The Insect Type 1 Tyramine Receptors: From Structure to Behavior
Abstract
:Simple Summary
Abstract
1. Introduction: The Tyraminergic and Octopaminergic Systems in Insects
2. TAR1: Molecular and Structural Characterization
3. TAR1: Pharmacology
4. TAR1: Physiology and Behavior
5. TAR1: Insecticides Target
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Neckameyer, W.S.; Leal, S.M. Diverse Functions of Insect Biogenic Amines as Neurotransmitters, Neuromodulators and Neurohormones. Horm. Brain Behav. 2017, 2, 367–401. [Google Scholar] [CrossRef]
- Bauknecht, P.; Jèkely, G. Ancient Coexistence of Norepinephrine, Tyramine and Octopamine Signaling in Bilaterians. BMC Biol. 2017, 15, 6. [Google Scholar] [CrossRef] [Green Version]
- Roeder, T.; Seifert, M.; Kähler, C.; Gewecke, M. Tyramine and Octopamine: Antagonistic Modulators of Behavior and Metabolism. Arch. Insect Biochem. Physiol. 2003, 54, 1–13. [Google Scholar] [CrossRef]
- Pauls, D.; Blechschmidt, C.; Frantzmann, F.; Jundi, B.; Selcho, M. A Comprehensive Anatomical Map of the Peripheral Octopaminergic/Tyraminergic System of Drosophila melanogaster. Sci. Rep. 2018, 8, 15314. [Google Scholar] [CrossRef] [Green Version]
- Roeder, T. Tyramine and Octopamine: Ruling Behaviour and Metabolism. Annu. Rev. Entomol. 2005, 50, 447–477. [Google Scholar] [CrossRef]
- Downer, R.G.H.; Hiripi, L.; Juhohs, S. Characterization of the Tyraminergic System in the Central Nervous System of the Locust, Locusta migratoria Migratoides. Neurochem. Res. 1993, 18, 1245–1248. [Google Scholar] [CrossRef]
- Lange, A.B. Tyramine: From Octopamine Precursor to Neuroactive Chemical in Insects. Gen. Comp. Endocrinol. 2009, 162, 18–26. [Google Scholar] [CrossRef]
- Zhukovskaya, M.I.; Polyanovsky, A.D. Biogenic Amines in Insect Antennae. Front. Syst. Neurosci. 2017, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Hardie, S.L.; Zhang, J.X.; Hirsh, J. Trace Amines Differentially Regulate Adult Locomotor Activity, Cocaine Sensitivity, and Female Fertility in Drosophila melanogaster. Dev. Neurobiol. 2007, 67, 1396–1405. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.; Lange, A.B. Octopamine Modulates a Central Pattern Generator Associated with Egg-Laying in the Locust, Locusta migratoria. J. Insect Physiol. 2010, 63, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Roeder, T. The Control of Metabolic Traits by Octopamine and Tyramine in Invertebrates. J. Exp. Biol. 2020, 223. [Google Scholar] [CrossRef] [PubMed]
- Audsley, N.; Dom, R.E. G Protein Coupled Receptors as Target for Next Generation Pesticides. Insect Biochem. Mol. Biol. 2015, 67, 27–37. [Google Scholar] [CrossRef]
- Wu, S.F.; Xu, G.; Qi, Y.X.; Xia, R.Y.; Huang, J.; Ye, G.Y. Two Splicing Variants of a Novel Family of Octopamine Receptors with Different Signaling Properties. J. Neurochem. 2014, 129, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.X.; Xu, G.; Gu, G.X.; Mao, F.; Ye, G.Y.; Liu, W.; Huang, J. A New Drosophila Octopamine Receptor Responds to Serotonin. Insect Biochem. Mol. Biol. 2017, 90, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Bayliss, A.; Roselli, G.; Evans, P.D. A Comparison of the Signaling Properties of Two Tyramine Receptors from Drosophila. J. Neurochem. 