Behavioral Responses of the Common Bed Bug to Essential Oil Constituents
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Chemicals
2.3. Tracking of Individual Bed Bugs
2.3.1. Arenas
2.3.2. Video Tracking System
2.4. Choice Tests with 24-h Aged Residues
2.5. Feeding Test
3. Results
3.1. Responses of Insects to Essential Oil Constituent Impregnated Areas
3.2. Choice Tests
3.3. Responses of Host-Seeking Insects to EOCs Barriers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Usinger, R.L. Monograph of Cimicidae (Hemiptera-Heteroptera); Thomas Say Foundation: College Park, MD, USA, 1966. [Google Scholar]
- Romero, A.; Potter, M.F.; Haynes, K.F. Circadian rhythm of locomotor activity in the bed bug, Cimex lectularius L. J. Insect Physiol. 2010, 56, 1516–1522. [Google Scholar] [CrossRef] [PubMed]
- Gries, R. Chemical Ecology. In Advances in the Biology and Management of Modern Bed Bugs; Doggett, S.L., Miller, D.M., Lee, C.-Y., Eds.; Wiley-Blackwell: Oxford, UK, 2018; pp. 163–172. [Google Scholar]
- Potter, M.F.; Haynes, K.F.; Fredericks, J. Bed bugs across America. Pestworld. November/December 2015, pp. 5–14. Available online: https://www.npmapestworld.org/default/assets/File/newsroom/magazine/2015/nov-dec_2015.pdf (accessed on 16 December 2020).
- Goddard, J.; de Shazo, R.D. Bed bugs (Cimex lectularius) and clinical consequences of their bites. J. Am. Med. Assoc. 2009, 301, 1358–1366. [Google Scholar] [CrossRef]
- Ashcroft, R.; Seko, Y.; Chan, L.F.; Dere, J.; Kim, J.; McKenzie, K. The mental health impact of bed bug infestations: A scoping review. Int. J. Public Health 2015, 60, 827–837. [Google Scholar] [CrossRef]
- Dang, K.; Doggett, S.L.; Singham, G.V.; Lee, C.Y. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae). Paras Vectors 2017, 10, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, A. Insecticide Resistance. In Advances in the Biology and Management of Modern Bed Bugs; Doggett, S.L., Miller, D.M., Lee, C.-Y., Eds.; Wiley-Blackwell: Oxford, UK, 2018; pp. 273–284. [Google Scholar]
- Zhu, F.; Wigginton, J.; Romero, A.; Moore, A.; Ferguson, K.; Palli, R.; Potter, M.F.; Haynes, K.F.; Palli, S.R. Widespread distribution of knockdown resistance mutations in the bed bug, Cimex lectularius (Hemiptera: Cimicidae), populations in the United States. Arch. Insect Biochem. 2010, 73, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Cooper, R. Environmentally sound bed bug management solutions. In Urban Pest Management: An Environmental Perspective; CABI International: Cambridge, MA, USA, 2011; pp. 44–63. [Google Scholar]
- Cooper, R.; Wang, C.; Singh, N. Evaluation of a model community wide bed bug management program in affordable housing. Pest Manag. Sci. 2015, 72, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Bennett, G.W.; Gondhalekar, A.D.; Wang, C.; Buczkowski, G.; Gibb, T.J. Using research and education to implement practical bed bug control programs in multifamily housing. Pest Manag. Sci. 2016, 72, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.S. Prevention. In Advances in the Biology and Management of Modern Bed Bugs; Doggett, S.L., Miller, D.M., Lee, C.-Y., Eds.; Wiley-Blackwell: Oxford, UK, 2018; pp. 233–239. [Google Scholar]
- Wang, C.; Lü, L.; Zhang, A.; Liu, C. Repellency of selected chemicals against the bed bug (Hemiptera: Cimicidae). J. Econ. Entomol. 2013, 106, 2522–2529. [Google Scholar] [CrossRef]
- Kumar, S.; Prakash, S.; Rao, K.M. Comparative activity of three repellents against bedbugs Cimex hemipterus (Fabr.). Indian J. Med. Res. 1995, 102, 20–23. [Google Scholar]
- Liu, F.; Xia, X.; Liu, N. Molecular basis of N,N-Diethyl-3-Methylbenzamide (DEET) in repelling the common bed bug, Cimex lectularius. Front. Physiol. 2017, 8, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.J.; Cermak, S.C.; Kenar, J.A.; Haynes, K.F.; Boxler, D.; Baker, P.D.; Wang, D.; Wang, C.; Li, A.Y.; Xue, R.; et al. Better than DEET repellent compounds derived from coconut oil. Sci. Rep. 2018, 8, 14053. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Mullens, B.A.; Soto, D.; Gerry, A.C.; Fowler, F.E.; Dinizm, A.N. Effects of fatty acid and geraniol repellent-oil mixtures applied to cattle on blood feeding and reproductive parameters in field populations of Haematobia irritans (Diptera: Muscidae). J. Med. Entomol. 2018, 55, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Rodriguez, S.D.; Vulcan, J.; Cordova, J.; Chung, H.N.; Moore, E.; Kandel, Y.; Hansen, I.A. Efficacy of active ingredients from the EPA 25(B) list in reducing attraction of Aedes aegypti (Diptera: Culicidae) to humans. J. Med. Entomol. 2020, 57, 477–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govinfo. 40 CFR 152.25—Exemptions for pesticides of a character not requiring FIFRA regulation. Available online: https://www.govinfo.gov/app/details/CFR-2011-title40-vol24/CFR-2011-title40-vol24-sec152-25 (accessed on 20 February 2021).
