Modeling the Invasion of the Large Hive Beetle, Oplostomusfuligineus, into North Africa and South Europe under a Changing Climate
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Occurrence Records
2.2. Current and Future Climatic Data
2.3. Species Distribution Modeling
2.4. Model Performance
3. Results
3.1. Predicted Current Potential Distribution
3.2. Predicted Future Invasive Distribution (2050)
3.3. Predicted Future Invasive Distribution (2070)
3.4. Predicted Range Difference between Current and Future Distribution
3.5. Model Performance and Variables Contribution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Early, R.; Bradley, B.; Dukes, J.; Lawler, J.; Olden, J.; Blumenthal, D.; Gonzalez, P.; Grosholz, E.; Ibañez, I.; Miller, L.; et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 2016, 7, 12485. [Google Scholar] [CrossRef] [PubMed]
- Gadallah, S.M.; Nasser, M.G.; Farag, S.M.; Elhawary, M.O.; Hossny, A. Deroplax silphoides (Thunberg, 1783) (Hemiptera: Heteroptera: Scutelleridae) Invasive Species in Egypt with additional morphological and behavioral data. Zootaxa 2019, 4624, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, J.J.; Byers, J.E.; Bierwagen, B.G.; Dukes, J.S. Five potential consequences of climate change for invasive species. Conserv. Biol. 2008, 22, 534–543. [Google Scholar] [CrossRef]
- Bjorkman, C.; Niemela, P. Climate Change and Insect Pests, 1st ed.; CABI: Wallingford, UK, 2015; p. 299. [Google Scholar] [CrossRef]
- Cannon, R.J. The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Glob. Chang. Biol. 1998, 4, 785–796. [Google Scholar] [CrossRef]
- Nooten, S.S.; Andrew, N.R.; Hughes, L. Potential impacts of climate change on insect communities: A transplant experiment. PLoS ONE 2014, 9, e85987. [Google Scholar] [CrossRef]
- Battisti, A.; Larsson, S. Climate change and insect pest distribution range. In Climate Change and Insect Pests, 1st ed.; Bjorkman, C., Niemela, P., Eds.; CABI: Wallingford, UK, 2015; pp. 1–15. [Google Scholar]
- Chaves, L.F. Climate change and the biology of insect vectors of human pathogens. In Global Climate Change and Terrestrial Invertebrates, 1st ed.; Johnson, S.N., Jones, T.H., Eds.; John Wiley & Sons: West Sussex, UK, 2017; pp. 126–147. [Google Scholar]
- Thomson, L.J.; Macfadyen, S.; Hoffmann, A.A. Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control 2010, 52, 296–306. [Google Scholar] [CrossRef]
- Lehmann, P.; Ammunét, T.; Barton, M.; Battisti, A.; Eigenbrode, S.D.; Jepsen, J.U.; Kalinkat, G.; Neuvonen, S.; Niemela, P.; Terblanche, J.S.; et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 2020. [Google Scholar] [CrossRef]
- Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M.W.; Fischer, A.M.; Duffy, B.; Samietz, J. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland. Earth Syst. Dyn. 2012, 3, 33–47. [Google Scholar] [CrossRef]
- Nasser, M.; Okely, M.; Nasif, O.; Alharbi, S.; GadAllah, S.; Al-Obaid, S.; Enan, R.; Bala, M.; Al-Ashaal, S. Spatio-temporal analysis of Egyptian flower mantis Blepharopsis mendica (order: Mantodea), with notes of its future status under climate change. Saudi J. Biol. Sci. 2021. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, G.; Bu, W.; Gao, Y. Ecological niche modeling and its applications in biodiversity conservation. Biodivers. Sci. 2013, 21, 90. [Google Scholar]
- Al Ahmed, A.M.; Naeem, M.; Kheir, S.M.; Sallam, M.F. Ecological distribution modeling of two malaria mosquito vectors using geographical information system in Al-Baha Province, Kingdom of Saudi Arabia. Pak. J. Zool. 2015, 47, 1797–1806. [Google Scholar]
