The Draft Genome of Yellow Stem Borer, an Agriculturally Important Pest, Provides Molecular Insights into Its Biology, Development and Specificity Towards Rice for Infestation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. YSB Sampling and Sequencing
2.2. De Novo Assembly and Gene Prediction
2.3. Non-Coding RNA Identification
2.4. Repeat Element Identification and SSR Mining
2.5. Gene annotation, Gene Ontology, KEGG Pathway, and Cluster of Orthologous Groups (COG) Analysis
2.6. Phylogenetic Analysis
2.7. Comparative Genomics
2.8. Flow Cytometry Using Fluorescence-Activated Cell Sorting (FACS) Method
2.8.1. Plant Material
2.8.2. Buffer Preparation
2.8.3. Sample Preparation
2.9. Flow Cytometric Analyses
2.10. RNA-seq Mapping
2.11. Evolutionary Analysis
3. Results
3.1. YSB Genome Size Estimation and Assembly Statistics
3.2. Structural Annotation of YSB
3.2.1. Protein-Coding Genes Prediction
3.2.2. Non-Coding RNAs (ncRNAs)
3.2.3. Transposable Elements
3.3. Functional Annotation
3.3.1. Genes Governing Body Parts
3.3.2. Gene Regulation in YSB
Transcription Factors (TFs)
Hormonal Regulation
Epigenetic Mechanism
3.4. YSB as a Monophagous Rice Pest
3.4.1. Visual Perception
3.4.2. Chemosensation
3.4.3. Digestion
3.5. Defensive Mechanisms in YSB
3.5.1. Metabolic Detoxification
3.5.2. Circadian Genes
3.6. Behavioural Activities of YSB
3.6.1. Cacophony
3.6.2. Gravitaxis
3.6.3. Anaerobic Environment
3.6.4. Serotonin Receptor
3.7. Genomics-Assisted Management of YSB
3.7.1. Insecticide Targets
3.7.2. Immunity Genes
3.7.3. Insect Effectors
3.7.4. RNAi Machinery
3.8. Genomic Resources
3.9. Mapping the Transcriptome Data to the Genome
3.10. Comparative Genomic Analysis
3.11. Evolutionary Timeline Analysis of YSB and Three Major Rice Pests
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Maize, Rice, Wheat: A Guide to Sustainable Cereal Production; FAO: Rome, Italy, 2016. [Google Scholar]
- FAOSTAT. Food and Agriculture Organization of the United Nations Statistics Division. Available online: http://www.fao.org/faostat/en/#home (accessed on 26 September 2016).
- Pathak, M.D.; Khan, Z.R. Insect Pests of Rice; International Rice Research Institute: Los Baños, Philippines, 1994. [Google Scholar]
- Rubia, E.G.; Shepard, B.M.; Yambao, E.B.; Ingram, K.T.; Arida, G.S.; de Penning, V. Stem borer damage and grain yield of flooded rice. J. Plant Prot. Trop. 1989, 6, 205–211. [Google Scholar]
- Shepard, B.M. Rice-Feeding Insects of Tropical Asia; International Rice Research Institute: Los Baños, Philippines, 1995. [Google Scholar]
- Taylor, B. The impact of yellow stem-borer, Scirpophaga incertulas (Walker) (Lepidoptera: Pyralidae), on deepwater rice, with special reference to Bangladesh. Bull. Entomol. Res. 1988, 78, 209–225. [Google Scholar] [CrossRef]
- Taylor, B. Scirpophaga incertulas (Walker) (Lepidoptera: Pyralidae) and deepwater rice—An integrated view. Crop Prot. 1996, 15, 649–655. [Google Scholar] [CrossRef]
- Datta, S.K.; A Promising Debut for Bt Hybrid Rice. Insect Resistance. Inf. Syst. Biotechnol. News Rep. Sept. 2000, 1–3. Available online: http://www.biotech-info.net/promising_debut.html (accessed on 23 April 2016).
