The Influence of Drying Methods on the Chemical Composition and Body Color of Yellow Mealworm (Tenebrio molitor L.)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Acquisition and Preparation
2.2. Drying
2.3. Proximate Analysis
2.4. Color Analysis
2.5. Amino Acid Analysis
2.6. Fatty Acid Composition
2.7. Statistical Analysis
3. Results
3.1. Proximate Analysis
3.2. Color Analysis
3.3. Mineral Composition
3.4. Amino Acid Profile of Yellow Mealworm Exposed to Different Drying Methods
3.5. Fatty Acid Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World population prospects: The 2015 revision. United Nations Econ. Soc. Aff. 2015, 33, 1–66. [Google Scholar]
- Dicke, M. Insects as feed and the Sustainable Development Goals. J. Insects Food Feed 2018, 4, 147–156. [Google Scholar] [CrossRef]
- South African Government. Fertilizers, Farm Feeds, Agricultural Remedies and Stock Remedies Act (Act No. 36 of 1947), South Africa. 2009. Available online: https://www.environment.gov.za/sites/default/files/docs/remedies_stockremedies_act36_of1947.pdf (accessed on 26 March 2020).
- Niassy, S.; Ekesi, S.; Hendriks, S.L.; Haller-Barker, A. Legislation for the use of insects as food and feed in the South African context. In Edible Insects in Sustainable Food Systems; Springer: New York, NY, USA, 2018; pp. 457–470. [Google Scholar]
- Van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B. Can insects help to ease the problem of world food shortage. Search 1975, 6, 261–262. [Google Scholar]
- Johnson, D.V. The contribution of edible forest insects to human nutrition and to forest management. In Forest Insects as Food: Humans Bite Back; Durst, P.B., Johnson, D.V., Leslie, R.N., Shono, K., Eds.; Food and Agriculture Organization of the United Nations: Bangkok, Thailand, 2010; pp. 5–22. Available online: http://www.wachstumsforum.ch/agri/e/forest-insects-as-food-fao-i1380e00.pdf (accessed on 28 March 2020).
- Kelemu, S.; Niassy, S.; Torto, B.; Fiaboe, K.; Affognon, H.; Tonnang, H.; Maniania, N.K.; Ekesi, S. African edible insects for food and feed: Inventory, diversity, commonalities and contribution to food security. J. Insects Food Feed 2015, 1, 103–119. [Google Scholar] [CrossRef] [Green Version]
- Megido, R.C.; Gierts, C.; Blecker, C.; Brostaux, Y.; Haubruge, É.; Alabi, T.; Francis, F. Consumer acceptance of insect-based alternative meat products in Western countries. Food Qual. Prefer. 2016, 52, 237–243. [Google Scholar] [CrossRef]
- Siemianowska, E.; Kosewska, A.; Aljewicz, M.; Skibniewska, K.A.; Polak-Juszczak, L.; Jarocki, A.; Jedras, M. Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agric. Sci. 2013, 4, 287–291. [Google Scholar] [CrossRef] [Green Version]
- Stamer, A. Insect proteins—A new source for animal feed. EMBO Rep. 2015, 16, 676–680. [Google Scholar] [CrossRef] [Green Version]
- Melis, R.; Braca, A.; Mulas, G.; Sanna, R.; Spada, S.; Serra, G.; Fadda, M.L.; Roggio, T.; Uzzau, S.; Anedda, R. Effect of freezing and drying processes on the molecular traits of edible yellow mealworm. Innov. Food Sci. Emerg. Technol. 2018, 48, 138–149. [Google Scholar] [CrossRef]
- Duan, X.; Yang, X.; Ren, G.; Pan, Y.; Liu, L. Technical aspects in freeze-drying of foods. Dry. Technol. 2016, 344, 1271–1285. [Google Scholar] [CrossRef]
- Kröncke, N.; Böschen, V.; Woyzichovski, J.; Demtröder, S.; Benning, R. Comparison of suitable drying processes for mealworms (Tenebrio molitor). Innov. Food Sci. Emerg. Technol. 2018, 50, 20–25. [Google Scholar] [CrossRef]
- Lenaerts, S.; Van Der Borght, M.; Callens, A.; Van Campenhout, L. Suitability of microwave drying for mealworms (Tenebrio molitor) as alternative to freeze drying: Impact on nutritional quality and colour. Food Chem. 2018, 254, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Klunder, H.C.; Wolkers-Rooijackers, J.; Korpela, J.M.; Nout, M.J.R. Microbiological aspects of processing and storage of edible insects. Food Control 2012, 26, 628–631. [Google Scholar] [CrossRef]
