; Meinke, L.J. Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: Efficacy and resistance management. Pest Manag. Sci. 2017, 73, 1883–1899. [Google Scholar] [CrossRef] [Green Version]
- Khajuria, C.; Ivashuta, S.; Wiggins, E.; Flagel, L.; Moar, W.; Pleau, M.; Miller, K.; Zhang, Y.; Ramaseshadri, P.; Jiang, C.; et al. Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PLoS ONE 2018, 13, e0197059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schellenberger, U.; Oral, J.; Rosen, B.A.; Wei, J.-Z.; Zhu, G.; Xie, W.; McDonald, M.J.; Cerf, D.C.; Diehn, S.H.; Crane, V.C.; et al. A selective insecticidal protein from Pseudomonas for controlling corn rootworms. Science 2016, 354, 634–637. [Google Scholar] [CrossRef]
- USDA [United States Department of Agriculture, Animal Plant Health Inspection Agency]. Pioneer Hi-Bred International, Inc.: Availability of a Petition for the Determination of Nonregulated Status for Insect Resistant and Herbicide-Tolerant Maize. 2020. Available online: https://www.federalregister.gov/documents/2020/11/03/2020-24267/pioneer-hi-bred-international-inc-availability-of-a-petition-for-the-determination-of-nonregulated (accessed on 3 December 2020).
- EPA [Environmental Protection Agency]. Framework to Delay Corn Rootworm Resistance. 2016. Available online: https://www.epa.gov/regulation-biotechnology-under-tsca-and-fifra/framework-delay-corn-rootworm-resistance (accessed on 28 January 2021).
- Petzold-Maxwell, J.L.; Alves, A.P.; Estes, R.E.; Gray, M.E.; Meinke, L.J.; Shields, E.J.; Thompson, S.D.; Tinsley, N.A.; Gassmann, A.J. Applying an integrated refuge to manage western corn rootworm (Coleoptera: Chrysomelidae): Effects on survival, fitness and selection pressure. J. Econ. Entomol. 2013, 106, 2195–2207. [Google Scholar] [CrossRef] [Green Version]
Type of Resistance 1 | Strain | Resistant to Toxin 2 | Type of Assay 3 | Metric Used | Inheritance of Resistance | Heritability 4 | Reference |
---|---|---|---|---|---|---|---|
Laboratory Selected | Constant Exposure | CryBb1 | Single Plant | Larval Survival | Non-Recessive | 0.29 | [47] |
Laboratory Selected | Constant Exposure | Cry3Bb1 | Single Plant | Survival to Adult | Non-Recessive | 0.30 | [47] |
Laboratory Selected | Brookings Moderately Selected | Cry3Bb1 | Seedling Mat | Larval Survival | Non-Recessive to Dominant | 0.19 to 1.22 | [63] |
Laboratory Selected | Brookings Moderately Selected | Cry3Bb1 | Seedling Mat | Larval Growth | Non-Recessive | 0.51 | [63] |
Laboratory Selected | mCry3A selected | mCry3A | Single Plant | Larval Survival | Non-Recessive | 0.66 | [58] |
Laboratory Selected | mCry3A selected | mCry3A | Single Plant | Survival to Adult | Dominant | 1.03 | [58] |
Laboratory Selected | eCry3.1Ab selected | eCry3.1Ab | Seedling Mat | Larval Survival | Dominant | 0.94 to 1.38 | [64] |
Field Evolved | Hopkinton | Cry3Bb1 | Seedling Mat | Survival to Adult | Non-Recessive | 0.37 | [65] |
Field Evolved | Cresco | Cry3Bb1 | Seedling Mat | Survival to Adult | Recessive | 0.27 | [65] |
Field Evolved | Elma | Cry3Bb1 | Seedling Mat | Survival to Adult | Non-Recessive | 0.14 to 0.29 | [66] |
Field Evolved | Monona | Cry3Bb1 | Seedling Mat | Survival to Adult | Non-Recessive | 0.45 | [66] |
