Effects of Land-Use Change on the Community Structure of the Dung Beetle (Scarabaeinae) in an Altered Ecosystem in Southern Ecuador
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
- (a)
- Coffee in an old agroforestry system (CoAS), where cultivation of coffee (Coffea arabica) is associated with banana (Musa paradisiaca), papaya (Carica papaya), and guavas (Inga feuilleei), but also with native trees species, especially faique (Acacia macracantha), wilco (Anadenanthera colubrina), and fig trees (Ficus sp.). In this L-UCH class, native vertebrates exist, such as deer (herbivores; Odocoileus peruvianus), squirrels (omnivores; Sciurus sp), and anteaters (insectivores; Tamandua sp), but also domestic animals, particularly goats (herbivore; Capra hircus).
- (b)
- Seasonally disturbed dry forest (SDF), in which the dominant tree species are wilco (Anadenanthera colubrina, with an average DBH of 0.26 m and an average height of 18 m), ceibo (Ceiba trichistandra, with an average DBH of 1 m and an average height of 20 m), and faique (Acacia macracantha, with an average DBH of 0.21 m and an average height of 17 m). In this L-UCH class native vertebrates dominate, especially anteaters, deer, skunks (non-strict carnivores and omnivores; Conepatus semistriatus), and opossums (omnivores; Didelphis marsupialis), while domestic animals are also frequent, such as goats, cows (obligate herbivore; Bos taurus), and horses (non-ruminant herbivore; Equus caballus).
- (c)
- Organic crop area (OCA), which is a polyculture system, including chard (Beta vulgaris), turmeric (Curcuma longa), cabbage (Brassica oleracea), and carrot (Daucus carota). In this L-UCH class domestic animals are more frequent, such as donkeys (herbivore; Equus asinus) and horses, but some native species, particularly deer and skunk, can also be found.
- (d)
- Grasslands (GLd), mainly composed of yaragua grass (Hyparrhenia rufa) and Cybitax antisyphilitica seedlings. In this L-UCH class generally only domesticated animals exist, such as cows, horses, and donkeys.
- (e)
- Coffee in a young agroforestry system (CyAS), which were recently planted (max. 3 years ago), including coffee (Coffea arabica), apple (Malus domestica), and guava (Inga feuilleei), but also young trees, especially arabisco (Jacaranda copaia), faique (Acacia macracantha), and wilco (Anadenanthera colubrina). In this L-UCH class native vertebrates, such as anteaters, skunk, and deer can be found, but the presence of domestic animals is higher, in particular cows and horses.
2.2. Soil Sampling and Analytical Methods
2.3. Sampling, Identification, and Categorization of Dung Beetles
2.4. Manure-Producing Vertebrates in the Different L-UCH Classes
2.5. Data Analysis
3. Results and Discussion
3.1. Abiotic Conditions at the Different L-UCH
3.2. Physical Soil Properties of the Different L-UCH
3.3. Chemical Soil Properties of the Different L-UCH
3.4. Dung Beetle Species Found at the Different L-UCH Classes
3.5. Influence of Food Availability (Manure) on the Abundance of Dung Beetle Species in the Different L-UCH Classes
3.6. Effects of Abiotic, Edaphic, and Type Factors of L-UCH on the Total Abundance of Scarabaeinae Species
3.7. Redundancy Analysis for Dung Beetle Species, Soil and Environmental Attributes, and Land Uses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sloan, S.; Sayer, J.A. Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For. Ecol. Manag. 2015, 352, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Heino, M.; Kummu, M.; Makkonen, M.; Mulligan, M.; Verburg, P.H.; Jalava, M.; Räsänen, T.A. Forest Loss in Protected Areas and Intact Forest Landscapes: A Global Analysis. PLoS ONE 2015, 10, e0138918. [Google Scholar] [CrossRef]
- Bruggeman, D.; Meyfroidt, P.; Lambin, E.F. Impact of land-use zoning for forest protection and production on forest cover changes in Bhutan. Appl. Geogr. 2018, 96, 153–165. [Google Scholar] [CrossRef]
- Malhi, Y.; Gardner, T.A.; Goldsmith, G.R.; Silman, M.R.; Zelazowski, P. Tropical Forests in the Anthropocene. Annu. Rev. Environ. Resour. 2014, 39, 125–159. [Google Scholar] [CrossRef] [Green Version]
- Juiling, S.; Sabah, U.M.; Leon, S.K.; Jumian, J.; Tsen, S.; Lee, Y.L.; Khoo, E.; Sugau, J.B.; Nilus, R.; Pereira, J.T.; et al. Conservation assessment and spatial distribution of endemic orchids in Sabah, Borneo. Nat. Conserv. Res. 2020, 5, 136–144. [Google Scholar] [CrossRef]
- Perazzoni, F.; Bacelar-Nicolau, P.; Painho, M. Geointelligence against Illegal Deforestation and Timber Laundering in the Brazilian Amazon. ISPRS Int. J. Geo Inf. 2020, 9, 398. [Google Scholar] [CrossRef]
- Lima, N.D.S.D.; Aparício Carvalho University Center; Napiwoski, S.J.; Oliveira, M.A.; Federal University of Rondônia. Human-wildlife conflict in the Southwestern Amazon: Poaching and its motivations. Nat. Conserv. Res. 2020, 5, 109–114. [Google Scholar] [CrossRef]
- Mohd-Azlan, J.; Sarawak, U.M.; Lok, L.; Maiwald, M.J.; Fazlin, S.; Shen, T.D.; Kaicheen, S.S.; Dagang, P.; Sarawak Forestry Corporation. The distribution of medium to large mammals in Samunsam Wildlife Sanctuary, Sarawak in relation to the newly constructed Pan-Borneo Highway. Nat. Conserv. Res. 2020, 5, 43–54. [Google Scholar] [CrossRef]