- Naeem, M.; Yuan, X.; Huang, J.; An, J. Habitat suitability for the invasion of Bombus terrestris in East Asian countries: A case study of spatial overlap with local Chinese bumblebees. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sung, S.; Kwon, Y.S.; Lee, D.K.; Cho, Y. Predicting the potential distribution of an invasive species, Solenopsis invicta Buren (Hymenoptera: Formicidae), under climate change using species distribution models. Entomol. Res. 2018, 48, 505–513. [Google Scholar] [CrossRef]
- Panda, R.M.; Behera, M.D.; Roy, P.S. Assessing distributions of two invasive species of contrasting habits in future climate. J. Environ. Manag. 2018, 213, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Zurell, D.; Franklin, J.; König, C.; Bouchet, P.J.; Dormann, C.F.; Elith, J.; Fandos, G.; Feng, X.; Guillera-Arroita, G.; Guisan, A.; et al. A standard protocol for reporting species distribution models. Ecography 2020, 43, 1261–1277. [Google Scholar] [CrossRef]
- Maldonado, C.; Molina, C.I.; Zizka, A.; Persson, C.; Taylor, C.M.; Albán, J.; Chilquillo, E.; Rønsted, N.; Antonelli, A. Estimating species diversity and distribution in the era of Big Data: To what extent can we trust public databases? Glob. Ecol. Biogeogr. 2015, 24, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Asase, A.; Peterson, A.T. Completeness of Digital Accessible Knowledge of the Plants of Ghana. Biodivers. Inform. 2016, 11, 1–11. [Google Scholar] [CrossRef]
- Elzen, P.J.; Baxter, J.R.; Westervelt, D.; Randall, C.; Delaplane, K.S.; Cutts, L.; Wilson, W.T. Field control and biology studies of a new pest species Aethina tumida Murray (Coleoptera, Nitidulidae), attacking European honeybees in the Western Hemisphere. Apidologie 1999, 30, 361–366.–366. [Google Scholar] [CrossRef]
- Nasser, M.; El-Hawagry, M.; Okely, M. Environmental niche modeling for some species of the genus Anthrax Scopoli (Diptera: Bombyliidae) in Egypt, with special notes on St. Catherine protected area as a suitable habitat. J. Insect. Conserv. 2019, 23, 831–841. [Google Scholar] [CrossRef]
- Hosni, E.M.; Nasser, M.G.; Al-Ashaal, S.A.; Rady, M.H.; Kenawy, M.A. Modeling current and future global distribution of Chrysomya bezziana under changing climate. Sci. Rep. 2020, 10, 4947. [Google Scholar] [CrossRef]
- Jones, R. European beekeeping in the 21st century: Strengths, weaknesses, opportunities, threats. Bee World 2004, 85, 77–80. [Google Scholar] [CrossRef]
- Andrews, E. To save the bees or not to save the bees: Honeybee health in the Anthropocene. Agric. Hum. Values 2019, 36, 891–902. [Google Scholar] [CrossRef]
- Luo, Q.H.; Peng, W.J.; An, J.D.; Guo, J. The potential causes of colony collapse disorder (CCD) and its countermeasures in China. Chin. J. Entomol. 2008, 45, 991–995. [Google Scholar]
- Dahle, B. The role of Varroa destructor for honeybee colony losses in Norway. J. Apic. Res. 2010, 49, 124–125. [Google Scholar] [CrossRef]
- Flores, J.M.; Gil-Lebrero, S.; Gámiz, V.; Rodríguez, M.I.; Ortiz, M.A.; Quiles, F.J. Effect of the climate change on honey bee colonies in a temperate Mediterranean zone assessed through remote hive weight monitoring system in conjunction with exhaustive colonies assessment. Sci. Total Environ. 2019, 653, 1111–1119. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Williams, R.N. New record of the small hive beetle in Egypt and notes on its distribution and control. Bee World 2000, 83, 99–108. [Google Scholar] [CrossRef]