- Evans, J.D.; Gundersen-Rindal, D. Beenomes to Bombyx: Future directions in applied insect genomics. Genome Biol. 2003, 4, 1–4. [Google Scholar] [CrossRef]
- Li, F.; Zhao, X.; Li, M.; He, K.; Huang, C.; Zhou, Y.; Li, Z.; Walters, J.R. Insect genomes: Progress and challenges. Insect Mol. Biol. 2019, 28, 739–758. [Google Scholar] [CrossRef] [Green Version]
- Renuka, P.; Madhav, M.S.; Padmakumari, A.P.; Barbadikar, K.M.; Mangrauthia, S.K.; Sudhakara Rao, K.V.; Marla, S.S.; Babu, V.R. RNA-seq of rice yellow stem borer Scirpophaga incertulas reveals molecular insights during four larval developmental stages. G3 Genes Genomes Genet. 2017, 7, 3031–3045. [Google Scholar] [CrossRef] [Green Version]
- Padmakumari, A.P.; Katti, G.; Sailaja, V.; Padmavathi, C.; Lakshmi, V.J.; Prabhakar, M.; Prasad, Y.G. Delineation of larval instars in field populations of rice yellow stem borer, Scirpophaga incertulas (Walk.). ORYZA Int. J. Rice 2013, 50, 259–267. [Google Scholar]
- Thiel, T.; Michalek, W.; Varshney, R.K.; Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 2003, 106, 411–422. [Google Scholar] [CrossRef]
- Zala, H.N.; Kulkarni, K.S.; Bosamia, T.C.; Shukla, Y.M.; Kumar, S.; Fougat, R.S.; Patel, A. Development and validation of EST derived SSR markers with relevance to downy mildew (Sclerospora graminicola Sacc.) resistance in pearl millet [Pennisetum glaucum (L.) R. Br.]. J. Plant Biochem. Biotechnol. 2017, 26, 356–365. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galbraith, D.W.; Harkins, K.R.; Maddox, J.M.; Ayres, N.M.; Sharma, D.P.; Firoozabady, E. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 1983, 220, 1049–1051. [Google Scholar] [CrossRef]
- Lauressergues, D.; Couzigou, J.M.; San Clemente, H.; Martinez, Y.; Dunand, C.; Bécard, G.; Combier, J.P. Primary transcripts of microRNAs encode regulatory peptides. Nature 2015, 520, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Mirzoyan, Z.; Pandur, P. The Iroquois Complex Is Required in the Dorsal Mesoderm to Ensure Normal Heart Development in Drosophila. PLoS ONE 2013, 8, e76498. [Google Scholar] [CrossRef]
- Ashok, M.; Turner, C.; Wilson, T.G. Insect juvenile hormone resistance gene homology with the bHLH-PAS family of transcriptional regulators. Proc. Natl. Acad. Sci. USA 1998, 95, 2761–2766. [Google Scholar] [CrossRef] [Green Version]
- Jindra, M.; Palli, S.R.; Riddiford, L.M. The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol. 2013, 58, 181–204. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, W.; Liu, C.; Chen, L.; Xu, Y.; Xiao, H.; Liang, G. Methoprene-tolerant (Met) is indispensable for larval metamorphosis and female reproduction in the cotton bollworm helicoverpa armigera. Front. Physiol. 2018, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Yao, Y.; Wang, B. Methoprene-tolerant (Met) and Krüpple-homologue 1 (Kr-h1) are required for ovariole development and egg maturation in the brown plant hopper. Sci. Rep. 2015, 5, 18064. [Google Scholar] [CrossRef] [Green Version]
- Muramatsu, D.; Kinjoh, T.; Shinoda, T.; Hiruma, K. The role of 20-hydroxyecdysone and juvenile hormone in pupal commitment of the epidermis of the silkworm, Bombyx mori. Mech. Dev. 2008, 125, 411–420. [Google Scholar] [CrossRef]
- Cheng, D.; Qian, W.; Meng, M.; Wang, Y.; Peng, J.; Xia, Q. Identification and expression profiling of the btb domain-containing protein gene family in the Silkworm, Bombyx mori. Int. J. Genomics 2014, 2014, 865065. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, A.; Ukai-Tadenuma, M.; Yamada, R.G.; Houl, J.; Uno, K.D.; Kasukawa, T.; Dauwalder, B.; Itoh, T.Q.; Takahashi, K.; Ueda, R.; et al. A functional genomics strategy reveals clockwork orange as a transcriptional regulator in the Drosophila circadian clock. Genes Dev. 2007, 21, 1687–1700. [Google Scholar] [CrossRef] [Green Version]
- Tufail, M.; Takeda, M. Molecular characteristics of insect vitellogenins. J. Insect Physiol. 2008, 54, 1447–1458. [Google Scholar] [CrossRef]