- Mpuchane, S.; Gashe, B.A.; Allotey, J.; Siame, B.; Teferra, G.; Ditlhogo, M. Quality deterioration of phane, the edible caterpillar of an emperor moth Imbrasia belina. Food Control 2000, 11, 453–458. [Google Scholar] [CrossRef]
- Kröncke, N.; Grebenteuch, S.; Keil, C.; Demtröder, S.; Kroh, L.; Thünemann, A.F.; Benning, R.; Haase, H. Effect of different drying methods on nutrient quality of the yellow mealworm (Tenebrio molitor L.). Insects 2019, 10, 84. [Google Scholar] [CrossRef] [Green Version]
- Ramashia, S.E.; Tangulani, T.; Mashau, M.E.; Nethathe, B. Microbiological quality of different dried insects sold at Thohoyandou open market, South Africa. Food Res. 2020, 4, 2247–2255. [Google Scholar] [CrossRef]
- Paul, A.; Frederich, M.; Megido, R.C.; Alabi, T.; Malik, P.; Uyttenbroeck, R.; Francis, F.; Blecker, C.; Haubruge, E.; Lognay, G.; et al. Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. J. Asia Pac. Entomol. 2017, 20, 337–340. [Google Scholar] [CrossRef]
- Selaledi, L.; Mbajiorgu, C.A.; Mabelebele, M. The use of yellow mealworm (T. molitor) as alternative source of protein in poultry diets: A review. Trop. Anim. Health Prod. 2019, 1–10. [Google Scholar] [CrossRef]
- Zhao, X.; Vázquez-Gutiérrez, J.L.; Johansson, D.P.; Landberg, R.; Langton, M. Yellow mealworm protein for food purposes-extraction and functional properties. PLoS ONE 2016, 11, e0147791. [Google Scholar] [CrossRef] [Green Version]
- Van Huis, A.; Dennis, G.A.B.O. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef] [Green Version]
- Vandeweyer, D.; Lenaerts, S.; Callens, A.; Van Campenhout, L. Effect of blanching followed by refrigerated storage or industrial microwave drying on the microbial load of yellow mealworm larvae (Tenebrio molitor). Food Control 2017, 71, 311–314. [Google Scholar] [CrossRef]
- Nyangena, D.N.; Mutungi, C.; Imathiu, S.; Kinyuru, J.; Affognon, H.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K.K. Effects of traditional processing techniques on the nutritional and microbiological quality of four edible insect species used for food and feed in East Africa. Foods 2020, 9, 574. [Google Scholar] [CrossRef]
- Melgar-Lalanne, G.; Hernández-Álvarez, A.J.; Salinas-Castro, A. Edible insects processing: Traditional and innovative technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1166–1191. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Lee, S.M.; Jung, C.; Meyer-Rochow, V.B. Nutritional composition of five commercial edible insects in South Korea. J. Asia Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Elahi, U.; Wang, J.; Ma, Y.B.; Wu, S.G.; Wu, J.; Qi, G.H.; Zhang, H.J. Evaluation of yellow mealworm meal as a protein feedstuff in the diet of broiler chicks. Animals 2020, 10, 224. [Google Scholar] [CrossRef] [Green Version]
- Rodjaroen, S.; Thongprajukaew, K.; Khongmuang, P.; Malawa, S.; Tuntikawinwong, K.; Saekhow, S. Ontogenic development of digestive enzymes in mealworm larvae (Tenebrio molitor) and their suitable harvesting time for use as fish feed. Insects 2020, 11, 393. [Google Scholar] [CrossRef]
- Derler, H.; Lienhard, A.; Berner, S.; Grasser, M.; Posch, A.; Rehorska, R. Use Them for What They Are Good at: Mealworms in Circular Food Systems. Insects 2021, 12, 40. [Google Scholar] [CrossRef]
- Delgado, C. Sources of growth in smallholder agriculture in sub-Saharan Africa: The role of vertical integration of smallholders with processors and marketers of high value-added items. Agrekon 1999, 38, 165–189. [Google Scholar] [CrossRef]
- Swick, M.C.; Koehler, T.M.; Driks, A. Surviving between hosts: Sporulation and transmission. Virulence Mech. Bact. Pathog. 2016, 4, 567–591. [Google Scholar] [CrossRef] [Green Version]