2013, 125, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Millar, N.; Davis, R.L. A Novel Octopamine Receptor with Preferential Expression in Drosophila Mushroom Bodies. J. Neurosci. 1998, 18, 3650–3658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balfanz, S.; Strunker, T.; Frings, S.; Baummann, A. A Family of Octopamine Receptors that Specifically Induce Cyclic AMP Production or Ca2+ Release in Drosophila melanogaster. J. Neurochem. 2005, 93, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Grohmann, L.; Blenau, W.; Ebert, P.; Strunker, T.; Baumann, A. Molecular and Functional Characterization of an Octopamine Receptor from Honeybee (Apis mellifera) Brain. J. Neurochem. 2003, 86, 725–735. [Google Scholar] [CrossRef] [Green Version]
- Bischof, L.; Enan, E. Cloning, Expression, and Functional Analysis of an Octopamine Receptor from Periplaneta Americana. Insect Biochem. Mol. Biol. 2004, 34, 511–521. [Google Scholar] [CrossRef]
- Ohtani, A.; Arai, Y.; Ozoe, F.; Ohta, H.; Narusuye, K.; Huang, J.; Enomoto, K.; Kataoka, H.; Hirota, A.; Ozoe, Y. Molecular Cloning and Heterologous Expression of an Alpha-Adrenergic-like Octopamine Receptor from the Silkworm Bombyx mori. Insect Mol. Biol. 2006, 15, 763–772. [Google Scholar] [CrossRef]
- Kim, Y.C.; Lee, H.G.; Lim, J.; Han, K.A. Appetitive Learning Requires the Alpha1-Like Octopamine Receptor OAMB in the Drosophila Mushroom Body Neurons. J. Neurosci. 2013, 33, 1672–1677. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-G.; Seong, C.-S.; Kim, Y.-C.; Davis, R.L.; Han, K.-A. Octopamine Receptor OAMB is Required for Ovulation in Drosophila melanogaster. Dev. Biol. 2003, 264, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Crocker, A.; Shahidullah, M.; Levitan, I.B.; Sehgal, A. Identification of a Neural Circuit that Underlies the Effects of Octopamine on sleep: Wake behavior. Neuron 2010, 65, 670–681. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Fink, C.; El-Kholy, S.; Roeder, T. The octopamine receptor octß2R is essential for ovulation and fertilization in the fruit Fly Drosophila melanogaster. Arch. Insect Biochem. Physiol. 2015, 88, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Sujkowski, A.; Wessells, R. Using Drosophila to Understand Biochemical and Behavioral Responses to Exercise. Exerc. Sport Sci. Rev. 2018, 46, 112–120. [Google Scholar] [CrossRef]
- Zhang, T.; Branch, A.; Shen, P. Octopamine-Mediated Circuit Mechanism Underlying Controlled Appetite for Palatable Food in Drosophila. Proc. Natl. Acad. Sci. USA 2013, 110, 15431–15436. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Ohta, H.; Inoue, N.; Takao, H.; Kita, T.; Ozoe, F.; Ozoe, Y. Molecular Cloning and Pharmacological Characterization of a Bombyx Mori Tyramine Receptor Selectively Coupled to Intracellular Calcium Mobilization. Insect Biochem. Mol. Biol. 2009, 39, 842–849. [Google Scholar] [CrossRef]
- Cazzamali, G.; Klaerke, D.A.; Grinnelikhuijzen, C.J.P. A New Family of Insect Tyramine Receptor. Biochem. Biophys. Res. Commun. 2005, 338, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Cabrero, P.; Richmond, L.; Nitabach, M.; Davies, S.A.; Dow, J.A. A Biogenic Amine and a Neuropeptide Act Identically: Tyramine Signals Through Calcium in Drosophila Tubule Stellate Cells. Proc. R. Soc. B 2013, 280, 20122943. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Blumenthal, E.M. Identification of Multiple Functional Receptors for Tyramine on an Insect Secretory Epithelium. Sci. Rep. 2017, 7, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Liu, W.; Qi, Y.X.; Luo, J.; Montell, C. Neuromodulation of Courtship Drive Through Tyramine-Responsive Neurons in the Drosophila brain. Curr. Biol. 2016, 26, 2246–2256. [Google Scholar] [CrossRef] [Green Version]
