Esterase, Glutathione S-Transferase and NADPH-Cytochrome P450 Reductase Activity Evaluation in Cacopsylla pyri L. (Hemiptera: Psyllidae) Individual Adults
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Chemicals
2.3. Insecticide Bioassays
2.4. Optimization of the Biochemical Methodology Adapted for Use with a Microplate Reader
2.4.1. Preliminary Tests
Filter Wavelength
Substrate Concentration
Enzyme Source Concentration
Reaction Buffer pH
Enzymatic and Non-Enzymatic Reaction Times
2.4.2. Enzyme Source Preparation
2.4.3. General Procedure for Measurement of Enzyme Activity
Esterase (EST) Activity
Glutathione S-Transferase (GST) Activity
NADPH–Cytochrome P450 Reductase Enzyme Activity (CPR)
2.5. Protein Concentration Measurement
2.6. Enzyme Activity Evaluation in Populations of C. pyri
2.7. Statistical Analysis
3. Results and Discussion
3.1. Insecticide Bioassay Results
3.2. Preliminary Tests for Enzyme Activity Measurement
3.2.1. Filter Wavelength
3.2.2. Substrate Concentration
3.2.3. Enzyme Source Concentration and Use of Cofactors
3.2.4. Reaction Buffer pH
3.2.5. Reaction Time
3.2.6. Dye Concentration
3.3. Additives for Enzyme Source Preparation
3.4. Enzymatic Activity in Single Adults
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CAB Internacional Home Page. Distribution Maps of Plant Pests Map 671: Cacopsylla pyri 2005; CAB International: Wallingford, UK. Available online: http://www.cabi.org/dmpp/ (accessed on 15 April 2020).
- Atger, P. La biologie du psylle du Poirier. In Le Psylle du Poirier; Atger, P., Ed.; Documentation CTIFL-INVUE; Collection Fruits a Pépins, Techniques et phytosanitaires: France, Paris, 1982; pp. 6–24. [Google Scholar]
- García de Otazo, J.; Sió, J.; Torà, R.; Torà, M. Peral: Control Integrado de Plagas y Enfermedades; Ediciones Agrolatino: Barcelona, Spain, 1992; 312p, ISBN 978-84-604-4556-2. [Google Scholar]
- Seemüller, E.; Schneider, B. Taxonomic description of “Candidatus Phytoplasma mali” sp. nov., “Candidatus Phyto-plasma pyri” sp. nov., and “Candidatus Phytoplasma prunorum” sp. nov., the casual agents of apple proliferation, pear decline and European stone fruit yellows, respectively. Int. J. Syst. Evol. Microbiol. 2004, 54, 1231–1240. [Google Scholar] [CrossRef]
- Lemoine, J.; Simon, M.C.; Costard, F.; Bossu, V. Le dépérissement du poirier ou “Pear Decline”. Phytoma Défense Végétaux 1998, 509, 46–49. [Google Scholar]
- Garcia-Chapa, M.; Sabaté, J.; Lavina, A.; Batlle, A. Role of Cacopsylla pyri in the epidemiology of pear decline in Spain. Eur. J. Plant Pathol. 2005, 111, 9–17. [Google Scholar] [CrossRef]
- Sabaté, J.; Rodon, J.; Artigues, M.; Laviña, A.; Batlle, A. Transmission of ‘Candidatus Phytoplasma pyri’ by naturally infectedCacopsylla pyrito peach, an approach to the epidemiology of peach yellow leaf roll (PYLR) in Spain. Plant Pathol. 2018, 67, 978–986. [Google Scholar] [CrossRef] [Green Version]
- MAPA (Ministerio de Medio Ambiente y Medio Rural). Anuario de Estadística Agroalimentaria 2017; MAPA: Madrid, Spain, 2017; Available online: https://www.mapa.gob.es/estadistica/pags/anuario/2019/CAPITULOSPDF/CAPITULO07/pdfc07_9.4.3.pdf (accessed on 22 November 2020).
