Bioactivity of Wild Hop Extracts against the Granary Weevil, Sitophilus granarius (L.)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Insect Rearing
2.4. Plant Extracts
2.5. Contact Toxicity
2.6. Inhalation Toxicity
2.7. Ingestion Toxicity, Antifeedant, and Nutritional Activity
2.8. AChE Assay
2.9. Two-Choice Behavioural Bioassays
2.10. Repellence in Filter Paper Disc Bioassay
2.11. Electroantennography (EAG)
3. Results
3.1. Contact and Inhalation Toxicity
3.2. Ingestion Toxicity, Antifeedant and Nutritional Activity
3.3. Anticholinesterase Activity
3.4. Two-Choice Behavioural Bioassays
3.5. Repellence in Filter Paper Disc Bioassay
3.6. EAG
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nerio, L.S.; Olivero-Verbel, J.; Stashenko, E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010, 101, 372–378. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Zoubiri, S.; Baaliouamer, A. Potentiality of plants as source of insecticide principles. J. Saudi Chem. Soc. 2014, 18, 925–938. [Google Scholar] [CrossRef]
- Karkanis, A.C.; Athanassiou, C.G. Natural insecticides from native plants of the Mediterranean basin and their activity for the control of major insect pests in vegetable crops: Shifting from the past to the future. J. Pest Sci. 2021, 94, 187–202. [Google Scholar] [CrossRef]
- Pavela, R. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—A review. Plant Prot. Sci. 2016, 52, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Isman, M.B. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem. Rev. 2020, 19, 235–241. [Google Scholar] [CrossRef]
- Jairoce, C.F.; Teixeira, C.M.; Nunes, C.F.P.; Nunes, A.M.; Pereira, C.M.P.; Garcia, F.R.M. Insecticide activity of clove essential oil on bean weevil and maize weevil. Rev. Bras. Eng. Agric. Ambient. 2016, 20, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Rotundo, G.; Paventi, G.; Barberio, A.; De Cristofaro, A.; Notardonato, I.; Russo, M.V.; Germinara, G.S. Biological activity of hexane extract fractions of Dittrichia viscosa (L.) Greuter against Sitophilus granarius (L.) (Coleoptera, Curculionidae) and identification of active compounds. Sci. Rep. 2019, 9, 6429. [Google Scholar] [CrossRef] [PubMed]
- Islam, T.; Iqbal, J.; Abdullah, K.; Khan, E.A. Evaluation of some plant extracts against maize weevil, Sitophilus zeamais (Coleoptera: Curculionidae) under laboratory conditions. Pak. J. Agric. Sci. 2017, 54, 737–741. [Google Scholar] [CrossRef] [Green Version]
- Mpumi, N.; Machunda, R.L.; Mtei, K.M.; Ndakidemi, P.A. Insecticidal efficacy of Syzygium aromaticum, Tephrosia vogelii and Croton dichogamus extracts against Plutella xylostella and Trichoplusiani on Brassica oleracea crop in Northern Tanzania. AIMS Agric. Food 2020, 6, 185–202. [Google Scholar] [CrossRef]
- Couto, I.F.S.; Souza, S.A.; Valente, F.I.; da Silva, R.M.; de Paula Quintão Scalon, S.; Pereira, F.F.; da Silva, S.V.; de Carvalho, E.M.; Mussury, R.M. Changes in the biological characteristics of Plutella xylostella using ethanolic plant extracts. Gesunde Pflanz. 2020, 72, 383–391. [Google Scholar] [CrossRef]
- Rohimatun, Y.S.; Winasa, I.W. Dadang efficacy of selected piperaceae, asteraceae, and zingiberaceae plant extracts against Helopeltis antonii sign. J. Int. Soc. Southeast Asian Agric. Sci. 2020, 26, 145–157. [Google Scholar]
- Jirovetz, L.; Bail, S.; Buchbauer, G.; Denkova, Z.; Slavchev, A.; Stoyanova, A.; Schmidt, E.; Geissler, M. Antimicrobial testings, gas chromatographic analysis and olfactory evaluation of an essential oil of hop cones (Humulus lupulus L.) from Bavaria and some of its main compounds. Sci. Pharm. 2006, 74, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Bocquet, L.; Rivière, C.; Dermont, C.; Samaillie, J.; Hilbert, J.L.; Halama, P.; Siah, A.; Sahpaz, S. Antifungal activity of hop extracts and compounds against the wheat pathogen Zymoseptoria tritici. Ind. Crop. Prod. 2018, 122, 290–297. [Google Scholar] [CrossRef]
- Bedini, S.; Flamini, G.; Girardi, J.; Cosci, F.; Conti, B. Not just for beer: Evaluation of spent hops (Humulus lupulus L.) as a source of eco-friendly repellents for insect pests of stored foods. J. Pest Sci. 2015, 88, 583–592. [Google Scholar] [CrossRef]
