Contrasting Manual and Automated Assessment of Thermal Stress Responses and Larval Body Size in Black Soldier Flies and Houseflies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fly Stock Populations
2.2. Larval Body Size
2.3. Thermal Stress Response Assessment
2.3.1. Thermal Acclimation Treatments
2.3.2. Thermal Stress Response Assays
2.3.3. Manual Assessment of Video Recordings
2.3.4. Automated Assessment of Video Recordings
2.4. Statistical Analysis
3. Results
3.1. Contrasting Manual and Automated Phenotyping Methods
3.1.1. Larval Body Size
3.1.2. Thermal Tolerances
Black Soldier Fly
Housefly
3.2. Automated Asssessment of Thermal Stress Responses
3.2.1. Black Soldier Fly
3.2.2. Housefly
4. Discussion
4.1. Estimates of Larval Size
4.2. Estimates of Stress Tolerance
4.3. Applying Software for Stress Response Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houle, D.; Govindaraju, D.R.; Omholt, S. Phenomics: The next challenge. Nat. Rev. Genet. 2010, 11, 855–866. [Google Scholar] [CrossRef]
- Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016, 17, 333–351. [Google Scholar] [CrossRef]
- Mallard, F.; Bourlot, L.; Tully, V. An automated image analysis system to measure and count organisms in laboratory microcosms. PLoS ONE 2013, 8, e64387. [Google Scholar] [CrossRef]
- Bánszegi, O.; Kosztolányi, A.; Bakonyi, G.; Szabó, B.; Dombos, M. New method for automatic body length measurement of the collembolan, Folsomia candida Willem 1902 (Insecta: Collembola). PLoS ONE 2014, 9, e98230. [Google Scholar] [CrossRef] [PubMed]
- Agatz, A.; Hammers-Wirtz, M.; Gergs, A.; Mayer, T.; Preuss, T.G. Family-portraits for daphnids: Scanning living individuals and populations to measure body length. Ecotoxicology 2015, 24, 1385–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, T.; Zeis, B.; Einum, S. Automated measurement of upper thermal limits in small aquatic animals. J. Exp. Biol. 2018, 221, jeb182386. [Google Scholar] [CrossRef] [Green Version]
- Soto-Padilla, A.; Ruijsink, R.; Span, M.; van Rijn, H.; Billeter, J.C. An automated method to determine the performance of Drosophila in response to temperature changes in space and time. J. Vis. Exp. 2018, 140, e58350. [Google Scholar] [CrossRef] [PubMed]
- Duckworth, J.; Jager, T.; Ashauer, R. Automated, high-throughput measurement of size and growth curves of small organisms in well plates. Sci. Rep. 2019, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Awde, D.N.; Fowler, T.E.; Pérez-Gálvez, F.; Garica, M.J.; Teets, N.M. High-throughput assays of critical thermal limits in insects. J. Vis. Exp. 2020, 160, e61186. [Google Scholar] [CrossRef]
- MacLean, H.J.; Hansen, J.H.; Sørensen, J.G. Validating the automation of different measures of high temperature tolerance of small terrestrial insects. bioRxiv 2021. [Google Scholar] [CrossRef]
- Atkinson, D. Temperature and organism size: A biological law for ectotherms? Adv. Ecol. Res. 1994, 25, 1–58. [Google Scholar] [CrossRef]
- Kellermann, V.; Loeschcke, V.; Hoffmann, A.A.; Kristensen, T.N.; Fløjgaard, C.; David, J.R.; Svenning, J.-C.; Overgaard, J. Phylogenetic constraints in key functional traits behind species’ climate niches: Patterns of desiccation and cold resistance across 95 Drosophila species. Evolution 2012, 66, 3377–3389. [Google Scholar] [CrossRef] [PubMed]