- Purschke, B.; Brüggen, H.; Scheibelberger, R.; Jäger, H. Effect of pre-treatment and drying method on physico-chemical properties and dry fractionation behaviour of mealworm larvae (Tenebrio molitor L.). Eur. Food Res. Technol. 2018, 244, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Grabowski, N.T.; Klein, G. Bacteria encountered in raw insect, spider, scorpion, and centipede taxa including edible species, and their significance from the food hygiene point of view. Trends Food Sci. Technol. 2017, 63, 80–90. [Google Scholar] [CrossRef]
- Association of Official Agricultural Chemists (AOAC). Official Methods of Analysis of AOAC International; AOAC International, (Official Methods USA): Gaithersburg, MD, USA, 2012. [Google Scholar]
- Dumas, J.B.A. Procedes de l’Analyse Organique. Ann. Chem. Phys. 1831, 47, 198–213. [Google Scholar]
- Hewitson, H.; Wheat, T.; Diehl, D. Amino Acid Analysis of Pure Protein Hydrolysate with Waters UPLC Amino Acid Analysis Solution; Waters: Milford, MA, USA, 2007; Available online: https://www.waters.com/webassets/cms/library/docs/720002404en.pdf (accessed on 1 April 2021).
- Folch, J.; Lees, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 1957, 226, 497–509. Available online: https://www.jbc.org/content/226/1/497.full.pdf (accessed on 1 April 2021). [CrossRef]
- Park, P.W.; Goins, R.E. In situ preparation of fatty acid methyl esters for analysis of fatty acid composition in foods. J. Food Sci. 1994, 59, 1262–1266. [Google Scholar] [CrossRef]
- Statistical Analysis System (SAS). Statistical Analysis Systems User’s Guide: Version 9.2, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2010. [Google Scholar]
- Khan, S.; Khan, R.U.; Alam, W.; Sultan, A. Evaluating the nutritive profile of three insect meals and their effects to replace soya bean in broiler diet. J. Anim. Physiol. Anim. Nutr. 2018, 102, 662–668. [Google Scholar] [CrossRef]
- Jones, L.D.; Cooper, R.W.; Harding, R.S. Composition of mealworm Tenebrio molitor larvae. J. Zoo Anim. Med. 1972, 3, 34–41. [Google Scholar] [CrossRef]
- Aniebo, A.O.; Owen, O.J. Effects of age and method of drying on the proximate composition of housefly larvae (Musca domestica Linnaeus) meal (HFLM). Pak. J. Nutr. 2010, 9, 485–487. [Google Scholar] [CrossRef] [Green Version]
- Nowak, V.; Persijn, D.; Rittenschober, D.; Charrondiere, U.R. Review of food composition data for edible insects. Food Chem. 2016, 193, 39–46. [Google Scholar] [CrossRef]
- Osimani, A.; Garofalo, C.; Milanović, V.; Taccari, M.; Cardinali, F.; Aquilanti, L.; Pasquini, M.; Mozzon, M.; Raffaelli, N.; Ruschioni, S.; et al. Insight into the proximate composition and microbial diversity of edible insects marketed in the European Union. Eur. Food Res. Technol. 2017, 243, 1157–1171. [Google Scholar] [CrossRef]
- Fasakin, E.A.; Balogun, A.M.; Ajayi, O.O. Evaluation of full-fat and defatted maggot meals in the feeding of clariid catfish Clarias gariepinus fingerlings. Aquac. Res. 2003, 34, 733–738. [Google Scholar] [CrossRef]
- Son, S.; Lee, J.; Hwang, I.; Nho, C.; Kim, S. Physicochemical properties of mealworm (Tenebrio molitor) powders manufactured by different industrial processes. Food Sci. Technol. 2019, 116, 108514. [Google Scholar] [CrossRef]
- Anjum, F.; Anwar, F.; Jamil, A.; Iqbal, M. Microwave roasting effects on the physico-chemical composition and oxidative stability of sunflower seed oil. J. Am. Oil Chem. Soc. 2006, 83, 777–784. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Protein and amino acid requirements in human nutrition. Report of a joint WHO/FAO/UNU Expert Consultation. World Health Organ. Tech. Rep. 2007, 935, 1–265. Available online: https://apps.who.int/iris/bitstream/handle/10665/43411/WHO_TRS_935_eng.pdf (accessed on 21 April 2020).