Field Evolved | Monona | Cry3Bb1 | Single Plant | Larval Survival | Non-Recessive | 0.73 | [66] |
Field Evolved | Monona | Cry3Bb1 | Diet Based | Larval Survival | Non-Recessive | ------ 5 | [66] |
Field Evolved | Central Iowa | Cry3Bb1 | Single Plant | Larval Survival | Non-Recessive | 0.23 | [67] |
Field Evolved | Eastern Iowa | Cry3Bb1 | Single Plant | Larval Survival | Non-Recessive | 0.50 | [67] |
Field Evolved | Northern Iowa | Cry3Bb1 | Single Plant | Larval Survival | Non-Recessive | 0.54 | [67] |
Field Evolved | Western Iowa | Cry3Bb1 | Single Plant | Larval Survival | Recessive | 0.08 | [67] |
Type of Resistance 1 | Strain | Resistant to Toxin 2 | Cost Present? 3 | Traits Affected 4 | Reference |
---|---|---|---|---|---|
Laboratory Selected | Brookings Moderately Selected | Cry3Bb1 | No | ----- | [63] |
Laboratory Selected | Brookings Moderately Selected (Strain 1) | Cry3Bb1 | No | ----- | [71] |
Laboratory Selected | Brookings Moderately Selected (Strain 2) | Cry3Bb1 | No | ----- | [71] |
Laboratory Selected | Brookings Moderately Selected (Strain 3) | Cry3Bb1 | No | ----- | [71] |
Laboratory Selected | Brookings Intensely Selected (Strain 1) | Cry3Bb1 | No | ----- | [71] |
Laboratory Selected | Brookings Intensely Selected (Strain 2) | Cry3Bb1 | No | ----- | [71] |
Laboratory Selected | Data Presented as Composite of Three Resistant Strains | CryBb1 | Yes | Fecundity; Adult (male) Longevity | [68] |
Laboratory Selected | Brookings Moderately Selected | CryBb1 | No | ----- | [70] |
Laboratory Selected | Brookings Moderately Selected | CryBb1 | Yes | Larval Development; Egg Viability | [69] |
Laboratory Selected | mCry3A Selected | mCry3A | No | ----- | [58] |
Laboratory Selected | eCry3.1Ab Selected | eCry3.1Ab | No | ----- | [72] |
Field Evolved | Hopkinton | Cry3Bb1 | No | ----- | [65] |
Field Evolved | Cresco | Cry3Bb1 | Yes | Larval Development; Survival to Adulthood; Fecundity | [65] |
Field Evolved | Elma | Cry3Bb1 | Yes | Larval Development | [66] |
Field Evolved | Monona | Cry3Bb1 | No | ---- | [66] |
Field Evolved | Cresco | Cry3Bb1 | Yes | Decline in Resistance over Time | [73] |
Field Evolved | Hopkinton | Cry3Bb1 | Yes | Decline in Resistance over Time | [73] |
Field Evolved | Data Presented as Composite of Eight Resistant Strains | Cry3B1 | Yes | Adult Size | [67] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gassmann, A.J. Resistance to Bt Maize by Western Corn Rootworm: Effects of Pest Biology, the Pest–Crop Interaction and the Agricultural Landscape on Resistance. Insects 2021, 12, 136. https://doi.org/10.3390/insects12020136
Gassmann AJ. Resistance to Bt Maize by Western Corn Rootworm: Effects of Pest Biology, the Pest–Crop Interaction and the Agricultural Landscape on Resistance. Insects. 2021; 12(2):136. https://doi.org/10.3390/insects12020136
Chicago/Turabian StyleGassmann, Aaron J. 2021. "Resistance to Bt Maize by Western Corn Rootworm: Effects of Pest Biology, the Pest–Crop Interaction and the Agricultural Landscape on Resistance" Insects 12, no. 2: 136. https://doi.org/10.3390/insects12020136
APA StyleGassmann, A. J. (2021). Resistance to Bt Maize by Western Corn Rootworm: Effects of Pest Biology, the Pest–Crop Interaction and the Agricultural Landscape on Resistance. Insects, 12(2), 136. https://doi.org/10.3390/insects12020136