- Ngoh, S.P.; Choo, L.E.W.; Pang, F.Y.; Huang, y.; Kini, M.R.; Ho, S.H. Insecticidal and repellent properties of nine volatile constituents of essential oils against the American cockroach, Periplaneta americana (L.). Pestic. Sci. 1998, 54, 261–268. [Google Scholar] [CrossRef]
- Terriquez, J.A.; Klotz, S.A.; Meister, E.A.; Klotz, J.H.; Schmidt, J.O. Repellency of DEET, picaridin, and three essential oils to Triatoma rubida (Hemiptera: Reduviidae: Triatominae). J. Med. Entomol. 2013, 50, 664–667. [Google Scholar] [CrossRef]
- Gaire, S.; O’Connell, M.; Holguin, F.O.; Amatya, A.; Bundy, S.; Romero, A. Insecticidal properties of essential oils and some of their constituents on the Turkestan cockroach (Blattodea: Blattidae). J. Econ. Entomol. 2017, 110, 584–592. [Google Scholar] [CrossRef]
- Zamora, D.; Klotz, S.A.; Meister, E.A.; Schmidt, J.O. Repellency of the components of the essential oil, citronella, to Triatoma rubida, Triatoma protracta, and Triatoma recurva (Hemiptera: Reduviidae: Triatominae). J. Med. Entomol. 2015, 52, 719–721. [Google Scholar] [CrossRef]
- Moretti, A.N.; Zerba, E.N.; Alzogaray, R.A. Behavioral and toxicological responses of Rhodnius prolixus and Triatoma infestans (Hemiptera: Reduviidae) to 10 Monoterpene alcohols. J. Med. Entomol. 2013, 50, 1046–1054. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Wang, C.; Cooper, R. Potential of essential oil-based pesticides and detergents for bed bug control. J. Econ. Entomol. 2014, 107, 2163–2170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, J.U.; Wang, M.; Yang, Y.; Liu, Y.; Li, B.; Qin, Y.; Wang, W.; Chittiboyina, A.G.; Khan, I.A. Toxicity of Kadsura coccinea (Lem.) A. C. Sm. Essential oil to the bed bug, Cimex lectularius L. (Hemiptera: Cimicidae). Insects 2019, 10, 162. [Google Scholar] [CrossRef] [Green Version]
- Gaire, S.; Scharf, M.E.; Gondhalekar, A. Toxicity and neurophysiological impacts of essential oil components on bed bug (Cimex lectularius L.). Sci. Rep. 2019, 9, 3961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaire, S.; Scharf, M.E.; Gondhalekar, A.D. Synergistic toxicity interactions between plant essential oil components against the common bed bug (Cimex lectularius L.). Insects 2020, 11, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaire, S.; Lewis, C.D.; Booth, W.; Scharf, M.E.; Zheng, W.; Ginzel, M.D.; Gondhalekar, A.D. Bed bugs, Cimex lectularius L., exhibiting metabolic and target site deltamethrin resistance are susceptible to plant essential oils. Pestic. Biochem. Physiol. 2020, 169, 104667. [Google Scholar] [CrossRef]
- Feldlaufer, M.F.; Ulrich, K.R. Essential oils as fumigants for bed bugs (Hemiptera: Cimicidae). J. Entomol. Sci. 2015, 50, 129–137. [Google Scholar] [CrossRef]
- Larson, N.R.; Zhang, A.; Feldlaufer, M. Fumigation activities of methyl benzoate and its derivatives against the common bed bug (Hemiptera: Cimicidae). J. Med. Entomol. 2019, 57, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Goddard, J. Long-term efficacy of various natural or "green" insecticides against bed bugs: A double-blind study. Insects 2014, 5, 942–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zha, C.; Wang, C.; Li, A. Toxicities of selected essential oils, silicone oils, and paraffin oil against the common bed bug (Hemiptera: Cimicidae). J. Econ. Entomol. 2018, 111, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.F.; Ferrandino, F.J.; Vasil, M.P.; Bedoukian, R.H.; Maher, M.; McKenzie, K. Repellency of naturally occurring or related compounds, DEET, and para-menthane-3,8diol to bed bugs (Hemiptera: Cimicidae). J. Med. Entomol. 2018, 55, 666–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, X.; Wang, C.; Simon, J.E.; Reichert, W.; Wu, Q. Repellency of novel catnip oils against the bed bug (Hemiptera: Cimicidae). J. Med. Entomol. 2020, tjaa218. [Google Scholar] [CrossRef]
