Effects of Chemical Insecticide Residues and Household Surface Type on a Beauveria bassiana-Based Biopesticide (Aprehend®) for Bed Bug Management
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bed Bugs
2.2. Experiment 1
2.3. Experiment 2
2.4. Experiment 3
2.5. Experiment 4
2.6. Application of Insecticides
2.7. Application of Aprehend
2.8. Survival of Spores
2.9. Bed bug Survival Assay
2.10. Statistical Analysis
3. Results
3.1. Experiment 1
3.2. Experiment 2
3.3. Experiment 3
3.4. Experiment 4
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dang, K.; Doggett, S.L.; Veera Singham, G.; Lee, C.Y. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae). Parasites Vectors 2017, 10, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-Y.; Miller, D.M.; Doggett, S.L. Chemical control. In Advances in the Biology and Management of Modern Bed Bugs; Doggett, S.L., Miller, D.M., Lee, C.-Y., Eds.; John Wiley & Sons, Ltd: Chichester, UK, 2018; pp. 285–310. [Google Scholar]
- Rossi, L.; Jennings, S. Bed bugs: A public health problem in need of a collaborative solution. J. Env. Health 2010, 72, 34–35. [Google Scholar]
- Kells, S.A. Non-chemical control. In Advances in the Biology and Management of Modern Bed Bugs; Doggett, S.L., Miller, D.M., Lee, C.-Y., Eds.; John Wiley & Sons, Ltd: Chichester, UK, 2018; pp. 257–272. [Google Scholar]
- Jourdain, F.; Delaunay, P.; Bérenger, J.-M.; Perrin, Y.; Robert, V. The common bed bug (Cimex lectularius) in metropolitan France. Survey on the attitudes and practices of private- and public-sector professionals. Parasite 2016, 23, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gaire, S.; Lewis, C.D.; Booth, W.; Scharf, M.E.; Zheng, W.; Ginzel, M.D.; Gondhalekar, A.D. Bed bugs, Cimex lectularius L., exhibiting metabolic and target site deltamethrin resistance are susceptible to plant essential oils. Pestic. Biochem. Physiol. 2020, 169, 104667. [Google Scholar] [CrossRef]
- Gaire, S.; Scharf, M.E.; Gondhalekar, A.D. Toxicity and neurophysiological impacts of plant essential oil components on bed bugs (Cimicidae: Hemiptera). Sci. Rep. 2019, 9, 3961. [Google Scholar] [CrossRef] [Green Version]
- Gaire, S.; Scharf, M.; Gondhalekar, A. Synergistic toxicity interactions between plant essential oil components against the common bed bug (Cimex lectularius L.). Insects 2020, 11, 133. [Google Scholar] [CrossRef] [Green Version]
- Pietri, J.E.; Liang, D. Virulence of entomopathogenic bacteria in the bed bug, Cimex lectularius. J. Invertebr. Pathol. 2018, 151, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, K.R.; Feldlaufer, M.F.; Kramer, M.; St. Leger, R.J. Inhibition of the entomopathogenic fungus Metarhizium anisopliae sensu lato in vitro by the bed bug defensive secretions (E)-2-hexenal and (E)-2-octenal. BioControl 2015, 60, 517–526. [Google Scholar] [CrossRef]
- Ulrich, K.R.; Feldlaufer, M.F.; Kramer, M.; St. Leger, R.J. Exposure of bed bugs to Metarhizium anisopliae at different humidities. J. Econ. Entomol. 2014, 107, 2190–2195. [Google Scholar] [CrossRef]