- Lu, K.; Wang, Y.; Chen, X.; Zhang, X.; Li, W.; Cheng, Y.; Li, Y.; Zhou, J.; You, K.; Song, Y.; et al. Adipokinetic Hormone Receptor Mediates Trehalose Homeostasis to Promote Vitellogenin Uptake by Oocytes in Nilaparvata lugens. Front. Physiol. 2019, 10, 1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terakita, A. The opsins. Genome Biol. 2005, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bockaert, J.; Pin, J.P. Molecular tinkering of G protein-coupled receptors: An evolutionary success. EMBO J. 1999, 18, 1723–1729. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.L.; He, P.; Zhang, L.; Fang, S.Q.; Dong, S.L.; Zhang, Y.J.; Li, F. Large-scale identification of odorant-binding proteins and chemosensory proteins from expressed sequence tags in insects. BMC Genom. 2009, 10, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, F.G.; Rozas, J. Comparative genomics of the odorant-binding and chemosensory protein gene families across the arthropoda: Origin and evolutionary history of the chemosensory system. Genome Biol. Evol. 2011, 3, 476–490. [Google Scholar] [CrossRef] [PubMed]
- Silbering, A.F.; Benton, R. Ionotropic and metabotropic mechanisms in chemoreception: Chance or design? EMBO Rep. 2010, 11, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Zou, Z.; Lopez, D.L.; Kanost, M.R.; Evans, J.D.; Jiang, H. Comparative analysis of serine protease-related genes in the honey bee genome: Possible involvement in embryonic development and innate immunity. Insect Mol. Biol. 2006, 15, 603–614. [Google Scholar] [CrossRef]
- Lin, H.; Xia, X.; Yu, L.; Vasseur, L.; Gurr, G.M.; Yao, F.; Yang, G.; You, M. Genome-wide identification and expression profiling of serine proteases and homologs in the diamondback moth, Plutella xylostella (L.). BMC Genom. 2015, 16, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ffrench-Constant, R.H.; Daborn, P.J.; Le Goff, G. The genetics and genomics of insecticide resistance. Trends Genet. 2004, 20, 163–170. [Google Scholar] [CrossRef]
- Ono, H.; Rewitz, K.F.; Shinoda, T.; Itoyama, K.; Petryk, A.; Rybczynski, R.; Jarcho, M.; Warren, J.T.; Marqués, G.; Shimell, M.J.; et al. Spook and Spookier code for stage-specific components of the ecdysone biosynthetic pathway in Diptera. Dev. Biol. 2006, 298, 555–570. [Google Scholar] [CrossRef] [Green Version]
- Després, L.; David, J.P.; Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 2007, 22, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.W.; Liang, Q.M.; Xu, Y.; Gurr, G.M.; Bao, Y.Y.; Zhou, X.P.; Zhang, C.X.; Cheng, J.; Zhu, Z.R. Genomic Insights into the Glutathione S-Transferase Gene Family of Two Rice Planthoppers, Nilaparvata lugens (Stål) and Sogatella furcifera (Horváth) (Hemiptera: Delphacidae). PLoS ONE 2013, 8, e56604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, L.; Duggan, B.; Senn, R. Lepidoptera Working Group Session 2B Welcome Lepidoptera WG Members! Representative. 2016. Available online: https://irac-online.org/documents/lepidoptera-meeting-slides-20 (accessed on 23 April 2016).
- Nicholson, S.J.; Nickerson, M.L.; Dean, M.; Song, Y.; Hoyt, P.R.; Rhee, H.; Kim, C.; Puterka, G.J. The genome of Diuraphis noxia, a global aphid pest of small grains. BMC Genom. 2015, 16, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Jiang, F.; Wang, X.; Yang, P.; Bao, Y.; Zhao, W.; Wang, W.; Lu, H.; Wang, Q.; Cui, N.; et al. Genome sequence of the small brown planthopper, Laodelphax striatellus. Gigascience 2017, 6, gix109. [Google Scholar] [CrossRef]
- Saunders, D.S. Insect Clocks; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Smith, L.A.; Peixoto, A.A.; Kramer, E.M.; Villella, A.; Hall, J.C. Courtship and visual defects of cacophony mutants reveal functional complexity of a calcium-channel α1 subunit in Drosophila. Genetics 1998, 149, 1407–1426. [Google Scholar] [CrossRef]
- Hall, J.C. The mating of a fly. Science 1994, 264, 1702–1714. [Google Scholar] [CrossRef]
- Peixoto, A.A.; Hall, J.C. Analysis of temperature-sensitive mutants reveals new genes involved in the courtship song of Drosophila. Genetics 1998, 148, 827–838. [Google Scholar]
- Roshchina, V.V. New trends and perspectives in the evolution of neurotransmitters in microbial, plant, and animal cells. In Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2016; pp. 25–77. [Google Scholar]
- Kingsolver, M.B.; Hardy, R.W. Making connections in insect innate immunity. Proc. Natl. Acad. Sci. USA 2012, 109, 18639–18640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, H.; Kinoshita, K.; Ashida, M. Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J. Biol. Chem. 1996, 271, 13854–13860. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, J.M.C.; Sarkis, J.J.F.; Rossignol, P.A.; Spielman, A. Salivary apyrase of Aedes Aegypti: Characterization and secretory fate. Comp. Biochem. Physiol. Part B Biochem. 1984, 79, 81–86. [Google Scholar] [CrossRef]