- El-Kholy, S.; Stephano, F.; Li, Y.; Bhandari, A.; Fink, C.; Roeder, T. Expression Analysis of Octopamine and Tyramine Receptors in Drosophila. Cell Tissue Res. 2015, 361, 669–684. [Google Scholar] [CrossRef]
- Jonsson, N.N.; Klafke, G.; Corley, S.W.; Tidwell, J.; Berry, C.M.; Koh-Tan, H.C. Molecular Biology of Amitraz Resistance in Cattle Ticks of the Genus Rhipicephalus. Front. Biosci. 2018, 1, 796–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohta, H.; Ozoe, Y. Molecular Signalling, Pharmacology, and Physiology of Octopamine and Tyramine Receptor as Potential Insect Pest Control Targets. Adv. Insect Physiol. 2014, 46, 73–166. [Google Scholar] [CrossRef]
- Saudou, F.; Amlaiky, N.; Plassat, J.L.; Borrelli, E.; Hen, R. Cloning and Characterization of a Drosophila Tyramine Receptor. EMBO J. 1990, 9, 3611–3617. [Google Scholar] [CrossRef] [PubMed]
- Finetti, L.; Ferrari, F.; Calò, G.; Cassanelli, S.; De Bastiani, M.; Civolani, S.; Bernacchia, G. Modulation of Drosophila suzukii Type 1 Tyramine Receptor (DsTAR1) by Monoterpenes: A Potential New Target for Next Generation Biopesticides. Pestic. Biochem. Phys. 2020, 165, 104549. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y.; Ozaki, M. A Putative Octopamine/Tyramine Receptor Mediating Appetite in a Hungry Fly. Naturwissenschaften 2011, 98, 635–638. [Google Scholar] [CrossRef]
- Broeck, J.V.; Vulsteke, V.; Huybrechts, R.; De Loof, A. Characterization of a Cloned Locust Tyramine Receptor cDNA by Functional Expression in Permanently Transformed Drosophila S2 Cells. J. Neurochem. 1995, 64, 2387–2395. [Google Scholar] [CrossRef] [PubMed]
- Blenau, W.; Balfanz, S.; Baumann, A. Amtyr1: Characterization of a Gene from Honeybee (Apis Mellifera) Brain Encoding a Functional Tyramine Receptor. J. Neurochem. 2000, 74, 900–908. [Google Scholar] [CrossRef]
- Ohta, H.; Utsumi, T.; Ozoe, Y. B96Bom Encodes a Bombyx mori Tyramine Receptor Negatively Coupled to Adenylate Cyclase. Insect Mol. Biol. 2004, 12, 217–223. [Google Scholar] [CrossRef]
- Von Nickisch-Rosenegk, E.; Krieger, J.S.; Kubick, R.; Laage, J.; Strobel, J.; Strotmann, H. Cloning of Biogenic Amine Receptors from Moths (Bombyx mori and Heliothis virescens). Insect Biochem. Mol. Biol. 1996, 26, 817–827. [Google Scholar] [CrossRef]
- Rotte, C.; Krach, C.; Balfanz, S.; Baumann, A.; Walz, B.; Blenau, W. Molecular Characterization and Localization of the First Tyramine Receptor of the American Cockroach (Periplaneta americana). Neuroscience 2009, 162, 1120–1133. [Google Scholar] [CrossRef]