- Avilla, J.; Artigues, M.; Martí, S.; Sarasúa, M.J. Parasitoides de Cacopsylla pyri (L.) (=Psylla pyri (L.)) presentes en una plantación comercial de peral en Lleida no sometida a tratamientos insecticidas. Bol. San. Veg. Plagas 1992, 18, 133–138. [Google Scholar]
- Avilla, J.; Miarnau, X.; Rodríguez, M.; Bosch, D.; Artigues, M.; Sarasúa, M.J. Resistencia de Cydia pomonella (L.) (Lepidoptera: Tortricidae) y de Cacopsylla pyri (L.) (Hemiptera: Psyllidae) a insecticidas. Phytoma España 2005, 173, 79–84. [Google Scholar]
- Stäubli, A.; Hächler, M.; Pasquier, D.; Antonin, P.; Mittaz, C. Dix années d’experiences et d’observations sur le psylle commun du poirier Cacopsylla (=Psylla) pyri L. en Suisse romande. Rev. Suisse Vitic. Arboric. Hortic. 1992, 24, 89–104. [Google Scholar]
- Stäubli, A. Moyens de lutte biologiques et biotechniques contre les insectes. Rev. Suisse Vitic. Arboric. Hortic. 1983, 15, 273–278. [Google Scholar]
- Buès, R.; Toubon, J.F.; Rieux, R.; d’Arcier, F. Polymorphisme des estérases et résistance aux insecticides chez un homoptère Cacopsylla pyri (L.). C. R. L’Acad. Sci. Sér. III Sci. Vie. 1994, 317, 1115–1121. [Google Scholar]
- Buès, R.; Toubon, J.F.; Boudinhon, L. Le psylle du poirier. Résultats préliminaires sur la résistance aux insecticides en France. Phytoma Déf. Vég. 1996, 488, 53–57. [Google Scholar]
- Miarnau, X.; Artigues, M.; Sarasúa, M.J. Evaluation of pear psylla, Cacopsylla pyri (L.) susceptibility to cypermethrin in pear orchards of Lleida, Spain. IOBC WPRS Bull. 2007, 30, 221. [Google Scholar]
- Miarnau, X.; Artigues, M.; Sarasúa, M.J. Susceptibility to abamectin of pear psylla Cacopsylla pyri L. (Hemiptera: Psyllidae) in pear orchards of north-east Spain. IOBC WPRS Bull. 2010, 50, 68. [Google Scholar]
- Oppenoorth, F.J. Biochemistry and genetics of insecticide resistance. In Comprehensive Insect Physiology, Biochemistry and Pharmacology; Kerkut, G.A., Gilbert, L.C., Eds.; Pergamon Press: Oxford, UK, 1985; Volume 12, pp. 731–773. [Google Scholar]
- Brown, T.M.; Brogdon, W.G. Improved Detection of Insecticide Resistance Through Conventional and Molecular Techniques. Annu. Rev. Entomol. 1987, 32, 145–162. [Google Scholar] [CrossRef] [PubMed]
- Georghiou, G. Principles of insecticide resistance management. Phytoprotection 1994, 75, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.A. The molecular genetics of resistance: Resistance as a response to stress. Fla. Entomol. 1995, 78, 399. [Google Scholar] [CrossRef]
- Yu, S.J. The Toxicology and Biochemistry of Insecticides; Taylor & Francis: Boca Raton, FL, USA, 2008; p. 276. [Google Scholar]
- Ffrench-Constant, R.H. Insecticide resistance comes of age. Genome Biol. 2014, 15, 106. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, E. Microsomal monooxigenases. In Comprehensive Insect Physiology, Biochemistry and Pharmacology; Kerkut, G.A., Gilbert, L.C., Eds.; Pergamon Press: Oxford, UK, 1985; Volume 11 (Pharmacology), pp. 641–712. [Google Scholar]
- Gomori, G. Human esterases. J. Lab. Clin. Med. 1953, 42, 445–453. [Google Scholar]