- Rukke, B.A.; Salma, U.; Birkemoe, T.; Aak, A. Blood deprivation and heat stress increase mortality in bed bugs (Cimex lectularius) exposed to insect pathogenic fungi or desiccant dust. Med. Vet. Entomol. 2020, mve.12477. [Google Scholar] [CrossRef]
- Aak, A.; Hage, M.; Rukke, B.A. Insect pathogenic fungi and bed bugs: Behaviour, horizontal transfer and the potential contribution to IPM solutions. J. Pest Sci. 2018, 91, 823–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbarin, A.M.; Jenkins, N.E.; Rajotte, E.G.; Thomas, M.B. A preliminary evaluation of the potential of Beauveria bassiana for bed bug control. J. Invertebr. Pathol. 2012, 111, 82–85. [Google Scholar] [CrossRef]
- Barbarin, A.M.; Bellicanta, G.S.; Osborne, J.A.; Schal, C.; Jenkins, N.E. Susceptibility of insecticide-resistant bed bugs (Cimex lectularius) to infection by fungal biopesticide. Pest Manag. Sci. 2017, 73, 1568–1573. [Google Scholar] [CrossRef]
- Neves, P.M.O.J.; Hirose, E.; Tchujo, P.T.; Moino, A.J. Compatibility of entomopathogenic fungi with neonicotinoid insecticides. Neotrop. Entomol. 2001, 30, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Cuthbertson, A.G.S.; Blackburn, L.F.; Northing, P.; Weiqi, L.; Cannon, R.J.C.; Walters, K.F.A. Further compatibility tests of the entomopathogenic fungus Lecanicillium muscarium with conventional insecticide products for control of sweetpotato whitefly, Bemisia tabaci on poinsettia plants. Insect Sci. 2008, 15, 355–360. [Google Scholar] [CrossRef]
- Anderson, T.E.; Roberts, D.W. Compatibility of Beauveria bassiana isolates with insecticide formulations used in Colorado potato beetle (Coleoptera: Chrysomelidae) control. J. Econ. Entomol. 1983, 76, 1437–1441. [Google Scholar] [CrossRef]
- Schoelitsz, B.; Meerburg, B.G.; Takken, W. Influence of the public’s perception, attitudes, and knowledge on the implementation of integrated pest management for household insect pests. Entomol. Exp. Appl. 2018, eea.12739. [Google Scholar] [CrossRef] [Green Version]
- Etang, J.; Nwane, P.; Mbida, J.A.; Piameu, M.; Manga, B.; Souop, D.; Awono-Ambene, P. Variations of insecticide residual bio-efficacy on different types of walls: Results from a community-based trial in south Cameroon. Malar. J. 2011, 10, 333. [Google Scholar] [CrossRef] [Green Version]
- Dengela, D.; Seyoum, A.; Lucas, B.; Johns, B.; George, K.; Belemvire, A.; Caranci, A.; Norris, L.C.; Fornadel, C.M. Multi-country assessment of residual bio-efficacy of insecticides used for indoor residual spraying in malaria control on different surface types: Results from program monitoring in 17 PMI/USAID-supported IRS countries. Parasit. Vectors 2018, 11, 71. [Google Scholar] [CrossRef] [PubMed]
- Dang, K.; Singham, G.V.; Doggett, S.L.; Lilly, D.G.; Lee, C.-Y. Effects of different surfaces and insecticide carriers on residual insecticide bioassays against bed bugs, Cimex spp. (Hemiptera: Cimicidae). J. Econ. Entomol. 2017, 110, tow296. [Google Scholar] [CrossRef]