- Ribeiro, J.M.C. Blood-feeding in mosquitoes: Probing time and salivary gland anti-haemostatic activities in representatives of three genera (Aedes, Anopheles, Culex). Med. Vet. Entomol. 2000, 14, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Nazzi, F.; Brown, S.P.; Annoscia, D.; Del Piccolo, F.; Di Prisco, G.; Varricchio, P.; Della Vedova, G.; Cattonaro, F.; Caprio, E.; Pennacchio, F. Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathog. 2012, 8, e1002735. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, Á.G.; Naylor, H.; Esteves, S.S.; Pais, I.S.; Martins, N.E.; Teixeira, L. The Toll-Dorsal Pathway Is Required for Resistance to Viral Oral Infection in Drosophila. PLoS Pathog. 2014, 10, e1004507. [Google Scholar] [CrossRef] [Green Version]
- Xi, Z.; Ramirez, J.L.; Dimopoulos, G. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog. 2008, 4, e1000098. [Google Scholar] [CrossRef]
- War, A.R.; Paulraj, M.G.; Ahmad, T.; Buhroo, A.A.; Hussain, B.; Ignacimuthu, S.; Sharma, H.C. Mechanisms of plant defense against insect herbivores. Plant Signal. Behav. 2012, 7, 1306–1320. [Google Scholar] [CrossRef] [Green Version]
- Howe, G.A.; Jander, G. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 2008, 59, 41–66. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Baldwin, I.T. New insights into plant responses to the attack from insect herbivores. Annu. Rev. Genet. 2010, 44, 1–24. [Google Scholar] [CrossRef]
- Ghildiyal, M.; Zamore, P.D. Small silencing RNAs: An expanding universe. Nat. Rev. Genet. 2009, 10, 94–108. [Google Scholar] [CrossRef] [Green Version]
- Siomi, M.C.; Sato, K.; Pezic, D.; Aravin, A.A. PIWI-interacting small RNAs: The vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 2011, 12, 246–258. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Wang, S.; He, K.; Jiang, M.; Li, F. Large-scale analysis reveals that the genome features of simple sequence repeats are generally conserved at the family level in insects. BMC Genomics 2017, 18, 1–10. [Google Scholar] [CrossRef]
- Ohbayashi, F.; Shimada, T.; Sugasaki, T.; Kawai, S.; Mita, K.; Oshiki, T.; Abe, H. Molecular structure of the copia-like retrotransposable element Yokozuna on the W chromosome of the silkworm, Bombyx mori. Genes Genet. Syst. 1998, 73, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Oakeshott, J.G.; Claudianos, C.; Russell, R.J.; Robin, G.C. Carboxyl/cholinesterases: A case study of the evolution of a successful multigene family. BioEssays 1999, 21, 1031–1042. [Google Scholar] [CrossRef]
- Zhan, S.; Merlin, C.; Boore, J.L.; Reppert, S.M. The monarch butterfly genome yields insights into long-distance migration. Cell 2011, 147, 1171–1185. [Google Scholar] [CrossRef] [Green Version]
- Dasmahapatra, K.K.; Walters, J.R.; Briscoe, A.D.; Davey, J.W.; Whibley, A.; Nadeau, N.J.; Zimin, A.V.; Salazar, C.; Ferguson, L.C.; Martin, S.H.; et al. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 2012, 487, 94. [Google Scholar]
- Nishikawa, H.; Iijima, T.; Kajitani, R.; Yamaguchi, J.; Ando, T.; Suzuki, Y.; Sugano, S.; Fujiyama, A.; Kosugi, S.; Hirakawa, H.; et al. A genetic mechanism for female-limited Batesian mimicry in Papilio butterfly. Nat. Genet. 2015, 47, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Liu, Y.; Liu, J.; Xiao, H.; Huang, S.; Lin, Y.; Han, Z.; Li, F. ChiloDB: A genomic and transcriptome database for an important rice insect pest Chilo suppressalis. Database 2014, 2014, bau065. [Google Scholar] [CrossRef] [Green Version]
- Gouin, A.; Bretaudeau, A.; Nam, K.; Gimenez, S.; Aury, J.M.; Duvic, B.; Hilliou, F.; Durand, N.; Montagné, N.; Darboux, I.; et al. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci. Rep. 2017, 7, 1–12. [Google Scholar]
- Bao, Y.Y.; Qu, L.Y.; Zhao, D.; Chen, L.B.; Jin, H.Y.; Xu, L.M.; Cheng, J.A.; Zhang, C.X. The genome- and transcriptome-wide analysis of innate immunity in the brown planthopper, Nilaparvata lugens. BMC Genom. 2013, 14, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Zhou, X.; Zhang, C.X.; Yu, L.L.; Fan, H.W.; Wang, Z.; Xu, H.J.; Xi, Y.; Zhu, Z.R.; Zhou, W.W.; et al. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biol. 2014, 15, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Kakumani, P.K.; Malhotra, P.; Mukherjee, S.K.; Bhatnagar, R.K. A draft genome assembly of the army worm, Spodoptera frugiperda. Genom. 2014, 104, 134–143. [Google Scholar] [CrossRef]