- Van Asperen, K. A study of housefly esterases by means of a sensitive colorimetric method. J. Insect Physiol. 1962, 8, 401–416. [Google Scholar] [CrossRef]
- Brogdon, W.G.; Dickinson, C.M. A microassay system for measuring esterase activity and protein concentration in small samples and in high-pressure liquid chromatography eluate fractions. Anal. Biochem. 1983, 131, 499–503. [Google Scholar] [CrossRef]
- Devonshire, A.L.; Moores, G.; Ffrench-Constant, R. Detection of insecticide resistance by immunological estimation of carboxylesterase activity in Myzus persicae (Sulzer) and cross reaction of the antiserum with Phorodon humuli (Schrank) (Hemiptera: Aphididae). Bull. Entomol. Res. 1986, 76, 97–107. [Google Scholar] [CrossRef]
- Dary, O.; Georghiou, G.P.; Parsons, E.; Pasteur, N. Microplate adaptation of Gomori’s assay for quantitative de-termination of general esterase activity in single insects. J. Econ. Entomol. 1990, 83, 2187–2192. [Google Scholar] [CrossRef]
- Van De Baan, H.E.; Croft, B.A. Factors Influencing Insecticide Resistance in Psylla pyricola (Homoptera: Psyllidae) and Susceptibility in the Predator Deraeocoris brevis (Heteroptera: Miridae). Environ. Entomol. 1990, 19, 1223–1228. [Google Scholar] [CrossRef]
- Van De Baan, H.E.; Croft, B.A. Resistance to insecticides in winter and summer forms of pear psylla, Psylla pyricola. Pestic. Sci. 1991, 32, 225–233. [Google Scholar] [CrossRef]
- Berrada, B.; Fournier, D.; Cuany, A.; Nguyen, T.X. Identification of resistance mechanisms in a selected laboratory strain of Cacopsylla pyri (Homoptera: Psyllidae): Altered Acetylcholinesterase and detoxifying oxidases. Pestic. Biochem. Physiol. 1994, 48, 41–47. [Google Scholar] [CrossRef]
- Sauphanor, B.; Cuany, A.; Bouvier, J.C.; Brosse, V.; Amichot, M.; Bergé, J.B. Mechanism of resistance to deltamethrin in Cydia pomonella (L.) (Lepidoptera: Tortricidae). Pestic. Biochem. Physiol. 1997, 58, 109–117. [Google Scholar] [CrossRef]
- Martin, T.; Chandre, F.; Ochou, O.; Vaissayre, M.; Fournier, D. Pyrethroid resistance mechanisms in the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) from West Africa. Pestic. Biochem. Physiol. 2002, 74, 17–26. [Google Scholar] [CrossRef]
- Maymó, A.C.; Cervera, A.; Garcerá, M.D.; Bielza, P.; Martinez-Pardo, R. Relationship between esterase activity and acrinatrin and methiocarb resistance in field populations of western flower thrips, Frankliniella occidentalis. Pestic Manag. Sci. 2006, 62, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Bouvier, J.-C.; Cuany, A.; Monier, C.; Brosse, V.; Sauphanor, B. Enzymatic diagnosis of resistance to deltamethrin in diapausing larvae of the codling moth, Cydia pomonella (L.). Arch. Insect Biochem. Physiol. 1998, 39, 55–64. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.; Jakoby, W.B. The first enzymatic step in mercapturinc acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef]
- Habig, W.H.; Jakoby, W.B. Assays for differentiation of glutathione S-Transferases. Methods Enzymol. 1981, 77, 398–405. [Google Scholar] [CrossRef]
- Scott, J.G. Cytochromes P450 and insecticide resistance. Insect Biochem. Mol. Biol. 1999, 29, 757–777. [Google Scholar] [CrossRef]