- Sorrensen, C. Potential hazards of land policy: Conservation, rural development and fire use in the Brazilian Amazon. Land Use Policy 2009, 26, 782–791. [Google Scholar] [CrossRef]
- Fries, A.; Rollenbeck, R.; Nauß, T.; Peters, T.; Bendix, J. Near surface air humidity in a megadiverse Andean mountain ecosystem of southern Ecuador and its regionalization. Agric. For. Meteorol. 2012, 152, 17–30. [Google Scholar] [CrossRef]
- Cardoso, P.; Barton, P.S.; Birkhofer, K.; Chichorro, F.; Deacon, C.; Fartmann, T.; Fukushima, C.S.; Gaigher, R.; Habel, J.C.; Hallmann, C.A.; et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 2020, 242, 108426. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tischer, A.; Potthast, K.; Hamer, U. Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador. Oecologia 2014, 175, 375–393. [Google Scholar] [CrossRef]
- Modernel, P.; Rossing, W.A.H.; Corbeels, M.; Dogliotti, S.; Picasso, V.; Tittonell, P. Land use change and ecosystem service provision in Pampas and Campos grasslands of southern South America. Environ. Res. Lett. 2016, 11, 113002. [Google Scholar] [CrossRef]
- Jaiyeoba, I. Changes in soil properties related to different land uses in part of the Nigerian semi-arid Savannah. Soil Use Manag. 1995, 11, 84–89. [Google Scholar] [CrossRef]
- Guimarães, D.V.; Gonzaga, M.I.S.; da Silva, T.O.; da Silva, T.L.; Dias, N.D.S.; Matias, M.I.S. Soil organic matter pools and carbon fractions in soil under different land uses. Soil Tillage Res. 2013, 126, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Anh, P.T.Q.; Gomi, T.; MacDonald, L.H.; Mizugaki, S.; Van Khoa, P.; Furuichi, T. Linkages among land use, macronutrient levels, and soil erosion in northern Vietnam: A plot-scale study. Geoderma 2014, 232, 352–362. [Google Scholar] [CrossRef]
- Birhanu, A.; Masih, I.; van der Zaag, P.; Nyssen, J.; Cai, X. Impacts of land use and land cover changes on hydrology of the Gumara catchment, Ethiopia. Phys. Chem. Earth Parts A B C 2019, 112, 165–174. [Google Scholar] [CrossRef]
- Karp, D.S.; Rominger, A.J.; Zook, J.; Ranganathan, J.; Ehrlich, P.R.; Daily, G.C. Intensive agriculture erodes β-diversity at large scales. Ecol. Lett. 2012, 15, 963–970. [Google Scholar] [CrossRef]
- Wiens, J.A. Habitat fragmentation and wildlife populations: The importance of autecology, time, and landscape structure. In Proceedings of the Trans. 19th IUGB Congress, Trondheim, Norway, 20 March 1990; pp. 381–391. [Google Scholar]
- De Queiroz, A.C.M.; Rabello, A.M.; Braga, D.L.; Santiago, G.S.; Zurlo, L.F.; Philpott, S.M.; Ribas, C.R. Cerrado vegetation types determine how land use impacts ant biodiversity. Biodivers. Conserv. 2017, 29, 2017–2034. [Google Scholar] [CrossRef]
- Latha, T.; Sabu, T.K. Effects of Land use Change on Dung Beetle (Scarabaeinae) Community Structure in South Western Ghats. Int. J. Environ. Agric. Biotechnol. 2019, 4, 198–208. [Google Scholar] [CrossRef]
- Nichols, E.; Larsen, T.; Spector, S.; Davis, A.L.; Escobar, F.; Favila, M.; Network, T.S.R. Global dung beetle response to tropical forest modification and fragmentation: A quantitative literature review and meta-analysis. Biol. Conserv. 2007, 137, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Hernandéz, M.I.M. Besouros Escarabeíneos (coleoptera: Scarabaeidae) da Caatinga Paraibana, Brasil. Oecologia Bras. 2007, 11, 356–364. [Google Scholar] [CrossRef]
- Medina, A.M.; Lopes, P.P. Resource Utilization and Temporal Segregation of Scarabaeinae (Coleoptera, Scarabaeidae) Community in a Caatinga Fragment. Neotrop. Ѐntomol. 2014, 43, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Barretto, J.; Salomão, R.P.; Iannuzzi, L. Diversity of dung beetles in three vegetation physiognomies of the Caatinga dry forest. Int. J. Trop. Insect Sci. 2019, 40, 385–392. [Google Scholar] [CrossRef]
- De Siqueira Neves, F.; Oliveira, V.H.F.; do Espírito-Santo, M.M.; Vaz-de-Mello, F.Z.; Louzada, J.; Sanchez-Azofeifa, A.; Fernandes, G.W. Successional and seasonal changes in a community of dung beetles (Coleoptera: Scarabaeinae) in a Brazi-lian tropical dry forest. Nat. Conserv. 2010, 8, 160–164. [Google Scholar] [CrossRef]
- Liberal, C.N.; De Farias, Â.M.I.; Meiado, M.V.; Filgueiras, B.K.C.; Iannuzzi, L. How Habitat Change and Rainfall Affect Dung Beetle Diversity in Caatinga, a Brazilian Semi-Arid Ecosystem. J. Insect Sci. 2011, 11, 1–11. [Google Scholar] [CrossRef]
- Vieira, L.; Silva, F.A.B.; Louzada, J. Dung beetles in a Caatinga Natural Reserve: A threatened Brazilian dry-forest with high biological value. Iheringia. Série Zool. 2017, 107, 107. [Google Scholar] [CrossRef] [Green Version]
- Chamorro, W.; Marín-Armijos, D.; Granda, V.; Vaz-De-Mello, F.Z. Listado de especies y clave de géneros y subgéneros de escarabajos estercoleros (Coleoptera: Scarabaeidae: Scarabaeinae) presentes y presuntos para Ecuador. Rev. Colomb. Entomol. 2018, 44, 72–100. [Google Scholar] [CrossRef] [Green Version]
- Farias, P.; Hernández, M. Dung beetles associated with agroecosystems of southern Brazil: Relationship with soil properties. Rev. Bras. de Ciênc. Solo. 2017, 41, e0160248. [Google Scholar] [CrossRef]