- Jajić, I.; Popović, A.; Urošević, M.; Krstović, S.; Petrović, M.; Guljaš, D. Chemical Composition of Mealworm Larvae (Tenebrio molitor) Reared in Serbia. Contemp. Agric. 2019, 68, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Ravzanaadii, N.; Kim, S.H.; Choi, W.H.; Hong, S.J.; Kim, N.J. Nutritional value of mealworm, Tenebrio molitor as food source. Int. J. Ind. Entomol. 2012, 25, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Christensen, D.L.; Orech, F.O.; Mungai, M.N.; Larsen, T.; Friis, H.; Aagaard-Hansen, J. Entomophagy among the Luo of Kenya: A potential mineral source. Int. J. Food Sci. Nutr. 2006, 57, 198–203. [Google Scholar] [CrossRef]
- Muriuki, J.M.; Mentzer, A.J.; Webb, E.L.; Morovat, A.; Kimita, W.; Ndungu, F.M.; Macharia, A.W.; Crane, R.J.; Berkley, J.A.; Lule, S.A.; et al. Estimating the burden of iron deficiency among African children. BMC Med. 2020, 18, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med Sci. 2014, 19, 164. [Google Scholar]
- DeFoliart, G.R. Insects as human food: Gene DeFoliart discusses some nutritional and economic aspects. Crop Prot. 1992, 11, 395–399. [Google Scholar] [CrossRef]
- WHO Joint FAO/WHO/UNU Expert Consultation. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint FAO/WHO/UNU Expert Consultation. 2007. Available online: https://apps.who.int/iris/handle/10665/43411 (accessed on 1 April 2021).
- Jais, A.M.M.; McCulloch, R.; Croft, K. Fatty acid and amino acid composition in haruan as a potential role in wound healing. Gen. Pharmacol. Vasc. Syst. 1994, 25, 947–950. [Google Scholar] [CrossRef]
- Womeni, H.M.; Tiencheu, B.; Linder, M.; Nabayo, C.; Martial, E.; Tenyang, N.; Tchouanguep Mbiapo, F.; Villeneuve, P.; Fanni, J.; Parmentier, M. Nutritional value and effect of cooking, drying and storage process on some functional properties of Rhynchophorus phoenicis. 2012. Available online: http://ijlpr.com/admin/php/uploads/118_pdf.pdf (accessed on 1 April 2021).