- Jackowski, J.; Hurej, M.; Rój, E.; Popłoński, J.; Kosny, L.; Huszcza, E. Antifeedant activity of xanthohumol and supercritical carbon dioxide extract of spent hops against stored product pests. Bull. Entomol. Res. 2015, 105, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Gökçe, A.; Isaacs, R.; Whalon, M.E.M.E. Dose-Response relationships for the antifeedant effects of Humulus lupulus extracts against larvae and adults of the Colorado potato beetle. Pest Manag. Sci. 2012, 68, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Gökçe, A.; Whalon, M.E.; Çam, H.; Yanar, Y.; Demirtaş, I.; Gören, N. Plant extract contact toxicities to various developmental stages of Colorado potato beetles (Coleoptera: Chrysomelidae). Ann. Appl. Biol. 2006, 149, 197–202. [Google Scholar] [CrossRef]
- Gökçe, A.; Whalon, M.E.; Çam, H.; Yanar, Y.; Demirtaş, I.; Goren, N. Contact and residual toxicities of 30 plant extracts to Colorado potato beetle larvae. Arch. Phytopathol. Plant. Prot. 2007, 40, 441–450. [Google Scholar] [CrossRef]
- Bedini, S.; Flamini, G.; Cosci, F.; Ascrizzi, R.; Benelli, G.; Conti, B. Cannabis sativa and Humulus lupulus essential oils as novel control tools against the invasive mosquito Aedes albopictus and fresh water snail Physella acuta. Ind. Crop. Prod. 2016, 85, 318–323. [Google Scholar] [CrossRef] [Green Version]
- Paventi, G.; de Acutis, L.; De Cristofaro, A.; Pistillo, M.; Germinara, G.S.; Rotundo, G. Biological activity of Humulus lupulus (L.) essential oil and its main components against Sitophilus granarius (L.). Biomolecules 2020, 10, 1108. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Maggi, F.; Nkuimi Wandjou, J.G.; Yvette Fofie, N.G.B.; Koné-Bamba, D.; Sagratini, G.; Vittori, S.; Caprioli, G. Insecticidal activity of the essential oil and polar extracts from Ocimum gratissimum grown in Ivory Coast: Efficacy on insect pests and vectors and impact on non-target species. Ind. Crop. Prod. 2019, 132, 377–385. [Google Scholar] [CrossRef]
- Di Martino, C.; Palumbo, G.; Vitullo, D.; Di Santo, P.; Fuggi, A. Regulation of mycorrhiza development in durum wheat by P fertilization: Effect on plant nitrogen metabolism. J. Plant Nutr. Soil Sci. 2018, 181, 429–440. [Google Scholar] [CrossRef]
- Germinara, G.S.; Di Stefano, M.G.; De Acutis, L.; Pati, S.; Delfine, S.; De Cristofaro, A.; Rotundo, G. Bioactivities of Lavandula angustifolia essential oil against the stored grain pest Sitophilus granarius. Bull. Insectol. 2017, 70, 129–138. [Google Scholar]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: London, UK, 1971. [Google Scholar]
- Xie, Y.; Bodnaryk, R.; Fields, P. A rapid and simple flour-disk bioassay for testing substances active against stored-product insects. Can. Entomol. 1996, 128, 865–875. [Google Scholar] [CrossRef]
- Germinara, G.S.; De Cristofaro, A.; Rotundo, G. Behavioral responses of adult Sitophilus granarius to individual cereal volatiles. J. Chem. Ecol. 2008, 34, 523–529. [Google Scholar] [CrossRef]
- Phillips, T.W.; Jiang, X.-L.; Burkholder, W.E.; Phillips, J.K.; Tran, H.Q. Behavioral responses to food volatiles by two species of stored-product coleoptera, Sitophilus oryzae (curculionidae) and Tribolium castaneum (tenebrionidae). J. Chem. Ecol. 1993, 19, 723–734. [Google Scholar] [CrossRef] [PubMed]
- Germinara, G.S.; Rotundo, G.; De Cristofaro, A. Repellence and fumigant toxicity of propionic acid against adults of Sitophilus granarius (L.) and S. oryzae (L.). J. Stored Prod. Res. 2007, 43, 229–233. [Google Scholar] [CrossRef]
- Germinara, G.S.; Beleggia, R.; Fragasso, M.; Pistillo, M.O.; De Vita, P. Kernel volatiles of some pigmented wheats do not elicit a preferential orientation in Sitophilus granarius adults. J. Pest Sci. 2019, 92, 653–664. [Google Scholar] [CrossRef]
- Kaissling, K.E.; Thorson, J. Insect olfactory sensilla: Structural, chemical and electrical aspects of the functional organization. In Receptors for Neurotransmitters, Hormones, and Pheromones in Insects; Satelle, D.B., Hall, L.M., Hildebrand, J.G., Eds.; Elsevier/North-Holland Biomedical Press: New York, NY, USA, 1980; pp. 261–282. [Google Scholar]