- Blenau, W.; Balfanz, S.; Baumann, A. PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana. Int. J. Mol. Sci. 2017, 18, 2279. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.F.; Huang, J.; Gong-Yin, Y. Molecular Cloning and Pharmacological Characterization of a Tyramine Receptor from the Rice Stem Borer, Chilo suppressalis (Walker). Pest. Manag. Sci. 2013, 69, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Hana, S.; Lange, A.B. Cloning and Functional Characterization of Octβ2-Receptor and Tyr1-Receptor in the Chagas Disease Vector, Rhodnius prolixus. Front. Physiol. 2017, 8, 744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.; Huang, Q.; Lai, X.; Liu, J.; Zhu, H.; Zhou, Y.; Deng, X.; Zhou, X. Pharmacological Properties of the Type 1 Tyramine Receptor in the Diamondback Moth, Plutella xylostella. Int. J. Mol. Sci. 2019, 20, 2953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finetti, L.; Pezzi, M.; Civolani, S.; Calò, G.; Scapoli, C.; Bernacchia, G. Halyomorpha halys TAR1 Characterization Revealed its Involvement in (E)-2-Decenal Pheromone Perception. J. Exp. Biol. 2020. submitted. [Google Scholar]
- Brigaud, L.; GrosmaÎtre, X.; François, M.C.; Jacqion-Joly, E. Cloning and Expression Pattern of a Putative Octopamine/Tyramine Receptor in Antennae of the Noctuid Moth Mamestra brassicae. Cell Tissue Res. 2009, 335, 445–463. [Google Scholar] [CrossRef]
- Ono, H.; Yoshikawa, H. Identification of Amine Receptors from a Swallowtail Butterfly Papilio xuthus L.: Cloning and mRNA Localization in Foreleg Chemosensory Organ for Recognition of Host Plants. Insect Biochem. Mol. Biol. 2004, 34, 1247–1256. [Google Scholar] [CrossRef]
- Duportets, L.; Barrozo, R.; Bozzolan, F.; Gaertner, C.; Anton, S.; Gadenne, C.; Debernard, S. Cloning of an Octopamine/Tyramine Receptor and Plasticity of its Expression as a Function of Adult Sexual Maturation in the Male Moth Agrotis ipsilon. Insect Mol. Biol. 2010, 19, 489–499. [Google Scholar] [CrossRef]
- Braza, M.K.E.; Gazmen, J.D.N.; Yu, E.T.; Nellas, R.B. Ligand-Induced Conformational Dynamics of a Tyramine Receptor from Sitophilus oryzae. Sci. Rep. 2019, 9, 16275. [Google Scholar] [CrossRef] [Green Version]
- Baxter, G.D.; Barker, S.C. Isolation of a cDNA for an Octopamine-like, G-Protein Coupled Receptor from the Cattle Tick, Boophilus microplus. Insect Biochem. Mol. Biol. 1999, 29, 461–467. [Google Scholar] [CrossRef]
- Rutz, C.; Klein, W.; Schülein, R. N-Terminal Signal Peptides of G Protein-Coupled Receptors: Significance for Receptor Biosynthesis, Trafficking, and Signal Transduction. Prog. Mol. Biol. Transl. Sci. 2015, 132, 267–287. [Google Scholar] [CrossRef] [PubMed]
- Moukhametzianov, R.; Warne, T.; Edwards, P.C.; Serrano-Vega, M.J.; Leslie, A.G.; Tate, C.G.; Schertler, G.F. Two Distinct Conformations of Helix 6 Observed in Antagonist-Bound Structures of a beta1-Adrenergic Receptor. Proc. Natl. Acad. Sci. USA 2011, 108, 8228–8232. [Google Scholar] [CrossRef] [Green Version]
- Patwardhan, A.; Cheng, N.; Trejo, J. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Pharmacol. Rev. 2021, 73, 120–151. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, F.; Zhang, D.; Liu, Z.; Lin, A.; Liu, C.; Xiao, P.; Yu, X.; Sun, J.P. Phosphorylation of G Protein-Coupled Receptors: From the Barcode Hypothesis to the Flute Model. Mol. Pharmacol. 2017, 2, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Chini, B.; Parenti, M. G-Protein-Coupled Receptors, Cholesterol and Palmitoylation: Facts about Fats. J. Mol. Endocrinol. 2009, 42, 371–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, S.P.H.; Christopoulos, A.; Davenport, A.P.K.; Eamonn, M.; Alistar, P.J.A.; Veale, E.L.; Armstrong, J.F.; Faccenda, E.; Harding, S.D.; Pawson, A.J.; et al. CGTP Collaborators. The Concise Guide to Pharmacology 2019/20: G Protein-Coupled Receptors. Br. J. Pharm. 2019, 176, S21–S141. [Google Scholar] [CrossRef] [Green Version]