- Farenhorst, M.; Hilhorst, A.; Thomas, M.B.; Knols, B.G.J. Development of fungal applications on netting substrates for Malaria vector control. J. Med. Entomol. 2011, 48, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Hess, K.R. Mean survival time from right censored data. Cobra Prepr. Ser. Work. Pap. 2009, 66, 1–7. [Google Scholar]
- Khun, K.K.; Ash, G.J.; Stevens, M.M.; Huwer, R.K.; Wilson, B.A.L. Compatibility of Metarhizium anisopliae and Beauveria bassiana with insecticides and fungicides used in macadamia production in Australia. Pest Manag. Sci. 2021, 77, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Farenhorst, M.; Knols, B.G.J.; Thomas, M.B.; Howard, A.F.V.; Takken, W.; Rowland, M.; N’Guessan, R. Synergy in efficacy of fungal entomopathogens and permethrin against West African insecticide-resistant Anopheles gambiae mosquitoes. PLoS ONE 2010, 5, e12081. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Kostromytska, O.S.; Koppenhöfer, A.M. Synergistic combinations of a pyrethroid insecticide and an emulsifiable oil formulation of Beauveria bassiana to overcome insecticide resistance in Listronotus maculicollis (Coleoptera: Curculionidae). J. Econ. Entomol. 2017, 110, 1794–1802. [Google Scholar] [CrossRef]
- Meyling, N.V.; Arthur, S.; Pedersen, K.E.; Dhakal, S.; Cedergreen, N.; Fredensborg, B.L. Implications of sequence and timing of exposure for synergy between the pyrethroid insecticide alpha-cypermethrin and the entomopathogenic fungus Beauveria bassiana. Pest Manag. Sci. 2018, 74, 2488–2495. [Google Scholar] [CrossRef]
- Pree, D.J.; Stevenson, A.B.; Barszcz, E.S. Toxicity of pyrethroid insecticides to carrot weevils: Enhancement by synergists and oils. J. Econ. Entomol. 1996, 89, 1254–1261. [Google Scholar] [CrossRef]
- Norris, E.; Johnson, J.; Gross, A.; Bartholomay, L.; Coats, J. Plant essential oils enhance diverse pyrethroids against multiple strains of mosquitoes and inhibit detoxification enzyme processes. Insects 2018, 9, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neal, S.T.; Johnson, E.J.; Rault, L.C.; Anderson, T.D. Vapor delivery of plant essential oils alters pyrethroid efficacy and detoxification enzyme activity in mosquitoes. Pestic. Biochem. Physiol. 2019, 157, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Bateman, R.P.; Carey, M.; Moore, D.; Prior, C. The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidities. Ann. Appl. Biol. 1993, 122, 145–152. [Google Scholar] [CrossRef]
- Blanford, S.; Jenkins, N.E.; Christian, R.; Chan, B.H.K.; Nardini, L.; Osae, M.; Koekemoer, L.; Coetzee, M.; Read, A.F.; Thomas, M.B. Storage and persistence of a candidate fungal biopesticide for use against adult malaria vectors. Malar. J. 2012, 11, 354. [Google Scholar] [CrossRef]
- Shikano, I.; Gomez, L.; Bellicanta, G.S.; Jenkins, N.E. Persistence and lethality of a fungal biopesticide (Aprehend) applied to insecticide-impregnated and encasement-type box spring covers for bed bug management. J. Econ. Entomol. 2019, 112, 2489–2492. [Google Scholar] [CrossRef]