- Slade, E.M.; Roslin, T.; Santalahti, M.; Bell, T. Disentangling the ‘brown world’ faecal-detritus interaction web: Dung beetle effects on soil microbial properties. Oikos 2015, 125, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Piccini, I.; Arnieri, F.; Caprio, E.; Nervo, B.; Pelissetti, S.; Palestrini, C.; Roslin, T.; Rolando, A. Greenhouse gas emissions from dung pats vary with dung beetle species and with assemblage composition. PLoS ONE 2017, 12, e0178077. [Google Scholar] [CrossRef] [PubMed]
- Badenhorst, J.; Dabrowski, J.; Scholtz, C.H.; Truter, W.F. Dung beetle activity improves herbaceous plant growth and soil properties on confinements simulating reclaimed mined land in South Africa. Appl. Soil Ecol. 2018, 132, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Halffter, G.; Matthews, E.G. The Natural History of Dung Beetles of the Subfamily Scarabaeinae (Coleoptera, Scarabaeidae); Stony Brook University: Stony Brook, NY, USA, 1966. [Google Scholar]
- Krell-Westerwalbesloh, S.; Krell, F.-T.; Linsenmair, K.E. Diel separation of Afrotropical dung beetle guilds—avoiding competition and neglecting resources (Coleoptera: Scarabaeoidea). J. Nat. Hist. 2004, 38, 2225–2249. [Google Scholar] [CrossRef]
- Armenteras, D.; Murcia, U.; González, T.M.; Barón, O.J.; Arias, J.E. Scenarios of land use and land cover change for NW Amazonia: Impact on forest intactness. Glob. Ecol. Conserv. 2019, 17, e00567. [Google Scholar] [CrossRef]
- González-Jaramillo, V.H.; Fries, A.; Rollenbeck, R.; Paladines, J.; Oñate-Valdivieso, F.; Bendix, J. Assessment of deforestation during the last decades in Ecuador using NOAA-AVHRR satellite data. Erdkunde 2016, 217–235. [Google Scholar] [CrossRef]
- Manchego, C.E.; Hildebrandt, P.; Cueva, J.; Espinosa, C.I.; Stimm, B.; Günter, S. Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador. PLoS ONE 2017, 12, e0190092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapia-Armijos, M.F.; Homeier, J.; Espinosa, C.I.; Leuschner, C.; de la Cruz, M. Deforestation and forest fragmentation in South Ecuador since the 1970s–losing a hotspot of biodiversity. PLoS ONE 2015, 10, e0133701. [Google Scholar] [CrossRef] [Green Version]
- Carrion-Paladines, V.; Garcia-Ruiz, R. Floristic Composition and Structure of a Deciduous Dry Forest from Southern Ecuador: Diversity and Aboveground Carbon Accumulation. Int. J. Curr. Res. Acad. Rev. 2016, 5, 154–169. [Google Scholar] [CrossRef] [Green Version]
- Reyna-Bowen, L.; Vera-Montenegro, L.; Reyna, L. Soil-Organic-Carbon Concentration and Storage under Different Land Uses in the Carrizal-Chone Valley in Ecuador. Appl. Sci. 2018, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Fries, A.; Silva, K.; Pucha-Cofrep, F.; Oñate-Valdivieso, F.; Ochoa-Cueva, P. Water Balance and Soil Moisture Deficit of Dif-ferent Vegetation Units under Semiarid Conditions in the Andes of Southern Ecuador. Climate 2020, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Gray, C.L.; Bilsborrow, R.E. Consequences of out-migration for land use in rural Ecuador. Land Use Policy 2014, 36, 182–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaglio, M.; Aschonitis, V.G.; Mancuso, M.M.; Puig, J.P.R.; Moscoso, F.; Castaldelli, G.; Fano, E.A. Changes in land use and ecosystem services in tropical forest areas: A case study in Andes mountains of Ecuador. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 264–279. [Google Scholar] [CrossRef] [Green Version]
- Espinoza, V.R.; Noriega, J.A. Diversity of the dung beetles (Coleoptera: Scarabaeinae) in an altitudinal gradient in the east slope of los Andes, Napo province, Ecuador. Neotrop. Biodivers. 2018, 4, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Celi, J.; Terneus, E.; Torres, J.; Ortega, M. Dung beetles (Coleoptera: Scarabaeinae) diversity in an altitudinal gradient in the Cutucú range, Morona Santiago, Ecuadorian Amazon. Lyonia 2004, 7, 37–52. [Google Scholar]
- Carpio, C.; Donoso, D.A.; Ramón, G.; Dangles, O. Short term response of dung beetle communities to disturbance by road construction in the Ecuadorian Amazon. Ann. Société Entomol. Fr. N. S. 2009, 45, 455–469. [Google Scholar] [CrossRef]
- Domínguez, D.; Marinarmijos, D.; Ruiz, C. Structure of Dung Beetle Communities in an Altitudinal Gradient of Neotropical Dry Forest. Neotrop. Ѐntomol. 2015, 44, 40–46. [Google Scholar] [CrossRef]
- González-Jaramillo, V.; Fries, A.; Zeilinger, J.; Homeier, J.; Paladines-Benitez, J.; Bendix, J. Estimation of above ground bio-mass in a tropical mountain forest in southern Ecuador using airborne LiDAR data. Remote Sens. 2018, 10, 660. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Cifuentes, A.; Munevar, A.; Gimenez, V.C.; Gatti, M.G.; Zurita, G.A. Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina. J. Insect Conserv. 2017, 21, 147–156. [Google Scholar] [CrossRef]
- García, H.L.C.; Sigcho, J.E.R.; González, J.E.A.; Ochoa, D.X.B.; Arévalo, S.I.P. Optimización del sistema de explotación de la concesión minera “El Huato”/Exploitation system optimization of the mining concession “El Huato”. Braz. Appl. Sci. Rev. 2019, 3, 1504–1518. [Google Scholar]
- Instituto Nacional de Meteorología e Hidrología (INAMHI). Available online: http://www.inamhi.gov.ec/html/inicio.htm (accessed on 24 February 2019).