- Vogel, R.; Mahalingam, M.; Lüdeke, S.; Huber, T.; Siebert, F.; Sakmar, T.P. Functional Role of the “Ionic Lock”-an Interhelical Hydrogen-Bond Network in Family a Heptahelical Receptors. J. Mol. Biol. 2008, 380, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Ohta, H.; Utsumi, T.; Ozoe, Y. Amino Acid Residues Involved in Interaction with Tyramine in the Bombyx Mori Tyramine Receptor. Insect Mol. Biol. 2004, 13, 531–538. [Google Scholar] [CrossRef]
- Arakawa, S.; Gocayne, J.D.; McCombie, W.R.; Urquhart, D.A.; Hall, L.M.; Fraser, C.M.; Venter, J.C. Cloning, Localization, and Permanent Expression of a Drosophila Octopamine Receptor. Neuron 1990, 2, 343–354. [Google Scholar] [CrossRef]
- Robb, S.; Cheek, T.R.; Hannan, F.L.; Hall, L.M.; Midgley, J.M.; Evans, P.D. Agonist-Specific Coupling of a Cloned Drosophila Octopamine/Tyramine Receptor to Multiple Second Messenger Systems. EMBO J. 1994, 13, 1325–1330. [Google Scholar] [CrossRef] [PubMed]
- Enan, E.E. Molecular Response of Drosophila melanogaster Tyramine Receptor Cascade to Plant Essential Oils. Insect Biochem. Mol. Biol. 2005, 35, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Poels, J.; Suner, M.M.; Needham, M.; Torfs, H.; De Rijck, J.; De Loof, A.; Dunbar, S.J.; Vanden Broeck, J. Functional Expression of a Locust Tyramine Receptor in Murine Erythroleukaemia Cells. Insect Mol. Biol. 2001, 10, 541–548. [Google Scholar] [CrossRef]
- Mustard, J.A.; Kurshan, P.T.; Hamilton, I.S.; Blenau, W.; Mercer, A.R. Developmental Expression of a Tyramine Receptor Gene in the Brain of the Honeybee, Apis Mellifera. J. Comp. Neurol. 2005, 483, 66–75. [Google Scholar] [CrossRef]
- Finetti, L.; Tiedeman, L.; Zhang, X.; Civolani, S.; Bernacchia, G.; Roeder, T. Monoterpenes Alter TAR1-Driven Physiology in Drosophila Species. J. Exp. Biol. 2021, 224, jeb232116. [Google Scholar] [CrossRef]
- Kutsukake, M.; Komatsu, A.; Yamamoto, D.; Ishiwa-Chigusa, S. A Tyramine Receptor Gene Mutation Causes a Defective Olfactory Behaviour in Drosophila melanogaster. Gene 2000, 245, 31–42. [Google Scholar] [CrossRef]
- Sinakevitch, I.T.; Daskalova, S.M.; Smith, H. The Biogenic Amine Tyramine and its Receptor (AmTyr1) in Olfactory Neuropils in the Honeybee (Apis mellifera) Brain. Front. Syst. Neurosci. 2017, 11, 77. [Google Scholar] [CrossRef]
- Thamm, M.; Scholl, C.; Reim, T.; Grübel, K.; Moller, K.; Rossler, W.; Scheiner, R. Neuronal Distribution of Tyramine and the Tyramine Receptor AmTAR1 in the Honeybee Brain. J. Comp. Neurol. 2017, 525, 2615–2631. [Google Scholar] [CrossRef]
- McQuillan, H.J.; Barron, A.B.; Mercer, A.R. Age- and Behaviour-Related Changes in the Expression of Biogenic Amine Receptor Genes in the Antennae of Honeybees (Apis mellifera). J. Comp. Physiol. A 2012, 198, 753–761. [Google Scholar] [CrossRef]
- Peng, T.; Derstroff, D.; Maus, L.; Bauer, T.; Grüter, C. Forager Age and Foraging State, but not Cumulative Foraging Activity, Affect Biogenic Amine Receptor Gene Expression in the Honeybee Mushroom Bodies. Genes Brain Behav. 2020, 12722. [Google Scholar] [CrossRef]