- Barroso, F.G.; de Haro, C.; Sánchez-Muros, M.J.; Venegas, E.; Martínez-Sánchez, A.; Pérez-Bañón, C. The potential of various insect species for use as food for fish. Aquaculture 2014, 422, 193–201. [Google Scholar] [CrossRef]
- Zornig, W.O.; Pesti, G.M.; Bakalli, R.I. The essential fatty acid requirements of broilers. J. Appl. Poult. Res. 2001, 10, 41–45. [Google Scholar] [CrossRef]
- Finke, M.D. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. 2002, 21, 269–285. [Google Scholar] [CrossRef]
- Montori, V.M.; Farmer, A.; Wollan, P.C.; Dinneen, S.F. Fish oil supplementation in type 2 diabetes: Aquantitative systemaric review. Diabetes Care 2000, 23, 1407–1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Sun-Dried | Freeze-Dried | Oven-Dried | SEM |
---|---|---|---|---|
Dry matter | 89.44 c | 91.05 b | 93.33 a | 0.030 |
Ash | 4.15 a | 4.23 a | 4.15 a | 0.031 |
Crude Protein | 50.96 b | 51.45 a | 51.51 a | 0.016 |
Crude Fibre | 6.20 a | 6.04 c | 6.11 b | 0.013 |
Gross Energy | 24.75 a | 24.00 a | 24.63 a | 0.012 |
Parameter | Sun-Dried | Freeze-Dried | Oven-Dried | SEM |
---|---|---|---|---|
L* (lightness) | 30.95 c | 36.18 b | 42.02 a | 1.007 |
a* (Redness) | 2.32 a | 4.24 a | 4.75 a | 0.924 |
b* (yellowness) | −1.47 c | 6.54 a,b | 12.35 a | 1.507 |
Parameter | Sun-Dried | Freeze-Dried | Oven-Dried | SEM |
---|---|---|---|---|
Calcium | 275.01 c | 282.45 b | 294.77 a | 0.015 |
Magnesium | 2220.10 b | 2174.76 c | 2458.60 a | 0.059 |
Copper | 16.00 b | 16.00 b | 17.47 a | 0.008 |
Iron | 50.00 b | 66.97 a | 46.45 c | 0.012 |
Manganese | 11.75 a | 11.55 a,b | 11.07 b | 0.122 |
Zinc | 121.49 a | 118.97 c | 121.41 b | 0.013 |
Potassium | 8201.00 | 8149.00 | 7244.00 | 779.431 |
Sodium | 1080.12 b | 964.90 c | 1089.22 a | 0.012 |
Phosphorus | 6899.82 b | 6712.90 c | 7484.15 a | 0.087 |
Parameter | Sun-Dried | Freeze-Dried | Oven-Dried | SEM |
---|---|---|---|---|
Histidine | 1.60 a | 1.60 a | 1.27 b | 0.009 |
Arginine | 3.17 a | 2.71 b | 2.60 c | 0.010 |
Serine | 2.80 a | 2.01 c | 2.53 b | 0.010 |
Glycine | 2.91 a | 2.55 b | 2.91 a | 0.013 |
Aspartic | 5.72 a | 3.57 c | 4.87 b | 0.015 |
Glutamine | 8.56 a | 5.54 c | 7.01 b | 0.013 |
Threonine | 2.77 a | 1.90 c | 2.56 b | 0.012 |
Alanine | 4.23 a | 3.20 b | 4.20 a | 0.008 |
Proline | 5.20 b | 4.91 c | 5.36 a | 0.012 |
Lysine | 4.40 a | 2.55 c | 3.95 b | 0.012 |
Tyrosine | 4.33 c | 4.91 a | 4.80 b | 0.010 |
Methionine | 0.76 a | 0.60 b | 0.80 a | 0.009 |
Valine | 3.65 a | 3.00 c | 3.40 b | 0.009 |
Isoleucine | 2.51 a | 2.13 c | 2.44 b | 0.013 |
Leucine | 3.84 b | 3.56 c | 3.60 a | 0.015 |
Phenylalanine | 3.46 b | 2.95 c | 3.57 a | 0.015 |
Parameter | Sun-Dried | Oven-Dried | Freeze-Dried | SEM |
---|---|---|---|---|