- Neumann, P.; Elzen, P.J. The biology of the small hive beetle (Aethina tumida, Coleoptera: Nitidulidae): Gaps in our knowledge of an invasive species. Apidologie 2004, 35, 229–247. [Google Scholar] [CrossRef]
- Neumann, P.; Pettis, J.S.; Schäfer, M.O. Quo vadis Aethina tumida? Biology and control of small hive beetles. Apidologie 2016, 47, 427–466. [Google Scholar] [CrossRef]
- Abou-Shaara, H.F.; Ahmad, M.E.; Háva, J. Note: Recording of some beetles in honeybee colonies. Cercet. Agron. Mold. 2018, 51, 85–90. [Google Scholar] [CrossRef]
- Smart, L.E.; Blight, M.M. Response of the pollen beetle, Meligethes aneus, to traps baited with volatiles from oilseed rape, Brassica napus. J. Chem. Ecol. 2000, 26, 1051–1064. [Google Scholar] [CrossRef]
- Wolff, M.; Uribe, A.; Ortiz, A.; Duque, P. A preliminary study of forensic entomology in Medellin, Colombia. Forensic Sci. Int. 2001, 120, 53–59. [Google Scholar] [CrossRef]
- Oldroyd, B.P.; Allsopp, M.H. Risk assessment for large African hive beetles (Oplostomus spp.)—A review. Apidologie 2017, 48, 495–503. [Google Scholar] [CrossRef]
- Donaldson, J.M.I. Oplostomus fuligineus (Coleoptera: Scarabaeidae): Life cycle and biology under laboratory conditions, and its occurrence in bee hives. Coleopt. Bull. 1989, 43, 177–182. [Google Scholar]
- Fombong, A.T.; Mumoki, F.N.; Muli, E.; Masiga, D.K.; Arbogast, R.T.; Teal, P.E.A.; Torto, B. Occurrence, diversity and pattern of damage of Oplostomus species (Coleoptera: Scarabaeidae), honeybee pests in Kenya. Apidologie 2013, 44, 11–20. [Google Scholar] [CrossRef]
- Ruttner, F. Biogeography and Taxonomy of Honeybees, 1st ed.; Springer: Berlin, Germany, 1988; pp. 199–226. [Google Scholar]
- Mutinelli, F. The spread of pathogens through trade in honeybees and their products (including queen bees and semen): Overview and recent developments. Rev. Sci. Tech. Off. Int. Epiz. 2011, 30, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Gordon, R.; Bresolin-Schott, N.; East, I.J. Nomadic beekeeper movements create the potential for wide-spread disease in the honeybee industry. Aust. Vet. J. 2014, 92, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Yoruk, A.; Sahinler, N. Potential effects of global warming on the honeybee. Uludag Bee J. 2013, 13, 79–87. [Google Scholar]
- Abou-Shaara, H.F. Expectations about the potential impacts of climate change on honeybee colonies in Egypt. J. Apic. 2016, 31, 157–164. [Google Scholar] [CrossRef]
- Jiufeng, W.; Lingfei, P.; Zhiqiang, H.; Yunyun, L.; Fang, W. Potential distribution of two invasive pineapple pests under climate change. Pest. Manag. Sci. 2020, 76, 1652–1663. [Google Scholar]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Guo, S.; Ge, X.; Zou, Y.; Zhou, Y.; Wang, T.; Zong, S. Projecting the Potential Global Distribution of Carpomya vesuviana (Diptera: Tephritidae), Considering Climate Change and Irrigation Patterns. Forests 2019, 10, 355. [Google Scholar] [CrossRef]
- Byeon, D.H.; Jung, J.M.; Jung, S.; Lee, W.H. Prediction of global geographic distribution of Metcalfa pruinosa using CLIMEX. Entomol. Res. 2018, 48, 99–107. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudik, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. Maxent Software for Modeling Species Niches and Distributions (Version 3.4.1). Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 20 March 2020).