- Keightley, P.D.; Trivedi, U.; Thomson, M.; Oliver, F.; Kumar, S.; Blaxter, M.L. Analysis of the genome sequences of three Drosophila melanogaster spontaneous mutation accumulation lines. Genome Res. 2009, 19, 1195–1201. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Tang, N.; Gao, X.; Chang, Z.; Zhang, L.; Zhou, G.; Guo, D.; Zeng, Z.; Li, W.; Akinyemi, I.A.; et al. Genome sequence of a rice pest, the white-backed planthopper (Sogatella furcifera). Gigascience 2017, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, J.L.; Peyton, J.T.; Fiston-Lavier, A.S.; Teets, N.M.; Yee, M.C.; Johnston, J.S.; Bustamante, C.D.; Lee, R.E.; Denlinger, D.L. Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Nat. Commun. 2014, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Fang, X.; Yang, P.; Jiang, X.; Jiang, F.; Zhao, D.; Li, B.; Cui, F.; Wei, J.; Ma, C.; et al. The locust genome provides insight into swarm formation and long-distance flight. Nat. Commun. 2014, 5, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, S.; Gibbs, R.A.; Weinstock, G.M.; Brown, S.; Denell, R.; Beeman, R.W.; Gibbs, R.; Bucher, G.; Friedrich, M.; Grimmelikhuijzen, C.J.P.; et al. The genome of the model beetle and pest Tribolium castaneum. Nature 2008, 452, 949. [Google Scholar] [PubMed] [Green Version]
- Osanai-Futahashi, M.; Suetsugu, Y.; Mita, K.; Fujiwara, H. Genome-wide screening and characterization of transposable elements and their distribution analysis in the silkworm. Bombyx mori. Insect Biochem. Mol. Biol. 2008, 38, 1046–1057. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Cheng, T.; Xu, P.; Fang, T.; Xia, Q. Bombyx mori transcription factors: Genome-wide identification, expression profiles and response to pathogens by microarray analysis. J. Insect Sci. 2012, 12, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegner, M.; Stolt, C.C. From stem cells to neurons and glia: A Soxist’s view of neural development. Trends Neurosci. 2005, 28, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Laudet, V.; Stehelin, D.; Clevers, H. Ancestry and diversity of the HMG box superfamily. Nucleic Acids Res. 1993, 21, 2493–2501. [Google Scholar] [CrossRef] [Green Version]
- Kiefer, J.C. Back to basics: Sox genes. Dev. Dyn. 2007, 236, 2356–2366. [Google Scholar] [CrossRef]
- McKimmie, C.; Woerfel, G.; Russell, S. Conserved genomic organisation of Group B Sox genes in insects. BMC Genet. 2005, 6, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crémazy, F.; Berta, P.; Girard, F. Genome-wide analysis of Sox genes in Drosophila melanogaster. Mech. Dev. 2001, 109, 371–375. [Google Scholar] [CrossRef]
- Wilson, M.J.; Dearden, P.K. Evolution of the insect Sox genes. BMC Evol. Biol. 2008, 109, 371–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, K.; Shu, Y.; Zhou, J.; Zhang, X.; Zhang, X.; Chen, M.; Yao, Q.; Zhou, Q.; Zhang, W. Molecular characterization and RNA interference analysis of vitellogenin receptor from Nilaparvata lugens (Stål). J. Insect Physiol. 2015, 73, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Tian, P.; Tang, Y.; Yang, L.; Qiu, L.; He, H.; Ding, W.; Li, Z.; Li, Y. Molecular Characterization of Vitellogenin and Its Receptor in Sogatella furcifera, and Their Function in Oocyte Maturation. Front. Physiol. 2019, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Xing, Y.; Li, Y.; Yin, C.; Ge, C.; Li, F. DNA methyltransferases have an essential role in female fecundity in brown planthopper, Nilaparvata lugens. Biochem. Biophys. Res. Commun. 2015, 464, 83–88. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, J.L.; Liang, S.K.; Li, G.H.; Wang, F.H.; Ahmad, I. Differentially methylated genomic fragments related with sexual dimorphism of rice pests, Sogatella furcifera. Insect Sci. 2015, 22, 731–738. [Google Scholar] [CrossRef]
- Futahashi, R.; Kawahara-Miki, R.; Kinoshita, M.; Yoshitake, K.; Yajima, S.; Arikawa, K.; Fukatsu, T. Extraordinary diversity of visual opsin genes in dragonflies. Proc. Natl. Acad. Sci. USA 2015, 112, E1247–E1256. [Google Scholar] [CrossRef] [Green Version]