- Chamba, Y.M.; Capa, E.D.; Ochoa, P.A. Environmental characterization and potential zoning for coffee production in the Andes of southern Ecuador. In Proceedings of the 21st Century Watershed Technology Conference and Workshop Improving Water Quality and the Environment, Quito, Ecuador, 3–9 December 2016; pp. 1–12. [Google Scholar]
- Del Rio, T.; Groot, J.C.; DeClerck, F.; Estrada-Carmona, N. Integrating local knowledge and remote sensing for eco-type classification map in the Barotse Floodplain, Zambia. Data Brief 2018, 19, 2297–2304. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, M.B.; Aranibar, J.N.; Serrano, A.M.; Chacoff, N.P.; Vázquez, D.P. Dung beetles and nutrient cycling in a dryland environment. Catena 2019, 179, 66–73. [Google Scholar] [CrossRef]
- Daglio, G.; Sterren, M.; Benintende, S. Almacenamiento de muestras de suelo: Incidencia sobre la cuantificación de biomasa microbiana. Agriscientia 2005, 22, 63–68. [Google Scholar]
- Sandoval, M.; Fernández, J.; Seguel, O.; Becerra, J.; Salazar, D. Métodos de Análisis Físicos de Suelos. Sociedad Chilena de la Ciencia del suelo. Ph.D. Thesis, Universidad de Concepción, Concepción, Chile, 2011; pp. 1–75. [Google Scholar]
- Black, C.A.; Evans, D.D.; White, J.L.; Ensminger, L.E.; Clark, F.E. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; John Wiley & Sons: Hoboken, NJ, USA, 1965. [Google Scholar]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis, Part II; American Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar]
- Kononova, M.M. Soil Organic Matter Its Nature and Role in Soil Formation and Fertility; Pergamon Press: Oxford, UK, 1966. [Google Scholar]
- Flicheva, E. Characteristics of Soil Organic Matter of Bulgarian Soils; Lap Lambert Academic Publishing: Amsterdam, The Netherlands, 2015; ISBN 978-3-659-51204-9. [Google Scholar]
- Bremner, J.M. Nitrogen-total. In Methods of Soil Analysis: Part 3 Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 1966; Volume 5, pp. 1085–1121. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (No. 939); US Department of Agriculture: Ephrata, WA, USA, 1954.
- Da Silva, P.G.; Hernández, M.I.M. Spatial patterns of movement of dung beetle species in a tropical forest suggest a new trap spacing for dung beetle biodiversity studies. PLoS ONE 2015, 10, e0126112. [Google Scholar]
- Ghazanfar, M.; Hussain, M.; Abbas, Z.; Batool, M. Diversity, composition and distribution of dung beetle fauna in croplands and pastures of jhelum, punjab, pakistan. Pak. J. Sci. 2017, 69, 4. [Google Scholar]
- Jagisso, Y.; Aune, J.; Angassa, A. Unlocking the Agricultural Potential of Manure in Agropastoral Systems: Traditional Beliefs Hindering Its Use in Southern Ethiopia. Agriculture 2019, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication, by CE Shannon (and Recent Contributions to the Mathematical Theory of Communication), W. Weaver; University of illinois Press: Champaign, IL, USA, 1949. [Google Scholar]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Hill, M.O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, P.G.; Hernández, M.I.M. Spatial variation of dung beetle assemblages associated with forest structure in remnants of southern Brazilian Atlantic Forest. Rev. Bras. Entomol. 2016, 60, 73–81. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org (accessed on 24 May 2018).
- XLSTAT. XLSTAT for Microsoft Excel; XLSTAT Addinsoft: Paris, France, 2020; Available online: https://www.xlstat.com/es/ (accessed on 24 July 2018).
- Fries, A.; Rollenbeck, R.; Göttlicher, D.; Nauss, T.; Homeier, J.; Peters, T.; Bendix, J. Thermal structure of a megadiverse Andean mountain ecosystem in southern Ecuador and its regionalization. Erdkunde 2009, 63, 321–335. [Google Scholar] [CrossRef]
- Fries, A.; Rollenbeck, R.; Bayer, F.; Gonzalez, V.; Oñate-Valivieso, F.; Peters, T.; Bendix, J. Catchment precipitation processes in the San Francisco valley in southern Ecuador: Combined approach using high-resolution radar images and in situ observations. Theor. Appl. Clim. 2014, 126, 13–29. [Google Scholar] [CrossRef]
- Oñate-Valdivieso, F.; Fries, A.; Mendoza, K.; Gonzalez-Jaramillo, V.; Pucha-Cofrep, F.; Rollenbeck, R.; Bendix, J. Temporal and spatial analysis of precipitation patterns in an Andean region of southern Ecuador using LAWR weather radar. Theor. Appl. Clim. 2017, 130, 473–484. [Google Scholar] [CrossRef]
- Cueva, P.O.; Armijos, C.I.; Cerdà, A.; Sinoga, J.R. El Papel de la Cobertura Vegetal en la Generación de Sedimentos y Calidad de Agua de los Andes Ecuatorianos; IV Jornadas de Ingeniería del Agua: Córdoba, España, 2015. [Google Scholar]