- Civolani, S.; Cassanelli, S.; Rivi, M.; Manicardi, G.C.; Peretto, R.; Chicca, M.; Pasqualini, E.; Leis, M. Survey of Susceptibility to Abamectin of Pear Psylla (Hemiptera: Psyllidae) in Northern Italy. J. Econ. Entomol. 2010, 103, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Feyereisen, R. INSECT P450 ENZYMES. Annu. Rev. Entomol. 1999, 44, 507–533. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P.; Martin, M.V.; Sohl, C.D.; Cheng, Q. Measurement of cytochrome P450 and NADPH–cytochrome P450 reductase. Nat. Protoc. 2009, 4, 1245–1251. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.Y.; Jing, T.X.; Li, W.; Liu, X.Q.; Liu, T.Y.; Liu, Y.; Chen, M.L.; Jiang, R.X.; Yuan, G.R.; Dou, W.; et al. NADPH-cytochrome P450 reductase mediates the susceptibility of Asian citrus psyllid Diaphorina citri to imidacloprid and thiamethoxam. Pestic. Manag. Sci. 2021, 77, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Ortego, F.; López-Olguín, J.; Ruiz, M.; Castañera, P. Effects of toxic and deterrent terpenoids on digestive protease and detoxication enzyme activities of Colorado potato beetle larvae. Pestic. Biochem. Physiol. 1999, 63, 76–84. [Google Scholar] [CrossRef]
- Civolani, S.; Boselli, M.; Butturini, A.; Chicca, M.; Cassanelli, S.; Tommasini, M.G.; Aschonitis, V.; Fano, E.A. Testing spirotetramat as an alternative solution to abamectin for Cacopsylla pyri (Hemiptera: Psyllidae) control: Laboratory and field Tests. J. Econ. Entomol. 2015, 108, 2737–2742. [Google Scholar] [CrossRef]
- Comins, H.N. The development of insecticide resistance in the presence of migration. J. Theor. Biol. 1977, 64, 177–197. [Google Scholar] [CrossRef]
- Rodríguez, M.A.; Mârques, T.; Bosch, D.; Avilla, J. Assessment of insecticide resistance in eggs and neonate larvae of Cydia pomonella (Lepidoptera: Tortricidae). Pestic. Biochem. Physiol. 2011, 100, 151–159. [Google Scholar] [CrossRef] [Green Version]
- El Saidy, M.F. Biological and Biochemical Activities of Benzoylphenylureas and Conventional Insecticides on Spodoptera littoralis. Ph.D. Thesis, State University Ghent, Ghent, Belgium, 1991; 339p. [Google Scholar]
- Berrada, S.; Nguyen, T.X.; Merzoug, D.; Fournier, D. Selection for monocrotophos resistance in pear psylla, Cacopsylla pyri(L.) (Hom., Psyllidae). J. Appl. Entomol. 1995, 119, 507–510. [Google Scholar] [CrossRef]
- Buès, R.; Boudinhon, L.; Toubon, J.F.; d’Arcier, F. Geographic and seasonal variability of resistance to insecticides in Cacopsylla pyri L. (Hom., Psyllidae). J. Appl. Entomol. 1999, 12, 178–186. [Google Scholar] [CrossRef]
- Buès, R.; Bouvier, J.; Boudinhon, L. Insecticide resistance and mechanisms of resistance to selected strains of Helicoverpa armigera (Lepidoptera: Noctuidae) in the south of France. Crop. Prot. 2005, 24, 814–820. [Google Scholar] [CrossRef]
- Grant, D.F.; Bender, D.M.; Hammock, B.D. Quantitative kinetic assays for glutathione S-transferase and general esterase in individual mosquitoes using an EIA reader. Insect Biochem. Mol. Biol. 1989, 19, 741–751. [Google Scholar] [CrossRef]