- Kessler, H.; Ganser, C.; Glass, E.G. Modeling the Distribution of Medically Important Tick Species in Florida. Insects 2019, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Mulieri, P.R.; Patitucci, L.D. Using ecological niche models to describe the geographical distribution of the myiasis-causing Cochliomyia hominivorax (Diptera: Calliphoridae) in southern South America. Parasitol. Res. 2019, 118, 1077–1086. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Klein, A.M.; Vaissiere, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Aizen, M.A.; Klein, A.M.; Cunnigham, S.A.; Harder, L.D. Global growth and stability of agricultural yield decrease with pollinator dependence. Proc. Natl. Acad. Sci. USA 2011, 108, 5909–5914. [Google Scholar] [CrossRef]
- Roubik, D.W. Tropical pollinators in the canopy and understory—Field data and theory for stratum preferences. J. Insect Behav. 1993, 6, 659–673. [Google Scholar] [CrossRef]
- Aebi, A.; Vaissière, B.E.; Van Engelsdorp, D.; Delaplane, K.S.; Roubik, D.W.; Neumann, P. Back to the future: Apis versus non Apis pollination. Trends Ecol. Evol. 2012, 27, 142–143. [Google Scholar] [CrossRef]
- Crane, E. Bees and Beekeeping: Science Practice and World Resources, 1st ed.; Cornell University Press: Ithaca, NY, USA, 1990; p. 640. [Google Scholar]
- Oldroyd, B.P.; Wongsiri, S. Asian Honey Bees. Biology, Conservation and Human Interactions, 1st ed.; Harvard University Press: Cambridge, MA, USA, 2006; p. 340. [Google Scholar]
- Ellis, J.D.; Munn, P.A. The worldwide health status of honey bees. Bee World 2005, 86, 88–101. [Google Scholar] [CrossRef]
- Nagaraja, N.; Rajagopal, D. Honey Bees: Diseases, Parasites, Pests, Predators and their Management, 1st ed.; MJP Publisher: Chennai, India, 2019; p. 224. [Google Scholar]
- Hristov, P.; Shumkova, R.; Palova, N.; Neov, B. Factors Associated with Honey Bee Colony Losses: A Mini-Review. Vet. Sci. 2020, 7, 166. [Google Scholar] [CrossRef] [PubMed]
- Makori, D.M.; Fombong, A.T.; Abdel-Rahman, E.M.; Nkoba, K.; Ongus, J.; Irungu, J.; Mosomtai, G.; Makau, S.; Mutanga, O.; Odindi, J.; et al. Predicting spatial distribution of key honeybee pests in Kenya using remotely sensed and bioclimatic variables: Key honeybee pests distribution models. ISPRS Int. J. Geo Inf. 2017, 6, 66. [Google Scholar] [CrossRef]
- Jamal, Z.A.; Abou-Shaara, H.F.; Qamer, S.; Alotaibi, M.A.; Khan, K.A.; Khan, M.F.; Bashir, M.A.; Hannan, A.; AL-Kahtani, S.N.; Taha, E.A.; et al. Future expansion of small hive beetles, Aethina tumida, towards North Africa and South Europe based on temperature factors using maximum entropy algorithm. J. King Saud Univ. Sci. 2020, 33, 101242. [Google Scholar] [CrossRef]
- El-Niweiri, M.A.; El-Sarrag, M.S.; Neumann, P. Filling the Sudan gap: The northernmost natural distribution limit of small hive beetles. J. Apic. Res. 2008, 47, 184–185. [Google Scholar]
- Hassan, A.R.; Neumann, P. A survey for the small hive beetle in Egypt. J. Apic. Res. 2008, 47, 186–187. [Google Scholar] [CrossRef]
- Murilhas, A.M. Aethina tumida arrives in Portugal. Will it be eradicated? Eur. Bee Newslett. 2004, 2, 7–9. [Google Scholar]
- Neumann, P.; Ellis, J.D. The small hive beetle (Aethina tumida Murray, Coleoptera: Nitidulidae): Distribution, biology and control of an invasive species. J. Apic. Res. 2008, 47, 180–183. [Google Scholar] [CrossRef]
- da Silva, M.J.V. The first report of Aethina tumida in the European Union, Portugal 2004. Bee World 2014, 91, 90–91. [Google Scholar] [CrossRef]