- Ayoub, A.; Habib, B.A.; Abelkrim, K.; Mohamed, Z.; Raphael, G. Effects of overgrazing on the physico-chemical and biological properties of semi-arid forest soils in western Algeria. Indian J. Ecol. 2019, 46, 745–750. [Google Scholar]
- Singh, J.; Salaria, A.; Kaul, A. Impact of soil compaction on soil physical properties and root growth: A review. Int. J. Food Agric. Vet. Sci. 2015, 5, 23–32. [Google Scholar]
- Twum, E.K.A.; Nii-Annang, S. Impact of Soil Compaction on Bulk Density and Root Biomass ofQuercus petraeaL. at Reclaimed Post-Lignite Mining Site in Lusatia, Germany. Appl. Environ. Soil Sci. 2015, 2015, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Allman, M.; Jankovský, M.; Messingerová, V.; Allmanová, Z.; Ferenčík, M. Soil compaction of various Central European forest soils caused by traffic of forestry machines with various chassis. For. Syst. 2015, 24, 6. [Google Scholar] [CrossRef] [Green Version]
- Conti, G.; Kowaljow, E.; Baptist, F.; Rumpel, C.; Cuchietti, A.; Harguindeguy, N.P.; Díaz, S. Altered soil carbon dynamics under different land-use regimes in subtropical seasonally-dry forests of central Argentina. Plant Soil 2016, 403, 375–387. [Google Scholar] [CrossRef]
- Murray, R.M.; Orozco, M.G.; Hernández, A.; Lemus, C.; Nájera, O. El sistema agroforestal modifica el contenido de materia orgánica y las propiedades físicas del suelo. Av. Investig. Agropecu. 2014, 18, 23–31. [Google Scholar]
- Dhillon, G.S.; Gillespie, A.; Peak, D.; Van Rees, K.C. Spectroscopic investigation of soil organic matter composition for shelterbelt agroforestry systems. Geoderma 2017, 298, 1–13. [Google Scholar] [CrossRef]
- Sakin, E. Organic carbon organic matter and bulk density relationships in arid-semi arid soils in Southeast Anatolia region. Afr. J. Biotechnol. 2012, 11, 1373–1377. [Google Scholar] [CrossRef]
- Ben Dkhil, B.; Denden, M.; Aboud, S. Foliar Potassium Fertilization and its Effect on Growth, Yield and Quality of Potato Grown under Loam-sandy Soil and Semi-arid Conditions. Int. J. Agric. Res. 2011, 6, 593–600. [Google Scholar] [CrossRef] [Green Version]
- Yost, J.L.; Hartemink, A.E. Soil organic carbon in sandy soils: A review. Adv. Agron. 2019, 158, 217–310. [Google Scholar] [CrossRef]
- Dam, R.; Mehdi, B.; Burgess, M.; Madramootoo, C.; Mehuys, G.; Callum, I. Soil bulk density and crop yield under eleven consecutive years of corn with different tillage and residue practices in a sandy loam soil in central Canada. Soil Tillage Res. 2005, 84, 41–53. [Google Scholar] [CrossRef]
- Kushwaha, C.; Tripathi, S.; Singh, K. Soil organic matter and water-stable aggregates under different tillage and residue conditions in a tropical dryland agroecosystem. Appl. Soil Ecol. 2001, 16, 229–241. [Google Scholar] [CrossRef]
- Carrión-Paladines, V.; Fries, A.; Gómez-Muñoz, B.; García-Ruiz, R.; Paladines, H.V.C. Agrochemical characterization of vermicomposts produced from residues of Palo Santo (Bursera graveolens) essential oil extraction. Waste Manag. 2016, 58, 135–143. [Google Scholar] [CrossRef]
- Lozano-García, B.; Parras-Alcántara, L. Short-term effects of olive mill by-products on soil organic carbon, total N, C:N ratio and stratification ratios in a Mediterranean olive grove. Agric. Ecosyst. Environ. 2013, 165, 68–73. [Google Scholar] [CrossRef]
- Potthast, K.; Hamer, U.; Makeschin, F. Land-use change in a tropical mountain rainforest region of southern Ecuador affects soil microorganisms and nutrient cycling. Biogeochemistry 2012, 111, 151–167. [Google Scholar] [CrossRef]
- McCauley, A.; Jones, C.; Jacobsen, J. Soil pH and organic matter. Nutr. Manag. Modul. 2009, 8, 1–12. [Google Scholar]
- Moir, J.; Jordan, P.; Moot, D.; Lucas, D. Phosphorus response and optimum pH ranges of twelve pasture legumes grown in an acid upland New Zealand soil under glasshouse conditions. J. Soil Sci. Plant Nutr. 2016, 16, 438–460. [Google Scholar] [CrossRef] [Green Version]
- Ansari, R.A.; Mahmood, I. Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Sci. Hortic. 2017, 226, 1–9. [Google Scholar] [CrossRef]
- Tumwebaze, S.B.; Byakagaba, P. Soil organic carbon stocks under coffee agroforestry systems and coffee monoculture in Uganda. Agric. Ecosyst. Environ. 2016, 216, 188–193. [Google Scholar] [CrossRef]
- Islam, M.; Dey, A.; Rahman, M. Effect of Tree Diversity on Soil Organic Carbon Content in the Homegarden Agroforestry System of North-Eastern Bangladesh. Small Scale For. 2014, 14, 91–101. [Google Scholar] [CrossRef]