- Briscoe, A.D. Reconstructing the ancestral butterfly eye: Focus on the opsins. J. Exp. Biol. 2008. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Yuan, Q.; Froy, O.; Casselman, A.; Reppert, S.M. The two CRYs of the butterfly. Curr. Biol. 2005, 211, 1805–1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, S.; Ni, H.; Li, H.; Zhang, J.; Liu, X.; Zhang, Q. Molecular cloning, characterization, and mRNA expression of two Cryptochrome genes in Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ. Entomol. 2013, 106, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Metterville, D.; Briscoe, A.D.; Reppert, S.M. Insect cryptochromes: Gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 2007, 24, 948–955. [Google Scholar] [CrossRef] [Green Version]
- Rubin, E.B.; Shemesh, Y.; Cohen, M.; Elgavish, S.; Robertson, H.M.; Bloch, G. Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res. 2006, 16, 1352–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujikawa, K.; Seno, K.; Ozaki, M. A novel takeout-like protein expressed in the taste and olfactory organs of the blowfly, Phormia regina. FEBS J. 2006, 273, 4311–4321. [Google Scholar] [CrossRef]
- Du, J.; Hiruma, K.; Riddiford, L.M. A novel gene in the takeout gene family is regulated by hormones and nutrients in Manduca larval epidermis. Insect Biochem. Mol. Biol. 2003, 33, 803–814. [Google Scholar] [CrossRef]
- Smadja, C.; Shi, P.; Butlin, R.K.; Robertson, H.M. Large gene family expansions and adaptive evolution for odorant and gustatory receptors in the pea aphid, Acyrthosiphon pisum. Mol. Biol. Evol. 2009, 26, 2073–2086. [Google Scholar] [CrossRef] [Green Version]
- Terrapon, N.; Li, C.; Robertson, H.M.; Ji, L.; Meng, X.; Booth, W.; Chen, Z.; Childers, C.P.; Glastad, K.M.; Gokhale, K.; et al. Molecular traces of alternative social organization in a termite genome. Nat. Commun. 2014, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Croset, V.; Rytz, R.; Cummins, S.F.; Budd, A.; Brawand, D.; Kaessmann, H.; Gibson, T.J.; Benton, R. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet. 2010, 6, e1001064. [Google Scholar] [CrossRef] [Green Version]
- Gong, D.P.; Zhang, H.J.; Zhao, P.; Xia, Q.Y.; Xiang, Z.H. The odorant binding protein gene family from the genome of silkworm, bombyx mori. BMC Genom. 2009, 10, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Papanicolaou, A.; Liu, N.Y.; Dong, S.L.; Anderson, A. Chemosensory receptor genes in the Oriental tobacco budworm Helicoverpa assulta. Insect Mol. Biol. 2015, 24, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Vieira, F.G.; Sánchez-Gracia, A.; Rozas, J. Comparative genomic analysis of the odorant-binding protein family in 12 Drosophila genomes: Purifying selection and birth-and-death evolution. Genome Biol. 2007, 8, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Forêt, S.; Maleszka, R. Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res. 2006, 16, 1404–1413. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Qu, C.; Hewes, R.S. Neuronal remodeling during metamorphosis is regulated by the alan shepard (shep) gene in Drosophila melanogaster. Genetics 2014, 197, 1267–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, E.; Xu, T.; Haddada, G.G. Gene regulation by O2 deprivation: An anoxia-regulated novel gene in Drosophila melanogaster. Mol. Brain Res. 1999, 63, 217–224. [Google Scholar] [CrossRef]
- Olesnicky, E.C.; Antonacci, S.; Popitsch, N.; Lybecker, M.C.; Titus, M.B.; Valadez, R.; Derkach, P.G.; Marean, A.; Miller, K.; Mathai, S.K.; et al. Shep interacts with posttranscriptional regulators to control dendrite morphogenesis in sensory neurons. Dev. Biol. 2018, 444, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Majeed, Z.R.; Abdeljaber, E.; Soveland, R.; Cornwell, K.; Bankemper, A.; Koch, F.; Cooper, R.L. Modulatory Action by the Serotonergic System: Behavior and Neurophysiology in Drosophila melanogaster. Neural Plast. 2016, 2016, 7291438. [Google Scholar] [CrossRef] [Green Version]
- Paulk, A.C.; Dacks, A.M.; Phillips-Portillo, J.; Fellous, J.M.; Gronenberg, W. Visual processing in the central bee brain. J. Neurosci. 2009, 29, 9987–9999. [Google Scholar] [CrossRef] [Green Version]
- Dacks, A.M.; Christensen, T.A.; Hildebrand, J.G. Modulation of olfactory information processing in the antennal lobe of Manduca sexta by serotonin. J. Neurophysiol. 2008, 99, 2077–2085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrés, M.; Seifert, M.; Spalthoff, C.; Warren, B.; Weiss, L.; Giraldo, D.; Winkler, M.; Pauls, S.; Göpfert, M.C. Auditory Efferent System Modulates Mosquito Hearing. Curr. Biol. 2016, 26, 2028–2036. [Google Scholar] [CrossRef] [Green Version]