- Mutinelli, F.; Montarsi, F.; Federico, G.; Granato, A.; Ponti, A.M.; Grandinetti, G.; Chauzat, M.P. Detection of Aethina tumida Murray (Coleoptera: Nitidulidae.) in Italy: Outbreaks and early reaction measures. J. Apic. Res. 2014, 53, 569–575. [Google Scholar] [CrossRef]
- Palmeri, V.; Scrito, G.; Malacrino, A.; Laudani, F.; Campolo, O. A scientific note on a new pest for European honey bees: First report of Aethina tumida (Coleoptera Nitidulidae) in Italy. Apidologie 2015, 46, 527–529. [Google Scholar] [CrossRef]
- Clauss, B. Bees and Beekeeping in Botswana, 1st ed.; Ministry of Agriculture: Gabarone, Botswana, 1983; p. 122. [Google Scholar]
- Wambua, B.; Muli, E.; Kilonzo, J.; Nganga, J.; Kanui, T.; Muli, B. Large Hive Beetles: An emerging serious honey bee pest in the coastal highlands of Kenya. Bee World 2019, 90–91. [Google Scholar] [CrossRef]
- Meurisse, N.; Rassati, D.; Hurley, B.P.; Brockerhoff, E.G.; Haack, R.A. Common pathways by which non-native forest insects move internationally and domestically. J. Pest. Sci. 2019, 92, 13–27. [Google Scholar] [CrossRef]
- Milosavljević, I.; El-Shafie, H.A.F.; Faleiro, J.R.; Hoddle, C.D.; Lewis, M.; Hoddle, M.S. Palmageddon: The wasting of ornamental palms by invasive palm weevils, Rhynchophorus spp. J. Pest. Sci. 2019, 92, 143–156. [Google Scholar] [CrossRef]
- Fiaboe, K.; Peterson, A.T.; Kairo, M.T.; Roda, A.L. Predicting the potential worldwide distribution of the red palm weevil Rhynchophorus ferrugineus (olivier) (coleoptera: Curculionidae) using ecological niche modeling. Fla. Entomol. 2012, 95, 659–673. [Google Scholar] [CrossRef]
- Neumann, P.; Härtel, S. Removal of small hive beetle (Aethina tumida Murray) eggs and larvae by African honeybee colonies (Apis mellifera scutellata). Apidologie 2004, 35, 31–36. [Google Scholar] [CrossRef]
- Keeping, M.G. A beetle predacious on the brood of a social wasp. J. Entomol. Soc. S. Afr. 1984, 47, 355–356. [Google Scholar] [CrossRef]
- Abou-Shaara, H.F.; Staron, M. Present and future perspectives of using biological control agents against pests of honey bees. Egypt. J. Biol. Pest Control 2019, 29, 24. [Google Scholar] [CrossRef]
- Neumann, P.; Pirk, C.W.W.; Hepburn, H.R.; Elzen, P.J.; Baxter, J.R. Laboratory rearing of small hive beetles Aethina tumida (Coleoptera: Nitidulidae). J. Apic. Res. 2001, 40, 111–112. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abou-Shaara, H.; Alashaal, S.A.; Hosni, E.M.; Nasser, M.G.; Ansari, M.J.; Alharbi, S.A. Modeling the Invasion of the Large Hive Beetle, Oplostomusfuligineus, into North Africa and South Europe under a Changing Climate. Insects 2021, 12, 275. https://doi.org/10.3390/insects12040275
Abou-Shaara H, Alashaal SA, Hosni EM, Nasser MG, Ansari MJ, Alharbi SA. Modeling the Invasion of the Large Hive Beetle, Oplostomusfuligineus, into North Africa and South Europe under a Changing Climate. Insects. 2021; 12(4):275. https://doi.org/10.3390/insects12040275
Chicago/Turabian StyleAbou-Shaara, Hossam, Sara A. Alashaal, Eslam M. Hosni, Mohamed G. Nasser, Mohammad J. Ansari, and Sulaiman Ali Alharbi. 2021. "Modeling the Invasion of the Large Hive Beetle, Oplostomusfuligineus, into North Africa and South Europe under a Changing Climate" Insects 12, no. 4: 275. https://doi.org/10.3390/insects12040275
APA StyleAbou-Shaara, H., Alashaal, S. A., Hosni, E. M., Nasser, M. G., Ansari, M. J., & Alharbi, S. A. (2021). Modeling the Invasion of the Large Hive Beetle, Oplostomusfuligineus, into North Africa and South Europe under a Changing Climate. Insects, 12(4), 275. https://doi.org/10.3390/insects12040275