- Ochoa, P.A.; Chamba, Y.M.; Arteaga, J.G.; Capa, E.D. Estimation of Suitable Areas for Coffee Growth Using a GIS Approach and Multicriteria Evaluation in Regions with Scarce Data. Appl. Eng. Agric. 2017, 33, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.; Gupta, B.; Bhutia, P.; Bisht, J.; Pattanayak, A. Biomass and carbon budgeting of land use types along elevation gradient in Central Himalayas. J. Clean. Prod. 2019, 211, 1284–1298. [Google Scholar] [CrossRef]
- Vesterdal, L.; Ritter, E.; Gundersen, P. Change in soil organic carbon following afforestation of former arable land. For. Ecol. Manag. 2002, 169, 137–147. [Google Scholar] [CrossRef]
- Stacy, E.M.; Hart, S.C.; Hunsaker, C.T.; Johnson, D.W.; Berhe, A.A. Soil carbon and nitrogen erosion in forested catchments: Implications for erosion-induced terrestrial carbon sequestration. Biogeosciences 2015, 12, 4861–4874. [Google Scholar] [CrossRef] [Green Version]
- Benítez, B.; Pereira, C.; González, F.; Bertoni, S. Plantas nativas e introducidas utilizadas por sus fibras en Paraguay; morfología, aprovechamiento y estado de conservación. Steviana 2009, 1, 5–23. [Google Scholar]
- Nichols, E.; Uriarte, M.; Bunker, D.E.; Favila, M.E.; Slade, E.M.; Vulinec, K.; Larsen, T.; Vaz-De-Mello, F.Z.; Louzada, J.; Naeem, S.; et al. Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology 2013, 94, 180–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otavo, S.E.; Parrado-Rosselli, Á.; Ari Noriega, J. Superfamilia Scarabaeoidea (Insecta: Coleoptera) como elemento bioindicador de perturbación antropogénica en un parque nacional amazónico. Rev. Biol. Trop. 2013, 61, 735–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noriega, J.A.; Palacio, J.M.; Monroy, J.D.; Valencia, E. Estructura de un ensamblaje de escarabajos coprofagos (Coleoptera: Scarabaeinae) en tres sitios con diferente uso del suelo en Antioquia, Colombia. Actual. Biol. 2012, 34, 43–54. [Google Scholar]
- Martínez, I.; Lumaret, J. Las prácticas agropecuarias y sus consecuencias en la entomofauna y el entorno ambiental. Folia Entomol. Mex. 2006, 45, 57–68. [Google Scholar]
- Sushko, G.G. Diversity and species composition of beetles in the herb-shrub layer of a large isolated raised bog in Belarus. Mires Peat 2017, 19. [Google Scholar] [CrossRef]
- Barragán, F.; Moreno, C.E.; Escobar, F.; Halffter, G.; Navarrete, D. Negative Impacts of Human Land Use on Dung Beetle Functional Diversity. PLoS ONE 2011, 6, e17976. [Google Scholar] [CrossRef] [Green Version]
- Rangel-Acosta, J.L.; Blanco-Rodríguez, O.R.; Martínez-Hernández, N.J. Escarabajos copro-necrófagos (Scarabaeidae: Scarabaeinae) en diferentes usos del suelo en la Reserva Campesina la Montaña (RCM) en el departamento del Atlántico, Colombia. Bol. Cient. Mus. His. Nat. 2016, 20, 78–98. [Google Scholar]
- Slade, E.M.; Mann, D.J.; Lewis, O.T. Biodiversity and ecosystem function of tropical forest dung beetles under contrasting logging regimes. Biol. Conserv. 2011, 144, 166–174. [Google Scholar] [CrossRef]
- Hill, C.J. Habitat specificity and food preferences of an assemblage of tropical Australian dung beetles. J. Trop. Ecol. 1996, 12, 449–460. [Google Scholar] [CrossRef]
- Andresen, E.; Laurance, G. Possible indirect effects of mammal on dung beetle assemblages in Panama. Biotropica 2007, 39, 141–146. [Google Scholar] [CrossRef]
- Whipple, S.D.; Hoback, W.W. A Comparison of Dung Beetle (Coleoptera: Scarabaeidae) Attraction to Native and Exotic Mammal Dung. Environ. Ѐntomol. 2012, 41, 238–244. [Google Scholar] [CrossRef] [Green Version]
- Carvajal, V.; Villamarín, S.; Ortega, A. Escarabajos del Ecuador. Principales géneros. Serie Entomología 1; Instituto de Ciencias Biológicas, Escuela Politécnica Nacional: Quito, Ecuador, 2011. [Google Scholar]
- Barraza, J.M.; Montes, J.F.; Martínez, N.H.; DElOyA, C. Ensamblaje de escarabajos coprófagos (Scarabaeidae: Scarabaeinae) del Bosque Tropical Seco, Bahía Concha, Santa Marta (Colombia)/Assemblage of Coprophagous Beetles (Scarabaeidae: Scarabaeinae) of Tropical Dry Forest in Bahia Concha, Santa Marta (Colombia). Rev. Colomb. Entomol. 2010, 36, 285. [Google Scholar]
- Bustos, L.; Lopera, A. Preferencia por Cebo de los Escarabajos Coprófagos (Coleóptera: Scarabaeidae: Scarabaeinae) de un Remanente de Bosque Seco Tropical al Norte del Tolima (Colombia); M3m monografías tercer milenio SEA: Zaragoza, España, 2003. [Google Scholar]
- Beiroz, W.; Slade, E.M.; Barlow, J.; Silveira, J.M.; Louzada, J.; Sayer, E. Dung beetle community dynamics in undisturbed tropical forests: Implications for ecological evaluations of land-use change. Insect Conserv. Divers. 2016, 10, 94–106. [Google Scholar] [CrossRef] [Green Version]