- Shikano, I. Efficacy of a fungal biopesticide for bed bug management is influenced by the toxicity and associated behavioral avoidance of harborages on insecticide-impregnated box spring covers. J. Econ. Entomol. 2020, 1–8. [Google Scholar] [CrossRef]
Percent Difference in Spore Germination Relative to Untreated Control | ||||
---|---|---|---|---|
Time Post Aprehend Application | ||||
Professional Products | Formulation | Active Ingredients a | 1 Week | 5 Weeks |
PT® Alpine® Pressurized Insecticide | Aerosol | Dinotefuran, 0.25% Pyriproxyfen, 0.1% Prallethrin, 0.05% | –2 | –2 |
Bedlam Plus® | Aerosol | Imidacloprid, 0.05% MGK 264, 1% Phenothrin, 0.4% | –5 | –2 |
Cirkil® RTU | Ready-to-use spray | Cold-pressed neem oil, 5.5% | +7 | –2 |
Cross Fire® Bed Bug Concentrate | Concentrate | Clothianidin 0.4% Metofluthrin 0.01% Piperonyl butoxide 1% | +1 | +3 |
D-Force® | Aerosol | Deltamethrin, 0.06% | +4 | –26 * |
Demand® CS | Capsule suspension | λ-Cyhalothrin, 0.03% | –15 | –19† |
Fenvastar PlusTM | Concentrate | Esfenvalerate, 0.05% | +1 | –8 |
Gentrol® IGR Concentrate | Concentrate | (S)-Hydroprene, 0.07% | –2 | –25 ** |
Nuvan® Directed SprayTM Aerosol | Aerosol | Dichlorvos, 0.5% | –7 † | –3 |
Optimate® CS Controlled Release Insecticide | Capsule suspension | γ-Cyhalothrin, 0.015% | 0 | –25 * |
Precor® 2625 Premise Spray | Aerosol | Etofenprox, 1% Tetramethrin, 0.25% Pyrethrins, 0.15% Piperonyl Butoxide, 1.50% (S)-Methoprene, 0.09% | –5 | –31 * |
Spectre® 2 SC | Suspension concentrate | Chlorfenapyr, 0.5% | –2 | –7 |
Suspend® SC Insecticide | Suspension concentrate | Deltamethrin, 0.06% | –36 ** | –39 * |
Temprid® SC | Suspension concentrate | Imidacloprid, 0.05% β-Cyfluthrin, 0.025% | +2 | +5 |
Transport® MikronTM Insecticide | Concentrate | Acetamiprid, 0.05% Bifenthrin, 0.06% | –4 ** | –14 † |
Zenprox® Xtend Aerosol | Aerosol | Etofenprox, 1% Tetramethrin, 0.25% Pyrethrins, 0.15% Piperonyl Butoxide, 1.50% (S)-Methoprene, 0.09% | –7 | –61 * |
DIY Products | ||||
Bayer Advanced® Home Pest Bed Bug & Flea Killer | Aerosol | Imidacloprid, 0.025% β-Cyfluthrin, 0.0125% | –5 † | –26 ** |
Black Flag® Flea & Tick Aerosol | Aerosol | γ-Cyhalothrin, 0.005% Pyriproxyfen, 0.016% | –13 * | –32 * |
EcoRaider® Natural Bed Bug Killer | Ready-to-use spray | Natural geraniol, 1% Natural cedar oil, 1% Sodium lauryl sulfate, 2% | –2 | –23 * |
EcoViaTM CA | Aerosol | Thyme oil, 0.88% Rosemary oil, 0.53% Cinnamon oil, 0.26% | –16 ** | –27 * |
Hot Shot® Bed Bug Killer | Aerosol | Imiprothrin, 0.1% λ-Cyhalothrin, 0.025% | –7 | –35 ** |
Raid® Ant & Roach | Aerosol | Imiprothrin, 0.06% Cypermethrin, 0.1% | –16 ** | –43 *** |
Time Post Aprehend® Application | Insecticide a | No Aprehend® | With Aprehend® | ||||||
---|---|---|---|---|---|---|---|---|---|
Mortality | Mean Survival Time (± SE) bc | Median Survival Time | Mortality | Mean Survival Time (± SE) bc | Median Survival Time | Effect of Adding Aprehend® d | Spore Viability e | ||