- French, A.S.; Simcock, K.L.; Rolke, D.; Gartside, S.E.; Blenau, W.; Wright, G.A. The role of serotonin in feeding and gut contractions in the honeybee. J. Insect Physiol. 2014, 61, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Giese, M.; Gestrich, J.; Massah, A.; Peterle, J.; Wei, H.Y.; Stengl, M. GABA- and serotonin-expressing neurons take part in inhibitory as well as excitatory input pathways to the circadian clock of the Madeira cockroach Rhyparobia maderae. Eur. J. Neurosci. 2018, 47, 1067–1080. [Google Scholar] [CrossRef] [PubMed]
- Sitaraman, D.; Zars, M.; LaFerriere, H.; Chen, Y.C.; Sable-Smith, A.; Kitamoto, T.; Rottinghaus, G.E.; Zars, T. Serotonin is necessary for place memory in Drosophila. Proc. Natl. Acad. Sci. USA 2008, 105, 5579–5584. [Google Scholar] [CrossRef] [Green Version]
- Sitaraman, D.; LaFerriere, H.; Birman, S.; Zars, T. Serotonin is critical for rewarded olfactory short-term memory in Drosophila. J. Neurogenet. 2012, 26, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Raymond-Delpech, V.; Matsuda, K.; Sattelle, B.M.; Rauh, J.J.; Sattelle, D.B. Ion channels: Molecular targets of neuroactive insecticides. Invertebr. Neurosci. 2005, 5, 119–133. [Google Scholar] [CrossRef]
- Jones, A.K.; Bera, A.N.; Lees, K.; Sattelle, D.B. The cys-loop ligand-gated ion channel gene superfamily of the parasitoid wasp, Nasonia vitripennis. Heredity 2010, 104, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Lemaitre, B.; Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 2007, 25, 697–743. [Google Scholar] [CrossRef] [Green Version]
- Ashida, M.; Brey, P.T. Recent advances in research on the insect prophenoloxidase cascade. In Molecular Mechanisms of Immune Responses in Insects; Chapman & Hall: New York, NY, USA, 1998; pp. 135–172. [Google Scholar]
- Wu, K.; Zhang, J.; Zhang, Q.; Zhu, S.; Shao, Q.; Clark, K.D.; Liu, Y.; Ling, E. Plant phenolics are detoxified by prophenoloxidase in the insect gut. Sci. Rep. 2015, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hultmark, D.; Engström, A.; Andersson, K.; Steiner, H.; Bennich, H.; Boman, H.G. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J. 1983, 2, 571–576. [Google Scholar] [CrossRef]
- Cheng, T.; Zhao, P.; Liu, C.; Xu, P.; Gao, Z.; Xia, Q.; Xiang, Z. Structures, regulatory regions, and inductive expression patterns of antimicrobial peptide genes in the silkworm Bombyx mori. Genomics 2006, 87, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Evans, J.D.; Lu, Z.; Zhao, P.; Williams, M.; Sumathipala, N.; Hetru, C.; Hultmark, D.; Jiang, H. Comparative genomic analysis of the Tribolium immune system. Genome Biol. 2007, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Peiffer, M.; Luthe, D.S.; Felton, G.W. ATP hydrolyzing salivary enzymes of caterpillars suppress plant defenses. PLoS ONE 2012, 7, e41947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funk, C.J. Alkaline phosphatase activity in whitefly salivary glands and saliva. Arch. Insect Biochem. Physiol. 2001, 46, 165–174. [Google Scholar] [CrossRef]
- Mattiacci, L.; Dicke, M.; Posthumus, M.A. β-Glucosidase: An elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc. Natl. Acad. Sci. USA 1995, 92, 2036–2040. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.Y.; Liu, Y.Q.; Song, W.M.; Chen, D.Y.; Chen, F.Y.; Chen, X.Y.; Chen, Z.W.; Ge, S.X.; Wang, C.Z.; Zhan, S.; et al. An effector from cotton bollworm oral secretion impairs host plant defense signaling. Proc. Natl. Acad. Sci. USA 2019, 118, 14331–14338. [Google Scholar] [CrossRef] [Green Version]
- Kola, V.S.R.; Pichili, R.; Padmakumari, A.P.; Mangrauthia, S.K.; Balachandran, S.M.; Madhav, M.S. Knockdown of acetylcholinesterase (AChE) gene in rice yellow stem borer, Scirpophaga incertulas (Walker) through RNA interference. Agric. Gene 2019, 11, 100081. [Google Scholar] [CrossRef]
- Diehl, S.R.; Bush, G.L. An evolutionary and applied perspective of insect biotypes. Annu. Rev. Entomol. 1984, 29, 471–504. [Google Scholar] [CrossRef]
- Ratnieks, F.L.W.; Keller, L. Queen control of egg fertilization in the honey bee. Behav. Ecol. Sociobiol. 1998, 44, 57–61. [Google Scholar] [CrossRef]
- Abe, J.; Kamimura, Y.; Shimada, M.; West, S.A. Extremely female-biased primary sex ratio and precisely constant male production in a parasitoid wasp Melittobia. Anim. Behav. 2009, 78, 515–523. [Google Scholar] [CrossRef]