- Herzog, S.K.; Hamel-Leigue, A.C.; Larsen, T.H.; Mann, D.J.; Soria-Auza, R.W.; Gill, B.D.; Edmonds, W.D.; Spector, S. Elevational Distribution and Conservation Biogeography of Phanaeine Dung Beetles (Coleoptera: Scarabaeinae) in Bolivia. PLoS ONE 2013, 8, e64963. [Google Scholar] [CrossRef] [Green Version]
- Lobo, J.M.; Halffter, G. Biogeographical and Ecological Factors Affecting the Altitudinal Variation of Mountainous Communities of Coprophagous Beetles (Coleoptera: Scarabaeoidea): A Comparative Study. Ann. Ѐntomol. Soc. Am. 2000, 93, 115–126. [Google Scholar] [CrossRef]
- Sands, B.; Wall, R. Sustained parasiticide use in cattle farming affects dung beetle functional assemblages. Agric. Ecosyst. Environ. 2018, 265, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Brussaard, L.; Slager, S. The influence of soil bulk density and soil moisture on the habitat selection of the dung beetleTyphaeus typhoeus in the Netherlands. Biol. Fertil. Soils 1986, 2, 51–58. [Google Scholar] [CrossRef]
- Cultid, C.; Medina, C.; Martínez, B.; Escobar, A.; Constantino, L.; Betancur, N. Escarabajos Coprófagos (Scarabaeinae) del eje Cafetero. Guía Para el Estudio Ecológico; WCS-Colombia, CENICAFÉ y Federación Nacional de Cafeteros: Villa María, Colombia, 2012. [Google Scholar]
- Kaleri, A.R.; Ma, J.; Jakhar, A.M.; Hakeem, A.; Ahmed, A.; Wado Photo Faqir Napar; Ahmed, S.; Han, Y.; Abro, S.A.; Nabi, F.; et al. Effects of Dung Beetle-Amended Soil on Growth, Physiology, and Metabolite Contents of Bok Choy and Improvement in Soil Conditions. J. Soil Sci. Plant Nutr. 2020, 20, 2671–2683. [Google Scholar] [CrossRef]
- Korasaki, V.; Braga, R.F.; Zanetti, R.; Moreira, F.M.S.; Vaz-De-Mello, F.Z.; Louzada, J. Conservation value of alternative land-use systems for dung beetles in Amazon: Valuing traditional farming practices. Biodivers. Conserv. 2013, 22, 1485–1499. [Google Scholar] [CrossRef]
- Frank, K.; Hülsmann, M.; Assmann, T.; Schmitt, T.; Blüthgen, N. Land use affects dung beetle communities and their ecosystem service in forests and grasslands. Agric. Ecosyst. Environ. 2017, 243, 114–122. [Google Scholar] [CrossRef]
- Haynes, R.; Williams, P. Nutrient Cycling and Soil Fertility in the Grazed Pasture Ecosystem. Adv. Agron. 1993, 49, 119–199. [Google Scholar] [CrossRef]
- Davis, A.L.V.; Scholtz, C.H. Historical vs. ecological factors influencing global patterns of scarabaeine dung beetle diversity. Divers. Distrib. 2001, 7, 161–174. [Google Scholar] [CrossRef]
- Braga, R.F.; Korasaki, V.; Andresen, E.; Louzada, J. Dung Beetle Community and Functions along a Habitat-Disturbance Gradient in the Amazon: A Rapid Assessment of Ecological Functions Associated to Biodiversity. PLoS ONE 2013, 8, e57786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menéndez, R.; Webb, P.; Orwin, K.H. Complementarity of dung beetle species with different functional behaviours influence dung–soil carbon cycling. Soil Biol. Biochem. 2016, 92, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Celi, J.; Dávalos, A. Manual de Monitoreo. Los Escara-Bajos Peloteros Como Indicadores de la Calidad Ambiental; Eco-Ciencia: Quito, Ecuador, 2001; p. 71. [Google Scholar]
L-UCH | Altitude (m a.s.l.) | Temperature (°C) |
---|---|---|
Coffee in an old agroforestry system (CoAS) | 1404 | 22.1 |
Seasonally dry forest disturbed (SDF) | 1525 | 21.6 |
Organic crop area (OCA) | 1558 | 22.1 |
Grassland (GLd) | 1861 | 22.4 |
Coffee in a young agroforestry system (CyAS) | 1959 | 20.6 |
Land Use Pattern | Bulk Density | Sand | Silt | Clay | Textural Class |
---|---|---|---|---|---|
(g cm−3) | % | % | % | ||
CoAS | 0.80 ± 0.1 a | 69.2 ± 3.1 a | 16.0 ± 3.5 b | 14.8 ± 6.4 a | Loam-sandy soil |
SDF | 0.71 ± 0.1 a | 77.2 ± 6.1 a | 11.3 ± 3.1 ab | 11.4 ± 5.3 a | Loam-sandy soil |
OCA | 0.92 ± 0.1 ab | 74.6 ± 2.0 a | 12.7 ± 1.2 ab | 12.8 ± 1.2 a | Loam-sandy soil |
GLd | 1.12 ± 0.1 b | 75.8 ± 2.0 a | 7.3 ± 1.2 a | 16.2 ± 0.0 a | Loam-sandy soil |
CyAS | 1.05 ± 0.1 b | 70.5 ± 3.1 a | 11.3 ± 4.21 ab | 18.2 ± 2.0 a | Loam-sandy soil |
Land Use Pattern | pH | SOM | TN | SOC | C/N Ratio | P | k |
---|---|---|---|---|---|---|---|
% | % | % | (mg/kg) | (cmol/kg) | |||
CoAS | 6.03 ± 0.5 b | 6.7± 2,9 b | 0.34 ± 0.15 b | 3.9 ± 1.73 b | 11.5 ± 0.2 a | 31.8 ± 39.5 ab | 0.66± 0.5 ab |
SDF | 6.0 ± 0.6 b | 4.5 ± 0.9 ab | 0.23 ± 0.05 ab | 2.6 ± 0.56 ab | 11.3 ± 0.2 a | 37.6 ± 60.8 ab | 0.54 ± 0.4 ab |
OCA | 6.7 ± 0.4 b | 3.7± 1.5 ab | 0.18 ± 0.07 ab | 2.2 ± 0.89 ab | 11.6 ± 0.1 a | 87.5 ± 34.6 b | 1.32± 0.7 b |
GLd | 5.2 ± 0.3 a | 2.3± 0.7 a | 0.11 ± 0.04 a | 1.3 ± 0.44 a | 11.8 ± 0.8 a | 4.6 ± 0.7 a | 0.13± 0.1 a |