- Castañeda, L.E.; Calabria, G.; Betancourt, L.A.; Rezende, E.L.; Santos, M. Measurement error in heat tolerance assays. J. Therm. Biol. 2012, 37, 432–437. [Google Scholar] [CrossRef]
- Lighton, J.R.B.; Turner, R.J. Thermolimit respirometry: An objective assessment of critical thermal maxima in two sympatric desert harvester ants, Pogonomyrmex rugosus and P. californicus. J. Exp. Biol. 2004, 207, 1903–1913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristensen, T.N.; Hoffmann, A.A.; Overgaard, J.; Sørensen, J.G.; Hallas, R.; Loeschcke, V. Costs and benefits of cold acclimation in field-released Drosophila. Proc. Natl. Acad. Sci. USA 2008, 105, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Kjærsgaard, A.; Blanckenhorn, W.U.; Pertoldi, C.; Loeschcke, V.; Kaufmann, C.; Hald, B.; Pagès, N.; Bahrndorff, S. Plasticity in behavioural responses and resistance to temperature stress in Musca domestica. Anim. Behav. 2015, 99, 123–130. [Google Scholar] [CrossRef]
- De Vries, Z.C.; Kells, S.A.; Appel, A.G. Estimating the critical thermal maximum (CTmax) of bed bugs, Cimex lectularius: Comparing thermolimit respirometry with traditional visual methods. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2016, 197, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Deutsch, C.A.; Tewksbury, J.J.; Huey, R.B.; Sheldon, K.S.; Ghalambor, C.K.; Haak, D.C.; Martin, P.R. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 2008, 105, 6668–6672. [Google Scholar] [CrossRef] [Green Version]
- Paaijmans, K.P.; Heinig, R.L.; Seliga, R.A.; Blanford, J.I.; Blanford, S.; Murdock, C.C.; Thomas, M.B. Temperature variation makes ectotherms more sensitive to climate change. Glob. Chang. Biol. 2013, 19, 2373–2380. [Google Scholar] [CrossRef] [Green Version]
- Van Huis, A.; Oonincx, D.G.A.; Rojo, S.; Tomberlin, J. Insects as feed: House fly or black soldier fly? J. Insects Food Feed 2020, 6, 221–229. [Google Scholar] [CrossRef]
- Bubliy, O.A.; Kristensen, T.N.; Kellermann, V.; Loeschcke, V. Plastic responses to four environmental stresses and cross-resistance in a laboratory population of Drosophila melanogaster. Funct. Ecol. 2012, 26, 245–253. [Google Scholar] [CrossRef]
- MacLean, H.J.; Kristensen, T.N.; Overgaard, J.; Sørensen, J.G.; Bahrndorff, S. Acclimation responses to short-term temperature treatments during early life stages causes long lasting changes in spontaneous activity of adult Drosophila melanogaster. Physiol. Entomol. 2017, 42, 404–411. [Google Scholar] [CrossRef]
- Terblanche, J.S.; Hoffmann, A.A.; Mitchell, K.A.; Rako, L.; le Roux, P.C.; Chown, S.L. Ecologically relevant measures of tolerance to potentially lethal temperatures. J. Exp. Biol. 2011, 214, 3713–3725. [Google Scholar] [CrossRef] [Green Version]
- Overgaard, J.; Kristensen, T.N.; Sørensen, J.G. Validity of thermal ramping assays used to assess thermal tolerance in arthropods. PLoS ONE 2012, 7, e32758. [Google Scholar] [CrossRef] [Green Version]
- Kelty, J.D.; Lee, R.E., Jr. Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophiladae) during ecologically based thermoperiodic cycles. J. Exp. Biol. 2001, 204, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
- Manenti, T.; Cunha, T.R.; Sørensen, J.G.; Loeschcke, V. How much starvation, desiccation and oxygen depletion can Drosophila melanogaster tolerate before its upper thermal limits are affected? J. Insect Physiol. 2018, 111, 1–7. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 31 March 2021).