- Ma, Z.; Guo, X.; Lei, H.; Li, T.; Hao, S.; Kang, L. Octopamine and Tyramine Respectively Regulate Attractive and Repulsive Behavior in Locust Phase Changes. Sci.Rep. 2015, 5, 8036. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Guo, X.; Liu, J. Translocator Protein Mediates Olfactory Repulsion. FASEB J. 2020, 34, 513–524. [Google Scholar] [CrossRef] [Green Version]
- Fussnecker, B.L.; Smith, B.H.; Mustard, J.A. Octopamine and Tyramine Influence the Behavioral Profile of Locomotor Activity in the Honeybee (Apis mellifera). J. Insect Physiol. 2006, 52, 1083–1092. [Google Scholar] [CrossRef] [Green Version]
- Saraswati, S.; Fox, L.E.; Soll, D.R.; Wu, C.-F. Tyramine and Octopamine Have Opposite Effects on the Locomotion of Drosophila larvae. J. Neurobiol. 2004, 58, 425–441. [Google Scholar] [CrossRef]
- Schützler, N.; Girwert, C.; Hügli, I.; Mohana, G.; Roignant, J.-Y.; Ryglewsky, S.; Duch, C. Tyramine Action on Motoneuron Excitability and Adaptable Tyramine/Octopamine Ratios Adjust Drosophila Locomotion to Nutritional State. Proc. Natl. Acad. Sci. USA 2019, 116, 3805–3810. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Tiedemann, L.; Von Frieling, J.; Nolte, S.; El-Kholy, S.; Stephano, F.; Gelhaus, C.; Bruchhaus, I.; Fink, C.; Roeder, T. The Role of Monoaminergic Neurotransmission for Metabolic Control in the Fruit Fly Drosophila melanogaster. Front. Syst. Neurosci. 2017, 11, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fields, P.E.; Woodring, J.P. Octopamine Mobilization of Lipids and Carbohydrates in the House Cricket, Acheta Domesticus. J. Insect Physiol. 1991, 37, 193–199. [Google Scholar] [CrossRef]
- Orchard, I.; Carlisle, J.A.; Loughton, B.G.; Gole, J.W.D.; Downer, R.G.H. In Vitro Studies on the Effects of Octopamine on Locust Fat Body. Gen. Comp. Endocrinol. 1993, 48, 7–13. [Google Scholar] [CrossRef]
- Damrau, C.; Toshima, N.; Tanimura, T.; Brembs, B.; Colomb, J. Octopamine and Tyramine Contribute Separately to the Counter-Regulatory Response to Sugar Deficit in Drosophila. Front. Syst. Neurosci. 2018, 11, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheiner, R.; Reim, T.; Søvik, E.; Entler, B.V.; Barron, A.B.; Thamm, M. Learning, Gustatory Responsiveness and Tyramine Differences Across Nurse and Forager Honeybees. J. Exp. Biol. 2017, 220, 1443–1450. [Google Scholar] [CrossRef] [Green Version]
- LeDue, E.E.; Mann, K.; Koch, E.; Chu, B.; Dakin, R.; Gordon, M.D. Starvation-Induced Depotentiation of Bitter Taste in Drosophila. Curr. Biol. 2016, 26, 2854–2861. [Google Scholar] [CrossRef] [Green Version]
- Scheiner, R.; Entler, B.V.; Barron, A.B.; Scholl, C.; Thamm, M. The Effects of Fat Body Tyramine Level on Gustatory Responsiveness of Honeybees (Apis mellifera) Differ Between Behavioral Castes. Front. Syst. Neurosci. 2017, 11, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Wang, Y.; Sinakevitch, I.; Lei, H.; Smith, B.H. Comparison of RNAi Knockdown Effect of Tyramine Receptor 1 Indiced by dsRNA and siRNA in Brains of the Honeybee, Apis mellifera. J. Insect Physiol. 2018, 111, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Amdam, G.V.; Daniels, B.C.; Page, R.E., Jr. Tyramine and its Receptor TYR1 Linked Behavior QTL to Reproductive Physiology in Honeybee Workers (Apis mellifera). J. Insect Physiol. 2020, 126, 104093. [Google Scholar] [CrossRef]