- Masters, B.S.S.; Kamin, H.; Gibson, Q.H.; Williams, C.H. Studies on the mechanism of microsomal triphosphopyridine nucleotide-cytochrome c reductase. J. Biol. Chem. 1965, 240, 921–931. [Google Scholar] [CrossRef]
- Rogers, A.; Gibon, Y. Enzyme Kinetics: Theory and Practice in Plant Metabolic Networks; Schwender, J., Ed.; Springer: New York, NY, USA, 2009; pp. 71–103. [Google Scholar]
- Lehninger, A.L. Principios de Bioquímica; Editorial Omega: Barcelona, Spain, 1988; 1011p. [Google Scholar]
- Voet, D.; Voet, J.G. Bioquímica, 3rd ed.; Editorial Médica Panamericana: Buenos Aires, Argentina, 2006; 1176p. [Google Scholar]
- Smagghe, G.; Tirry, L. Insect midgut as a site for insecticide detoxification and resistance. In Biochemical Sites of Insecticide Action and Resistance; Ishaaya, I., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 293–321. [Google Scholar]
- Margoliash, E.; Frohwirt, N. Appendix—Spectrum of horse-heart cytochrome c. Biochem. J. 1959, 71, 570–572. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Robertson, J.L.; Preisler, H.K.; Russell, R.M. PoloPlus, Probit and Logit Analysis, User’s Guide; LeOra Software: Petaluma, CA, USA, 2002. [Google Scholar]
- Esmaeily, M.; Talebi, K.; Hosseininaveh, V.; Nozari, J. Seasonal variation in susceptibility of the pear psyllid, Cacopsylla permixta (Hemiptera: Psyllidae) to selected insecticides. J. Appl. Entomol. 2019, 143, 644–651. [Google Scholar] [CrossRef]
- Feyereisen, R.; Baldridge, G.; Farnsworth, D. A rapid method for preparing insect microsomes. Comp. Biochem. Physiol. Part B Comp. Biochem. 1985, 82, 559–562. [Google Scholar] [CrossRef]
- Williams, C.H.; Kamin, H. Microsomal Triphosphopyridine Nucleotide-Cytochrome c Reductase of Liver. J. Biol. Chem. 1962, 237, 587–595. [Google Scholar] [CrossRef]
- Gacesa, P.; Hubble, J. Tecnología de las Enzimas; Editorial Acribia S.A.: Zaragoza, Spain, 1990; 226p, ISBN 978-84-200-0672-7. [Google Scholar]
- Navarro-Roldán, M.; Bosch, D.; Gemeno, C.; Siegwart, M. Enzymatic detoxification strategies for neurotoxic insecticides in adults of three tortricid pests. Bull. Entomol. Res. 2020, 110, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Reyes, M.; Barros-Parada, W.; Ramírez, C.C.; Fuentes-Contreras, E. Organophosphate Resistance and its Main Mechanism in Populations of Codling Moth (Lepidoptera: Tortricidae) from Central Chile. J. Econ. Entomol. 2015, 108, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.A.; Bosch, D.; Sauphanor, B.; Avilla, J. Susceptibility to organophosphate insecticides and activity of detoxifying enzymes in Spanish populations of Cydia pomonella (Lepidoptera: Tortricidae). J. Econ. Entomol. 2010, 103, 482–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Probit Analysis Parameters | ||||||||
---|---|---|---|---|---|---|---|---|
Population | N 1 | Slope ± SE | LC50 2 | CI 95% 3 | LC90 | CI 95% 3 | HF 4 | RR 5 |
PoalS 6 | 230 | 1.32 ± 0.19 | 0.056 a | 0.034–0.083 | 0.524 | 0.321–1.140 | 0.70 | 1.0 |
PoalRCyp 7 | 240 | 1.60 ± 0.33 | 0.422 b | 0.248–0.655 | 2.677 | 1.475–9.072 | 0.53 | 7.5 |
Aitona1 | 320 | 2.55 ± 0.42 | 0.316 b | 0.246–0.398 | 1.004 | 0.721–1.790 | 0.96 | 5.6 |