- Sharififard, M.; Alizadeh, I.; Jahanifard, E.; Wang, C.; Azemi, M.E. Chemical composition and repellency of Origanum vulgare essential oil against Cimex lectularius under laboratory conditions. J. Arthropod Borne Dis. 2018, 12, 387–397. [Google Scholar] [CrossRef]
- Montes, C.; Cuadrillero, C.; Vilella, D. Maintenance of a laboratory colony of Cimex lectularius (Hemiptera: Cimicidae) using an artificial feeding technique. J. Med. Entomol. 2002, 39, 675–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noldus, L.P.J.J.; Spink, A.J.; Tegelenbosch, R.A.J. Computerised video tracking, movement analysis and behaviour recognition in insects. Comput. Electron. Agric. 2002, 35, 201–227. [Google Scholar] [CrossRef]
- Minitab. MINITAB Statistical Software, Release 14.20 for Windows; MINITAB: State College, PA, USA, 2005. [Google Scholar]
- Todd, R. Repellents for Protection from Bed Bugs: The Need, the Candidates, Safety Challenges, Test Methods, and the Chance of Success. In Recent Developments in Invertebrate Repellents; Paluch, G.E., Coats, J.R., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2011; pp. 137–150. [Google Scholar]
- Liu, X.C.; Liang, Y.; Shi, W.P.; Liu, Q.Z.; Zhou, l.; Liu, Z.L. Repellent and insecticidal effects of the essential oil of Kaempferia galanga rhizomes to Liposcelis bostrychophila (Psocoptera: Liposcelidae). J. Econ. Entomol. 2014, 107, 1706–1712. [Google Scholar] [CrossRef] [PubMed]
- Kumbhar, P.P.; Dewang, P.M. Monoterpenoids: The natural pest management agents. Frag. Flav. Assoc. India. 2001, 3, 49–56. [Google Scholar]
- Price, D.N.; Berry, M.S. Comparison of effects of octopamine and insecticidal essential oils on activity in the nerve cord, foregut, and dorsal unpaired median neurons of cockroaches. J. Insect Physiol. 2006, 52, 309–319. [Google Scholar] [CrossRef]
- Liu, F.; Haynes, K.F.; Appel, A.G.; Liu, N. Antennal olfactory sensilla responses to insect chemical repellents in the common bed bug, Cimex lectularius. J. Chem. Ecol. 2014, 40, 522–533. [Google Scholar] [CrossRef]
- Liu, F.; Chen, Z.; Liu, N. Molecular basis of olfactory chemoreception in the common bed bug, Cimex lectularius. Sci. Rep. 2017, 7, 45531. [Google Scholar] [CrossRef] [Green Version]
- Hao, H.; Sun, J.; Dai, J. Dose-dependent behavioral response of the mosquito Aedes albopictus to floral odorous compounds. J. Insect Sci. 2013, 13, 127. [Google Scholar] [CrossRef] [Green Version]
- Erbilgin, N.; Stein, J.D.; Acciavatti, R.E.; Gillette, N.E.; Mori, S.R.; Bischel, K.; Cale, J.A.; Carvalho, C.R.; Wood, D.L. A Blend of ethanol and (−)-α-Pinene were highly attractive to native Siricid woodwasps (Siricidae, Siricinae) infesting conifers of the Ssierra Nevada and the Allegheny mountains. J. Chem. Ecol. 2017, 43, 172–179. [Google Scholar] [CrossRef]
- Haselton, A.T.; Acevedo, A.; Kuruvilla, J.; Werner, E.; Kiernan, J.; Dhar, P. Repellency of α-pinene against the house fly, Musca domestica. Phytochemistry 2015, 117, 469–475. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency (EPA). Product Performance Test Guidelines OCSPP 810.3900: Laboratory Product Performance Testing Methods for Bed Bug Pesticide Products. June 2017. Available online: https://www.regulations.gov/document?D=EPA-HQ-OPPT-2009-0150-0030 (accessed on 20 February 2021).