- Jonsson, N.N.; Hope, M. Progress in the Epidemiology and Diagnosis of Amitraz Resistance in the Cattle Tick Boophilus microplus. Vet. Parasitol. 2007, 146, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R. Molecular Markers and Their Application in the Monitoring of Acaricide Resistance in Rhipicephalus microplus. Exp. Appl. Acarol. 2019, 78, 149–172. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.C.; He, H.; Davey, R.B. Mutation in a Putative Octopamine Receptor Gene in Amitraz-Resistant Cattle Ticks. Vet. Parasitol. 2007, 148, 379–383. [Google Scholar] [CrossRef]
- Baron, S.; Van Der Merwe, N.A.; Madder, M.; Maritz-Olivire, C. SNP Analysis Infers that Recombination is Involved in the Evolution of Amitraz Resistance in Rhipicephalus microplus. PLoS ONE 2015, 10, e0131341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooqui, T. Review of Octopamine in Insect Nervous System. Insect Physiol. 2012, 1. [Google Scholar] [CrossRef] [Green Version]
- Gross, A.D.; Temeyer, K.B.; Day, T.A.; Pérez de León, A.A.; Kimber, M.J.; Coats, J.R. Pharmacological Characterization of a Tyramine Receptor from the Southern Cattle Tick, Rhipicephalus (Boophilus) Microplus. Insect Biochem. Mol. Biol. 2015, 63, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankowska, M.; Rogalska, J.; Wyszkowska, J.; Stankiewicz, M. Molecular Targets for Components of Essential Oils in the Insect Nervous System—A Review. Molecules 2018, 23, 34. [Google Scholar] [CrossRef] [Green Version]
- Isman, M.B. Botanical Insecticides in the Twenty-First Century—Fulfilling Their Promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef] [Green Version]
- Gross, A.D.; Temeyer, K.B.; Day, T.A.; Pérez de León, A.A.; Kimber, M.J.; Coats, J.R. Interaction of Plant Essential Oil Terpenoids with the Southern Cattle Tick Tyramine Receptor: A Potential Biopesticide Target. Chem. Biol. Interact. 2017, 263, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ocampo, A.B.; Braza, M.K.E.; Nellas, R.B. The Interaction and Mechanism of Monoterpenes with Tyramine Receptor (SoTyr) of Rice Weevil (Sitophilus oryzae). SN Appl. Sci. 2020, 2, 1592. [Google Scholar] [CrossRef]
- Kamhi, J.F.; Arganda, S.; Moreau, C.S.; Traniello, J.F.A. Origins of Aminergic Regulation of Behavior in Complex Insect Social Systems. Front. Syst. Neurosci. 2017, 11, 74. [Google Scholar] [CrossRef] [Green Version]
Species | Accession number | Amino Acid Sequence Lenght | Residues Interacting with TA | N-Linked Glycosylation | P Sites | IL3 Lenght | Reference |
---|---|---|---|---|---|---|---|
D. melanogaster | AAA28731 | 601 | / | N11; N57 | T136; T296; S375; S397; S406; S482; S507 | 237 | [35] |
D. suzukii | MK405664 | 600 | D187; S271; S272; S275 | N11; N55 | S420; S506; S519 | 238 | [36] |
P. regina | AB621975 | 607 | / | / | / | 246 | [37] |
L. migratoria | X69520 | 484 | D130 | N13; N198 | T78; T164; T238; T300; S304; S365; S372 | 174 | [38] |
A. mellifera | AJ245824 | 399 | D116; S200: S201; S204 | N2 | T63; T149; T223; S241; T265; S291; S292; T296 | 110 | [39] |
B. mori | X95607 | 479 | D134; S218; S222 | N11; N16 | T81; T241; T258; T302 | 162 | [40,41] |
H. virescens | CAA64864 | 477 | D132 | N11; N16 | T78; T238; T298; T302 | 165 | [40] |
P. americana | AM990461 | 441 | D115; S199; W381; N418 | N12,N17 | T61; T222; S275; S285; S326; T334; S341 | 144 | [42] |