% Fat | 27.26 a | 25.73 c | 26.23 b | 0.015 |
% FFDM | 69.31 a | 67.75 b | 51.75 c | 0.122 |
% Moisture | 3.37 c | 6.33 b | 21.82 a | 0.015 |
FAME (% of total fatty acids): | ||||
Lauric (C12:0) | 0.14 | 0.11 | 0.13 | 0.012 |
Tridecoic (C13:0) | 0.01 b | 0.00 c | 0.02 a | 0.000 |
Myristic (C14:0) | 2.21 a | 2.01 a | 2.16 b | 0.012 |
Pentadecylic (C15:0) | 0.13 | 0.12 | 0.14 | 0.150 |
Palmitic (C16:0) | 17.6 a | 17.615 a | 17.32 a | 0.087 |
Palmitoleic (C16:1c9) | 1.23 a | 1.15 a | 1.11 a | 0.087 |
Margaric (C17:0) | 0.16 a,b | 0.13 b | 0.20 a | 0.012 |
Stearic acid (C18:0) | 2.94 b | 3.01 a | 3.05 a | 0.012 |
Oleic (C18:1C9) | 36.14 b | 36.75 a | 35.5 c | 0.12 |
Nonoadecanoic (C19:0) | 0.02 | 0.03 | 0.02 | 0.012 |
Linolelaidic (C18:2t9, 12 (n-6) | 0.02 | 0.03 | 0.03 | 0.012 |
Linoleic (C18:2c9,12 (n-6) | 37.21 b | 36.75 c | 38.44 a | 0.013 |
Arachidic (C20:0) | 0.06 | 0.07 | 0.06 | 0.015 |
α-Linolenic (C18:3c9,12,15(n-3) | 1.54 b | 1.67 a | 1.52 b | 0.013 |
Eicosadienoic (C20:2c11,14 (n-6) | 0.02 | 0.02 | 0.02 | 0.000 |
Eicosatrienoic (C20:3c8,11,14 (n-6) | 0.01 b | 0.02 a | 0.01 b | 0.000 |
Eicosatrienoic (C20:3c11, 14,17 (n-3) | 0.02 b | 0.03 a | 0.02 b | 0.000 |
Arachidonic (C20:4c5,8,11,14 (n-6) | 0.00 b | 0.01 a | 0.01 a | 0.000 |
Nervonic (C24:1c15) | 0.01 | 0.01 | 0.01 | 0.000 |
Total Saturated Fatty Acids (SFA) | 23.45 | 23.10 | 23.22 | 0.104 |
Total Mono Unsaturated Fatty Acids (MUFA) | 37.54 b | 38.21 a | 36.62 c | 0.013 |
Total Poly Unsaturated Fatty Acids (PUFA) | 38.83 a,b | 37.71 b | 40.11 a | 0.502 |
Total Omega- 6 Fatty Acids (n-6) | 37.25 | 37.71 | 38.54 | 0.485 |
Total Omega-3 Fatty Acids (n-3) | 1.56 b | 1.71 a | 1.54 b | 0.01 |
PUFA: SFA | 1.63 b | 1.64 b | 1.71 a | 0.015 |
n-6/n-3 | 23.64 b | 21.55 c | 24.67 a | 0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selaledi, L.; Mabelebele, M. The Influence of Drying Methods on the Chemical Composition and Body Color of Yellow Mealworm (Tenebrio molitor L.). Insects 2021, 12, 333. https://doi.org/10.3390/insects12040333
Selaledi L, Mabelebele M. The Influence of Drying Methods on the Chemical Composition and Body Color of Yellow Mealworm (Tenebrio molitor L.). Insects. 2021; 12(4):333. https://doi.org/10.3390/insects12040333
Chicago/Turabian StyleSelaledi, Letlhogonolo, and Monnye Mabelebele. 2021. "The Influence of Drying Methods on the Chemical Composition and Body Color of Yellow Mealworm (Tenebrio molitor L.)" Insects 12, no. 4: 333. https://doi.org/10.3390/insects12040333
APA StyleSelaledi, L., & Mabelebele, M. (2021). The Influence of Drying Methods on the Chemical Composition and Body Color of Yellow Mealworm (Tenebrio molitor L.). Insects, 12(4), 333. https://doi.org/10.3390/insects12040333