Fraga | 320 | 2.61 ± 0.43 | 0.084 a | 0.057–0.111 | 0.262 | 0.197–0.400 | 0.78 | 1.5 |
Enzyme Group | Triton X-100 1 (∆Abs.(u)/min ± SE) | EDTA + DTT 2 (∆Abs.(u)/min ± SE) | PMSF 3 (∆Abs.(u)/min ± SE) | ||||||
---|---|---|---|---|---|---|---|---|---|
n 5 | Without | With | n 5 | Without | With | n 5 | Without | With | |
EST 4 | 16 | 0.058 ± 0.002 a | 0.057 ± 0.002 a | 40 | 0.051 ± 0.003 a | 0.047 ± 0.003 a | 48 | 0.056 ± 0.002 a | 0.034 ± 0.003 b |
GST 4 | 12 | 0.087 ± 0.010 a | 0.053 ± 0.003 b | 78 | 0.065 ± 0.003 b | 0.094 ± 0.004 a | 32 | 0.047 ± 0.005 a | 0.057 ± 0.005 a |
CPR 4 | 8 | 0.023 ± 0.003 b | 0.038 ± 0.005 a | 8 | 0.008 ± 0.001 b | 0.020 ± 0.001 a | 8 | 0.042 ± 0.008 a | 0.030 ± 0.006 a |
EST Activity ± SE (n) 1 | |||
Populations | Total | Male | Female |
PoalS 4 | 193.61 ± 28.65 (20) b | 168.00 ± 44.02 (10) A | 219.22 ± 37.20 (10) A |
PoalRCyp 5 | 346.77 ± 34.40 (20) a | 336.08 ± 54.71 (10) A | 357.46 ± 44.47 (10) A |
Aitona1 | 438.39 ± 42.05 (20) a | 496.04 ± 71.40 (10) A | 380.72 ± 40.36 (10) A |
Fraga | 303.52 ± 22.68 (20) a | 298.66 ± 30.81 (10) A | 308.39 ± 34.90 (10) A |
GST activity ± SE (n) 2 | |||
PoalS 4 | 837.99 ± 65.02 (20) a | 714.07 ± 91.24 (10) B | 961.91 ± 78.19 (10) A |
PoalRCyp 5 | 937.23 ± 50.90 (20) a | 849.11 ± 74.25 (10) A | 1025.35 ± 60.81 (10) A |
Aitona1 | 625.59 ± 34.13 (20) b | 668.29 ± 35.51 (10) A | 582.88 ± 57.02 (10) A |
Fraga | 533.44 ± 21.82 (18) b | 510.24 ± 24.02 (10) A | 562.45 ± 34.14 (8) A |
CPR activity ± SE (n) 3 | |||
PoalS 4 | 40.39 ± 5.03 (16) b | 40.45 ± 7.88 (8) A | 40.32 ± 6.82 (8) A |
PoalRCyp 5 | 77.52 ± 7.26 (19) a | 82.93 ± 11.58 (9) A | 72.66 ± 9.34 (10) A |
Aitona1 | 25.99 ± 1.87 (20) c | 32.49 ± 2.05 (10) A | 19.49 ± 1.10 (10) B |
Fraga | 23.12 ± 1.52 (19) c | 23.13 ± 1.74 (10) A | 23.12 ± 2.68 (9) A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosch-Serra, D.; Rodríguez, M.A.; Avilla, J.; Sarasúa, M.J.; Miarnau, X. Esterase, Glutathione S-Transferase and NADPH-Cytochrome P450 Reductase Activity Evaluation in Cacopsylla pyri L. (Hemiptera: Psyllidae) Individual Adults. Insects 2021, 12, 329. https://doi.org/10.3390/insects12040329
Bosch-Serra D, Rodríguez MA, Avilla J, Sarasúa MJ, Miarnau X. Esterase, Glutathione S-Transferase and NADPH-Cytochrome P450 Reductase Activity Evaluation in Cacopsylla pyri L. (Hemiptera: Psyllidae) Individual Adults. Insects. 2021; 12(4):329. https://doi.org/10.3390/insects12040329
Chicago/Turabian StyleBosch-Serra, Dolors, Marcela A. Rodríguez, Jesús Avilla, María José Sarasúa, and Xavier Miarnau. 2021. "Esterase, Glutathione S-Transferase and NADPH-Cytochrome P450 Reductase Activity Evaluation in Cacopsylla pyri L. (Hemiptera: Psyllidae) Individual Adults" Insects 12, no. 4: 329. https://doi.org/10.3390/insects12040329
APA StyleBosch-Serra, D., Rodríguez, M. A., Avilla, J., Sarasúa, M. J., & Miarnau, X. (2021). Esterase, Glutathione S-Transferase and NADPH-Cytochrome P450 Reductase Activity Evaluation in Cacopsylla pyri L. (Hemiptera: Psyllidae) Individual Adults. Insects, 12(4), 329. https://doi.org/10.3390/insects12040329