P. americana | LT900530 | 481 | D120; S204; S208 | N7; N17 | S64; T153; T227; S238; S252; T279; T280; S282; T289; S300; T350; T351; S354; S379; S398; P408 | 188 | [43] |
C. suppressalis | AFG26689.1 | 478 | D135; S219; S223 | N11; N16; N347 | T205; T267; S274; T304; S315; T371; S396 | 170 | [44] |
R. prolixus | MF377527 | 447 | / | N14; N17 | T75; T235; S246; S265; S271; S274; S295; S298; S311; S319; S320; S322; S338; T354; S371; S373 | 161 | [45] |
P. xylostella | MK166023 | 467 | D127; S211; S215 | N5; N10 | S252; S268; S271; T296; S307; S322; S349; S352; S385 | 168 | [46] |
H. halys | MT513133 | 449 | D128; S212; S213; S216 | N11; N14; N22 | S24; T30; T161; T235; S246; S260; S294; S319; S321; S364 | 147 | [47] |
M. brassicae | AF343878 | 477 | D136 | / | / | 174 | [48] |
P.xuthus | AB182633 | 475 | D131 | / | / | 171 | [49] |
A. ipsilon | FJ640850 | 477 | D149; S216; S217; S220 | N11; N16; N345 | T79; T165; T239; T265; S314; S333; S383 | 177 | [50] |
S. oryzae | A0A0S1VX60 | 455 | V83; D114; C118; W394; N427; S428 | / | / | 158 | [51] |
Species | G-Protein | pEC50 TA | pEC50 OA | Cell Line Used | Antagonist | Reference |
---|---|---|---|---|---|---|
D. melanogaster | Gi | 5.62 | 4.52 | Cos-7 | Yohimbine (tested at 1 µM) | [35] |
Gi | 5.24 | / | S2 | / | [63] | |
D. suzukii | Gq | 6.35 | Detectable to 10 µM | HEK 293 | Yohimbine: pA2 7.87 | [36] |
Gq+Gi | 6.86 | Yohimbine: pA2 7.24 | ||||
L. migratoria | Gq | 7.33 | Detectable to 10 µM | Murine Erythroleukaemia | Yohimbine (tested at 2.5 µM) | [64] |
Gi | 8.40 | / | / | |||
A. mellifera | Gi | 6.86 | 5.56 | HEK 293 | / | [39] |
Gi | 7.07 | / | Sf9 | / | [65] | |
B. mori | Gi | 8.28 | 5.85 | HEK 293 | Yohimbine > Chlorpromazine > Metoclopramide > Mianserin (tested at 10 µM) | [40] |
P. americana | Gi | 6.46 | / | HEK 293 | Yohimbine and Chlorpromazine > Mianserin (tested at 10 µM) | [42] |
P. americana | Gi | 8.20 | / | HEK 293- CNG | Yohimbine: pA2 6.13 Mianserin: pA2 6.06 | [43] |
C. suppressalis | Gi | 6.43 | 6.01 | HEK 293 | Yohimbine > Chlorpromazine > Cyproheptadine (tested at 10 µM) | [44] |
R. prolixus | Gq | 7.29 | 5.16 | HEK 293- CNG | Yohimbine > Metoclopramide > Phentolamine > Cyproheptamide > Gramine > Mianserin > Chlorpromazine (tested at 10 µM) | [45] |
P. xylostella | Gi | 6.35 | 4.86 | HEK 293T | Yohimbine > Mianserin > Phentolamine > Chlorpromazine (tested at 10 µM) | [46] |
H. halys | Gq | 5.99 | 4.41 | HEK 293 | Yohimbine: pA2 8.26 | [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Finetti, L.; Roeder, T.; Calò, G.; Bernacchia, G. The Insect Type 1 Tyramine Receptors: From Structure to Behavior. Insects 2021, 12, 315. https://doi.org/10.3390/insects12040315
Finetti L, Roeder T, Calò G, Bernacchia G. The Insect Type 1 Tyramine Receptors: From Structure to Behavior. Insects. 2021; 12(4):315. https://doi.org/10.3390/insects12040315
Chicago/Turabian StyleFinetti, Luca, Thomas Roeder, Girolamo Calò, and Giovanni Bernacchia. 2021. "The Insect Type 1 Tyramine Receptors: From Structure to Behavior" Insects 12, no. 4: 315. https://doi.org/10.3390/insects12040315
APA StyleFinetti, L., Roeder, T., Calò, G., & Bernacchia, G. (2021). The Insect Type 1 Tyramine Receptors: From Structure to Behavior. Insects, 12(4), 315. https://doi.org/10.3390/insects12040315