1 week | PT® Alpine® | 94% | 3.16 ± 0.57 *** | 2 | 100% | 1.87 ± 0.18 *** | 2 | X2 = 3.23 | 84% |
Bedlam Plus® | 80% | 3.60 ± 0.68 *** | 2 | 100% | 2.57 ± 0.24 *** | 2 | X2 = 0.87 | 88% | |
CrossFire® | 100% | 2.39 ± 0.23 *** | 2 | 100% | 2.17 ± 0.20 *** | 2 | X2 = 0.79 | 87% | |
Spectre® 2 SC | 83% | 5.60 ± 0.82 *** | 3 | 100% | 2.30 ± 0.24 *** | 2 | X2 = 11.92 *** | 87% | |
Temprid® SC | 100% | 1.13 ± 0.06 *** | 1 | 100% | 1.00 ± 0.00 *** | 1 | X2 = 4.21 * | 83% | |
None | 10% | - | >14 | 100% | 4.57 ± 0.18 | 5 | X2 = 63.80 *** | 84% | |
7 weeks | PT® Alpine® | 57% | - | 8 *** | 100% | 3.33 ± 0.29 *** | 3 | X2 = 27.94 *** | 69% |
Bedlam Plus® | 10% | - | >14 | 100% | 3.53 ± 0.39 *** | 4 | X2 = 60.54 *** | 64% | |
CrossFire® | 97% | 4.03 ± 0.60 | 3 *** | 100% | 3.37 ± 0.22 *** | 3 | X2 = 0.25 | 65% | |
Spectre® 2 SC | 57% | - | 12 *** | 100% | 4.70 ± 0.43 | 5 | X2 = 23.76 *** | 69% | |
Temprid® SC | 100% | 2.06 ± 0.40 | 1 *** | 100% | 1.70 ± 0.20 *** | 1 | X2 = 0.58 | 69% | |
None | 7% | - | >14 | 97% | 5.97 ± 0.35 | 5 | X2 = 59.32 *** | 67% |
Time Post Aprehend® Application | Insecticide a | No Aprehend® | With Aprehend® | ||||||
---|---|---|---|---|---|---|---|---|---|
Mortality | Mean Survival Time (± SE) bc | Median Survival Time | Mortality | Mean Survival Time (± SE) bc | Median Survival Time | Effect of Adding Aprehend® d | Spore Viability e | ||
1 week | PT® Alpine® | 33% | - * | >14 | 80% | 8.20 ± 0.59 | 6.5 | X2 = 12.80 *** | 82% |
Bedlam Plus® | 23% | - | >14 | 71% | 9.32 ± 0.60 * | 8 | X2 = 16.15 *** | 78% | |
CrossFire® | 33% | -* | >14 | 83% | 7.55 ± 0.72 | 6 | X2 = 17.30 *** | 79% | |
Spectre® 2 SC | 10% | - | >14 | 97% | 7.50 ± 0.59 | 6.5 | X2 = 51.27 *** | 80% | |
Temprid® SC | 100% | 2.13 ± 0.36 *** | 1 | 100% | 1.97 ± 0.33 *** | 1 | X2 = 0.30 | 81% | |
None | 10% | - | >14 | 83% | 7.11 ± 0.31 | 6 | X2 = 34.16 *** | 82% | |
7 weeks | PT® Alpine® | 13% | - | >14 | 53% | -** | 13 | X2 = 12.24 *** | 17% *** |
Bedlam Plus® | 23% | - | >14 | 33% | -*** | >14 | X2 = 0.72 | 12% *** | |
CrossFire® | 57% | -*** | 11 | 67% | - | 10 | X2 = 0.26 | 12% *** | |
Spectre® 2 SC | 20% | - | >14 | 50% | -** | ≥14 | X2 = 5.35 * | 11% *** | |
Temprid® SC | 87% | 6.37 ± 0.82 *** | 6 | 90% | 5.67 ± 0.67 * | 5 | X2 = 0.25 | 14% *** | |
None | 7% | - | >14 | 76% | 7.28 ± 0.43 | 7 | X2 = 30.23 *** | 29% |
Time Post Aprehend® Application | Age of EcoRaider® Residue at Aprehend® Application a | No Aprehend® | With Aprehend® | |||||
---|---|---|---|---|---|---|---|---|
Mortality | Mean Survival Time (± SE) bc | Median Survival Time | Mortality | Mean Survival Time (± SE) dc | Median Survival Time | Spore Viability e | ||
1 week | 1 day | 43% | -* | >14 | 100% | 5.90 ± 0.30 *** | 6 | 64% *** |
1 week | 20% | - | >14 | 100% | 5.97 ± 0.26 *** | 5.5 | 75% *** | |
3 weeks | 23% | - | >14 | 100% | 5.80 ± 0.21 *** | 5.5 | 75% *** | |
6 weeks | 23% | - | >14 | 100% | 5.57 ± 0.37 ** | 5 | 75% *** | |