- Khidr, S.K.; Hardy, I.C.W.; Zaviezo, T.; Mayes, S. Development of microsatellite markers and detection of genetic variation between Goniozus wasp populations. J. Insect Sci. 2014, 14, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mean Fluorescence Values (with Internal Control) | Genome Size of YSB (Mb) | ||
---|---|---|---|
Species | D. melanogaster | S. incertulas | |
R1 | 73,073 | 145,138 | 347.6 Mb |
R2 | 78,370 | 156,105 | 348.58 Mb |
R3 | 21,116 | 43,991 | 370 Mb |
R4 | 21,140 | 44,633 | 369 Mb |
No. of Scaffolds | 310,612 |
---|---|
Total no. of bases (bp) | 308,440,134 |
Average scaffold size (bp) | 993 |
Scaffold N50 (bp) | 1260 |
L50 sequence count | 71,684 |
Max scaffold size (bp) | 46,270 |
Min scaffold size (bp) | 300 |
GC content (%) | 36.37 |
Species | Cytochrome P450s (CYPs) | Glutathione-S-Transferases (GSTs) | ATP-Binding Cassette Transporters (ABC Transporters) | Carboxyl/Cholinesterase (CCEs) | UDP-Glycosyl Transferases (UGTs) | References |
---|---|---|---|---|---|---|
Scirpophaga incertulas | 134 | 27 | 144 | 31 | 10 | |
Acyrthosiphon pisum | 80 | 28 | 113 | 29 | - | [42] |
Laodelphax striatellus | 76 | 29 | 73 | 54 | 26 | [43] |
Sogatella furcifera | 66 | 28 | 74 | 41 | 19 | |
Nilaparvata lugens | 79 | 27 | 87 | 61 | 19 |
YSB Microsatellite Search Results | |
---|---|
Total number of sequences examined | 310,612 |
Total size of examined sequences (bp) | 308,440,134 |
Total number of identified SSRs | 21,696 |
Number of SSR-containing sequences | 19,637 |
Number of sequences containing more than 1 SSR | 1784 |
Number of SSRs present in compound formation | 1147 |
Description | Scirpophaga incertulas |
---|---|
No. of reads | 118,228,459 |
Total data in Gb | 23.6 |
Feeding Pattern | Insect Species | Odorant Receptors (OR) | Odorant Binding Proteins (OBP) | Gustatory Receptors (GR) | Ionotropic Receptors (IR) | Chemosensory Proteins (CSP) | References |
---|---|---|---|---|---|---|---|
Monophagous | Scirpophaga incertulas | 21 | 19 | 18 | 43 | 16 | - |
Monophagous | Nilaparvata lugens | 44 | 10 | 4 | 44 | 27 | [43] |
Oligophagous | Acyrthosiphon pisum | 79 | 15 | 77 | 15 | 10 | [97,98] |
Oligophagous | Bombyx mori | 64 | 44 | 14 | 25 | 19 | [99,100] |
Oligophagous | Danaus plexippus | 64 | 32 | 47 | 27 | 34 | [64,101] |
Polyphagous | Drosophila melanogaster | 62 | 66 | 68 | 66 | 4 | [99,102] |
Polyphagous | Apis mellifera | 170 | 21 | 10 | - | 6 | [103] |
Polyphagous | Tribolium castaneum | 264 | 49 | 219 | 72 | 19 | [76] |
Polyphagous | Sogatella furcifera | 39 | 14 | 5 | 22 | 24 | [43] |
Polyphagous | Laodelphax striatellus | 106 | 16 | 12 | 38 | 31 | [43] |
Polyphagous | Spodoptera frugiperda | 69 | 51 | 230 | 43 | 22 | [68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kattupalli, D.; Barbadikar, K.M.; Balija, V.; Ballichatla, S.; R, A.; Padmakumari, A.P.; Saxena, S.; Gaikwad, K.; Yerram, S.; Kokku, P.; et al. The Draft Genome of Yellow Stem Borer, an Agriculturally Important Pest, Provides Molecular Insights into Its Biology, Development and Specificity Towards Rice for Infestation. Insects 2021, 12, 563. https://doi.org/10.3390/insects12060563
Kattupalli D, Barbadikar KM, Balija V, Ballichatla S, R A, Padmakumari AP, Saxena S, Gaikwad K, Yerram S, Kokku P, et al. The Draft Genome of Yellow Stem Borer, an Agriculturally Important Pest, Provides Molecular Insights into Its Biology, Development and Specificity Towards Rice for Infestation. Insects. 2021; 12(6):563. https://doi.org/10.3390/insects12060563
Chicago/Turabian StyleKattupalli, Divya, Kalyani M. Barbadikar, Vishalakshi Balija, Suneel Ballichatla, Athulya R, Ayyagari Phani Padmakumari, Swati Saxena, Kishor Gaikwad, Sridhar Yerram, Premalatha Kokku, and et al. 2021. "The Draft Genome of Yellow Stem Borer, an Agriculturally Important Pest, Provides Molecular Insights into Its Biology, Development and Specificity Towards Rice for Infestation" Insects 12, no. 6: 563. https://doi.org/10.3390/insects12060563
APA StyleKattupalli, D., Barbadikar, K. M., Balija, V., Ballichatla, S., R, A., Padmakumari, A. P., Saxena, S., Gaikwad, K., Yerram, S., Kokku, P., & Madhav, M. S. (2021). The Draft Genome of Yellow Stem Borer, an Agriculturally Important Pest, Provides Molecular Insights into Its Biology, Development and Specificity Towards Rice for Infestation. Insects, 12(6), 563. https://doi.org/10.3390/insects12060563