- Goral, F.; Schellenberg, J. Goeveg: Functions for Community Data and Ordinations. R Package Vers 0.4.2. Available online: https://cran.r-project.org/src/contrib/Archive/goeveg/ (accessed on 31 March 2021).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Robie, A.A.; Seagraves, K.M.; Egnor, S.E.R.; Branson, K. Machine vision methods for analyzing social interactions. J. Exp. Biol. 2017, 220, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Bruijning, M.; Visser, M.D.; Hallmann, C.A.; Jongejans, E.; Golding, N. Trackdem: Automated particle tracking to obtain population counts and size distributions from videos in R. Methods Ecol. Evol. 2018, 9, 965–973. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.L.; Manenti, T.; Sørensen, J.G.; MacMillan, H.A.; Loeschcke, V.; Overgaard, J. How to assess Drosophila cold tolerance: Chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct. Ecol. 2015, 29, 55–65. [Google Scholar] [CrossRef]
- Sinclair, B.J.; Coello Alvarado, L.E.; Ferguson, L.V. An invitation to measure insect cold tolerance: Methods, approaches, and workflow. J. Therm. Biol. 2015, 53, 180–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellermann, V.; Overgaard, J.; Hoffmann, A.A.; Fløjgaard, C.; Svenning, J.-C.; Loeschcke, V. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc. Natl. Acad. Sci. USA 2012, 109, 16228–16233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezende, E.L.; Tejedo, M.; Santos, M. Estimating the adaptive potential of critical thermal limits: Methodological problems and evolutionary implications. Funct. Ecol. 2011, 25, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Walsh, B.S.; Parratt, S.R.; Hoffmann, A.A.; Atkinson, D.; Snook, R.R.; Bretman, A.; Price, T.A. The Impact of Climate Change on Fertility. Trends Ecol. Evol. 2019, 34, 249–259. [Google Scholar] [CrossRef]
- Yao, F.; Zheng, Y.; Ding, X.; Zhao, J.; Lu, X.; Desneux, N.; He, Y.; Weng, Q. Effects of heat shock on survival and predation of an important whitefly predator, Serangium japonicum. Entomol. Exp. Appl. 2019, 167, 476–489. [Google Scholar] [CrossRef] [Green Version]
- Bahrndorff, S.; Gertsen, S.; Pertoldi, C.; Kristensen, T.N. Investigating thermal acclimation effects before and after a cold shock in Drosophila melanogaster using behavioural assays. Biol. J. Linn. Soc. 2016, 117, 241–251. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laursen, S.F.; Hansen, L.S.; Bahrndorff, S.; Nielsen, H.M.; Noer, N.K.; Renault, D.; Sahana, G.; Sørensen, J.G.; Kristensen, T.N. Contrasting Manual and Automated Assessment of Thermal Stress Responses and Larval Body Size in Black Soldier Flies and Houseflies. Insects 2021, 12, 380. https://doi.org/10.3390/insects12050380
Laursen SF, Hansen LS, Bahrndorff S, Nielsen HM, Noer NK, Renault D, Sahana G, Sørensen JG, Kristensen TN. Contrasting Manual and Automated Assessment of Thermal Stress Responses and Larval Body Size in Black Soldier Flies and Houseflies. Insects. 2021; 12(5):380. https://doi.org/10.3390/insects12050380
Chicago/Turabian StyleLaursen, Stine Frey, Laura Skrubbeltrang Hansen, Simon Bahrndorff, Hanne Marie Nielsen, Natasja Krog Noer, David Renault, Goutam Sahana, Jesper Givskov Sørensen, and Torsten Nygaard Kristensen. 2021. "Contrasting Manual and Automated Assessment of Thermal Stress Responses and Larval Body Size in Black Soldier Flies and Houseflies" Insects 12, no. 5: 380. https://doi.org/10.3390/insects12050380
APA StyleLaursen, S. F., Hansen, L. S., Bahrndorff, S., Nielsen, H. M., Noer, N. K., Renault, D., Sahana, G., Sørensen, J. G., & Kristensen, T. N. (2021). Contrasting Manual and Automated Assessment of Thermal Stress Responses and Larval Body Size in Black Soldier Flies and Houseflies. Insects, 12(5), 380. https://doi.org/10.3390/insects12050380