- DeVries, Z.C.; Mick, R.; Schal, C. Feel the heat: Activation, orientation and feeding responses of bed bugs to targets at different temperatures. J. Exp. Biol. 2016, 219, 3773–3780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chemical Categories | Essential Oil Component | Parameter | Control (Acetone) | Fresh Residues | 24-h Aged Residues |
---|---|---|---|---|---|
Terpenoids | Geraniol | Distance (cm) | 1.68 ± 0.08 a | 2.13 ± 0.04 bA | 2.09 ± 0.04 bA |
Number of visits | 9.6 ± 2.03 a | 1.1 ± 0.31 bAB | 2.6 ± 0.73 bA | ||
Carvacrol | Distance (cm) | 2.31 ± 0.04 a | 2.73 ± 0.07 bBC | 2.35 ± 0.05 aAB | |
Number of visits | 7.83 ± 0.98 a | 2.16 ± 1.42 bABC | 7.0 ± 1.43 aBC | ||
Thymol | Distance (cm) | 2.55 ± 0.15 a | 3.51 ± 0.39 bD | 2.88 ± 0.25 aB | |
Number of visits | 10.66 ± 3.21 a | 1.16 ± 0.98 bABC | 2.0 ± 0.73 bA | ||
Citronellic Acid | Distance (cm) | 2.37 ± 0.12 a | 2.51 ± 0.04 aAC | 2.46 ± 0.05 aAB | |
Number of visits | 7.33 ± 3.77 a | 0.33 ± 0.21 bA | 1.0 ± 0.68 bA | ||
Linalool | Distance (cm) | 2.23 ± 0.14 a | 2.42 ± 0.07 aAC | 2.33 ± 0.07 aAB | |
Number of visits | 8.83 ± 1.62 a | 2.0 ± 0.51 bBC | 8.16 ± 1.95 aBC | ||
Menthone | Distance (cm) | 2.37 ± 0.08 a | 2.37 ± 0.07 aAC | 2.34 ± 0.08 aAB | |
Number of visits | 5.83 ± 2.38 a | 5.16 ± 1.51 aCD | 4.66 ± 1.62 aAB | ||
Phenylpropane | Eugenol | Distance (cm) | 1.66 ± 0.07 a | 2.29 ± 0.04 bAB | 2.14 ± 0.07 bA |
Number of visits | 9.9 ± 1.64 a | 0.5 ± 0.16 bA | 1.50 ± 0.76 bA | ||
Aldehyde | trans-Cinnamaldehyde | Distance (cm) | 2.56 ± 0.24 a | 2.93 ± 0.21 bCD | 2.33 ± 0.26 aAB |
Number of visits | 12.33 ± 3.06 a | 0.66 ± 042bAB | 11.0 ± 2.63 aBC | ||
Terpenes | α-pinene | Distance (cm) | 2.36 ± 0.09 a | 2.39 ± 0.07 aAC | 2.16 ± 0.07 aA |
Number of visits | 5.16 ± 1.19 a | 4.0 ± 0.73 aCD | 12.0 ± 2.93 bC | ||
β-pinene | Distance (cm) | 2.32 ± 0.08 a | 2.37 ± 0.01 aAC | 2.4 ± 0.05 aAB | |
Number of visits | 3.16 ± 0.87 a | 2.33 ± 0.61 aBC | 4.83 ± 0.90 aB | ||
Limonene | Distance (cm) | 2.33 ± 0.05 a | 2.32 ± 0.10 aAC | 2.37 ± 0.10 aAB | |
Number of visits | 8.33 ± 1.99 a | 8.83 ± 2.72 aD | 8.33 ± 3.30 aBC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Morales, M.A.; Terán, M.; Romero, A. Behavioral Responses of the Common Bed Bug to Essential Oil Constituents. Insects 2021, 12, 184. https://doi.org/10.3390/insects12020184
González-Morales MA, Terán M, Romero A. Behavioral Responses of the Common Bed Bug to Essential Oil Constituents. Insects. 2021; 12(2):184. https://doi.org/10.3390/insects12020184
Chicago/Turabian StyleGonzález-Morales, María A., Martín Terán, and Alvaro Romero. 2021. "Behavioral Responses of the Common Bed Bug to Essential Oil Constituents" Insects 12, no. 2: 184. https://doi.org/10.3390/insects12020184
APA StyleGonzález-Morales, M. A., Terán, M., & Romero, A. (2021). Behavioral Responses of the Common Bed Bug to Essential Oil Constituents. Insects, 12(2), 184. https://doi.org/10.3390/insects12020184