None | 13% | - | >14 | 100% | 4.80 ± 0.13 | 5 | 86% | |
7 weeks | 1 day | 7% | - | >14 | 87% | 8.00 ± 0.53 ** | 7 | 56% *** |
1 week | 23% | - | >14 | 90% | 7.83 ± 0.53 ** | 8 | 63% *** | |
3 weeks | 7% | - | >14 | 90% | 8.23 ± 0.57 ** | 7 | 69% ** | |
6 weeks | 17% | - | >14 | 97% | 6.77 ± 0.41 | 6 | 72% | |
None | 7% | - | >14 | 100% | 6.13 ± 0.45 | 6 | 75% |
Time post Aprehend® Application | Age of Raid® Residue at Aprehend Application a | No Aprehend® | With Aprehend® | ||||||
---|---|---|---|---|---|---|---|---|---|
Mortality | Mean Survival Time (± SE) ab | Median Survival Time | Mortality | Mean Survival Time (± SE) ab | Median Survival Time | Effect of Adding Aprehend® c | Spore Viability d | ||
1 week | 1 day | 100% | 2.37 ± 0.39 *** | 2 | 100% | 1.17 ± 0.08 *** | 1 | X2 = 13.26 *** | 71% *** |
1 week | 93% | 3.33 ± 0.45 *** | 2 | 100% | 1.27 ± 0.08 *** | 1 | X2 = 21.64 *** | 73% *** | |
3 weeks | 43% | -** | >14 | 100% | 2.57 ± 0.28 *** | 2 | X2 = 45.13 *** | 73% *** | |
6 weeks | 30% | - | >14 | 100% | 3.13 ± 0.33 *** | 2.5 | X2 = 58.26 *** | 81% ** | |
None | 13% | - | >14 | 100% | 4.80 ± 0.13 | 5 | X2 = 57.42 *** | 86% | |
7 week | 1 day | 58% *** | |||||||
1 week | 69% ** | ||||||||
3 weeks | 67% *** | ||||||||
6 weeks | 68% *** | ||||||||
None | 75% |
Insecticide | Time Post Aprehend® Application | Age of Insecticide Residue at Aprehend® Application | Spore Viability a |
---|---|---|---|
Zenprox® | 5 weeks | 1 day | 73% *** |
5 weeks | 80% *** | ||
None | 87% |
Treatment | Mortality a | Mean Survival Time (± SE) bc | Median Survival Time | Spore Viability d |
---|---|---|---|---|
PB 5% + Aprehend® | 100% | 5.17 ± 0.14 † | 5 | 68% *** |
PB 1.5% + Aprehend® | 100% | 5.23 ± 0.14 * | 5 | 71% *** |
Aprehend® | 100% | 4.73 ± 0.17 | 4.5 | 87% |
Untreated | 13% | -*** | >14 | n/a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shikano, I.; Bellicanta, G.S.; Principato, S.; Jenkins, N.E. Effects of Chemical Insecticide Residues and Household Surface Type on a Beauveria bassiana-Based Biopesticide (Aprehend®) for Bed Bug Management. Insects 2021, 12, 214. https://doi.org/10.3390/insects12030214
Shikano I, Bellicanta GS, Principato S, Jenkins NE. Effects of Chemical Insecticide Residues and Household Surface Type on a Beauveria bassiana-Based Biopesticide (Aprehend®) for Bed Bug Management. Insects. 2021; 12(3):214. https://doi.org/10.3390/insects12030214
Chicago/Turabian StyleShikano, Ikkei, Giovani S. Bellicanta, Simona Principato, and Nina E. Jenkins. 2021. "Effects of Chemical Insecticide Residues and Household Surface Type on a Beauveria bassiana-Based Biopesticide (Aprehend®) for Bed Bug Management" Insects 12, no. 3: 214. https://doi.org/10.3390/insects12030214
APA StyleShikano, I., Bellicanta, G. S., Principato, S., & Jenkins, N. E. (2021). Effects of Chemical Insecticide Residues and Household Surface Type on a Beauveria bassiana-Based Biopesticide (Aprehend®) for Bed Bug Management. Insects, 12(3), 214. https://doi.org/10.3390/insects12030214