CyAS | 5.01 ± 0.2 a | 2.1± 0.8 a | 0.11 ± 0.04 a | 1.2 ± 0.46 a | 11.4 ± 0.6 a | 4.3 ± 1.3 a | 0.18± 0.2 a |
Species | Land Uses | p-Value | ||||
---|---|---|---|---|---|---|
CoAS | SDF | OCA | GLd | CyAS | ||
Aphodius sp1 | 0.08 ± 0.3 a | 0.0 ± 0.0 a | 0.04 ± 0.2 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.248 |
Canthon balteatus (Boheman, 1858) | 1.0 ± 0.4 b | 0.3 ± 0.6 b | 5.5 ± 2.0 ab | 5.4 ± 1.9 ab | 24.4 ± 7.9 a | 0.000 |
Dichotomius problematicus (Luederwaldt, 1923) | 1.2 ± 0.6b | 4.5 ± 1.7 ab | 5.7 ± 1.9 ab | 6.4 ± 1.8 ab | 9.9 ± 4.4 a | 0.000 |
Onoreidium ohausi (Arrow, 1931) | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 0.2 ± 0.0 a | 0.002 |
Onthophagus confusus Boucomont, 1932 | 4.7 ± 2.8 a | 0.3 ± 0.5 b | 2.3 ± 1.3 ab | 1.1 ± 0.4 ab | 5.2 ± 2.3 a | 0.000 |
Onthophagus curvicornis Latreille, 1811 | 6.1 ± 2.0 b | 0.5 ± 0.7 a | 1.7 ± 2.4 ab | 0.0 ± 0.2 a | 1.6 ± 0.8 ab | 0.000 |
Phanaeus achilles Boheman, 1858 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.1 ± 0.3 a | 0.2 ± 0.2 a | 0.056 |
Total number of species found | 5 | 4 | 5 | 4 | 6 | --- |
Shannon_H´ | 1.1 ± 0.2 b | 1.1 ± 0.1 b | 1.0 ± 0.2 b | 0.9 ± 0.1 b | 0.4 ± 0.4 a | 0.000 |
Simpson | 0.4 ± 0.1 ab | 0.8 ± 0.3 b | 0.3 ± 0.0 a | 0.4 ± 0.0 ab | 0,4 ± 0.4 ab | 0.000 |
Type of Vertebrate/Uses of Manure | CoAS | SDF | OCA | GLd | CyAS | |||||
---|---|---|---|---|---|---|---|---|---|---|
X | Ca (ind./ha) | X | Ca (ind./ha) | X | Ca (ind./ha) | X | Ca (ind./ha) | X | Ca (ind./ha) | |
Native vertebrates | ||||||||||
Anteater | 0.3 | Nd | 1.0 | Nd | 0.0 | Nd | 0.0 | Nd | 0.3 | Nd |
Deer | 0.4 | Nd | 1.0 | Nd | 0.1 | Nd | 0.0 | Nd | 0.1 | Nd |
Skunk | 0.0 | Nd | 1.0 | Nd | 0.1 | Nd | 0.1 | Nd | 0.3 | Nd |
Opossum | 0.1 | Nd | 1.0 | Nd | 0.0 | Nd | 0.0 | Nd | 0.0 | Nd |
Squirrels | 0.4 | Nd | 0.4 | Nd | 0.0 | Nd | 0.0 | Nd | 0.0 | Nd |
Exotic vertebrates | ||||||||||
Goats | 0.4 | 5 ind/1 hectare/1 month | 1.0 | 5 ind./hectare/1 months | 0.0 | 0.4 | 3 ind/hectare/1 month | 0.0 | ||
Cows | 0.0 | 0.3 | 2 ind./hectare/1 months | 0.0 | 1.0 | 1 ind/hectare/1 month | 0.8 | 1 ind/hectare/1 month | ||
Donkeys | 0.0 | 0.1 | 2 ind./hectare/1 months | 0.4 | 4 ind/1 hectare/1 month | 0.8 | 5 ind/1 hectare/1 month | 0.0 | ||
Horses | 0.0 | 0.3 | 2 ind./hectare/1 months | 0.3 | 4 ind/1 hectare/1 month | 0.9 | 5 ind/1 hectare/1 month | 0.6 | 1 ind/hectare/1 month | |
Uses of manure | CoAS | SDF | OCA | GLd | CyAS | |||||
X | X | X | X | X | ||||||
Do you apply dung from domestic animals directly to the soil? | 0.8 | 0.0 | 0.9 | 0.9 | 0.8 | |||||
Do you use organic fertilizers? | 0.5 | 0.0 | 0.9 | 0.9 | 0.9 | |||||
Do you use human feces? | 0.5 | 0.0 | 0.5 | 0.4 | 0.8 |
Response Variable | Explanatory Variable | Error Standard | Z-Value | p-Value |
---|---|---|---|---|
Total abundance | Abiotic factors | |||
Altitude | 0.000 | 20.584 | <0.001 | |
Temperature | 0.027 | 21.320 | <0.001 | |
Edaphic properties | ||||
Bd | 0.146 | 15.870 | <0.001 | |
pH | 0.037 | −15.880 | <0.001 | |
SOM | 0.015 | −14.480 | <0.001 | |
N | 0.293 | −13.980 | <0.001 | |
P | 0.001 | −10.480 | <0.001 | |
K | 0.054 | −10.850 | <0.001 | |
C | 0.026 | −14.430 | <0.001 | |
C/N ratio | 0.140 | −1.343 | 0.179 | |
Land Uses | ||||
CoAS | 0.055 | 72.466 | <0.001 | |
CyAS | 0.064 | 16.323 | <0.001 | |
GLd | 0.078 | 0.078 | 0.938 | |
OCA | 0.075 | 2.488 | 0.013 | |
SDFi | 0.097 | −7.493 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrión-Paladines, V.; Fries, A.; Muñoz, A.; Castillo, E.; García-Ruiz, R.; Marín-Armijos, D. Effects of Land-Use Change on the Community Structure of the Dung Beetle (Scarabaeinae) in an Altered Ecosystem in Southern Ecuador. Insects 2021, 12, 306. https://doi.org/10.3390/insects12040306
Carrión-Paladines V, Fries A, Muñoz A, Castillo E, García-Ruiz R, Marín-Armijos D. Effects of Land-Use Change on the Community Structure of the Dung Beetle (Scarabaeinae) in an Altered Ecosystem in Southern Ecuador. Insects. 2021; 12(4):306. https://doi.org/10.3390/insects12040306
Chicago/Turabian StyleCarrión-Paladines, Vinicio, Andreas Fries, Andrés Muñoz, Eddy Castillo, Roberto García-Ruiz, and Diego Marín-Armijos. 2021. "Effects of Land-Use Change on the Community Structure of the Dung Beetle (Scarabaeinae) in an Altered Ecosystem in Southern Ecuador" Insects 12, no. 4: 306. https://doi.org/10.3390/insects12040306
APA StyleCarrión-Paladines, V., Fries, A., Muñoz, A., Castillo, E., García-Ruiz, R., & Marín-Armijos, D. (2021). Effects of Land-Use Change on the Community Structure of the Dung Beetle (Scarabaeinae) in an Altered Ecosystem in Southern Ecuador. Insects, 12(4), 306. https://doi.org/10.3390/insects12040306