- Germinara, G.S.; Pistillo, M.; Griffo, R.; Garonna, A.P.; Di Palma, A. Electroantennographic responses of Aromia bungii (Faldermann, 1835) (Coleoptera, Cerambycidae) to a range of volatile compounds. Insects 2019, 10, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raguso, R.A.; Light, D.M. Electroantennogram responses of male Sphinx perelegans hawkmoths to floral and “green-leaf volatiles”. Entomol. Exp. Appl. 1998, 86, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Otter, C.J.D.; Tchicaya, T.; Schutte, A.M. Effects of age, sex and hunger on the antennal olfactory sensitivity of tsetse flies. Physiol. Entomol. 1991, 16, 173–182. [Google Scholar] [CrossRef]
- Germinara, G.S.; De Cristofaro, A.; Rotundo, G. Electrophysiological and behavioral responses of Theocolax elegans (Westwood) (Hymenoptera: Pteromalidae) to cereal grain volatiles. Biomed. Res. Int. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rotundo, G.; Paventi, G.; Germinara, G.S. Attività insetticida di estratti di Scrophularia canina L. verso adulti di Sitophilus granarius (L.) (Coleoptera, Curculionidae). Tec. Molit. 2014, 45, 90–96. [Google Scholar]
- Chu, S.S.; Liu, Q.R.; Liu, Z.L. Insecticidal activity and chemical composition of the essential oil of Artemisia vestita from China against Sitophilus zeamais. Biochem. Syst. Ecol. 2010, 38, 489–492. [Google Scholar] [CrossRef]
- Rajashekar, Y.; Gunasekaran, N.; Shivanandappa, T. Insecticidal activity of the root extract of Decalepis hamiltonii against stored-product insect pests and its application in grain protection. J. Food Sci. Technol. 2010, 47, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Aydin, T.; Bayrak, N.; Baran, E.; Cakir, A. Insecticidal effects of extracts of Humulus lupulus (hops) L. cones and its principal component, xanthohumol. Bull. Entomol. Res. 2017, 107, 543–549. [Google Scholar] [CrossRef]
- Maliar, T.; Nemeček, P.; Ürgeová, E.; Maliarová, M.; Nesvadba, V.; Krofta, K.; Vulganová, K.; Krošlák, E.; Kraic, J. Secondary metabolites, antioxidant and anti-proteinase activities of methanolic extracts from cones of hop (Humulus lupulus L.) cultivars. Chem. Pap. 2017, 71, 41–48. [Google Scholar] [CrossRef]
- Ghiselli, L.; Tallarico, R.; Romagnoli, S.; De Acutis, L.; Benedettelli, S. Antioxidant and mineral element characterization in spontaneous hop (Humulus lupulus L.) in central Italy. Agrochimica 2015, 59, 319–334. [Google Scholar] [CrossRef]
- Ocvirk, M.; Nečemer, M.; Košir, I.J. The determination of the geographic origins of hops (Humulus lupulus L.) by multi-elemental fingerprinting. Food Chem. 2019, 277, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Kobus-Cisowska, J.; Szymanowska-Powałowska, D.; Szczepaniak, O.; Kmiecik, D.; Przeor, M.; Gramza-Michałowska, A.; Cielecka-Piontek, J.; Smuga-Kogut, M.; Szulc, P. Composition and in vitro effects of cultivars of Humulus lupulus L. hops on cholinesterase activity and microbial growth. Nutrients 2019, 11, 1377. [Google Scholar] [CrossRef] [Green Version]
- Guedes, N.M.P.; Guedes, R.N.C.; Silva, L.B.; Cordeiro, E.M.G. Deltamethrin-Induced feeding plasticity in pyrethroid-susceptible and -resistant strains of the maize weevil, Sitophilus zeamais. J. Appl. Entomol. 2009, 133, 524–532. [Google Scholar] [CrossRef] [Green Version]
- Nawrot, J.; Harmatha, J. Phytochemical feeding deterrents for stored product insect pests. Phytochem. Rev. 2012, 11, 543–566. [Google Scholar] [CrossRef]
- Boussaada, O.; Ben Halima Kamel, M.; Ammar, S.; Haouas, D.; Mighri, Z.; Helal, A.N. Insecticidal activity of some Asteraceae plant extracts against Tribolium confusum. Bull. Insectol. 2008, 61, 283–289. [Google Scholar]
- Abdelkhalek, A.; Salem, M.Z.M.; Kordy, A.M.; Salem, A.Z.M.; Behiry, S.I. Antiviral, antifungal, and insecticidal activities of Eucalyptus bark extract: HPLC analysis of polyphenolic compounds. Microb. Pathog. 2020, 147, 104383. [Google Scholar] [CrossRef]
- Yunshou, L.; Huaying, Z.; Luxiang, W.; Zhu, N.; Wanyi, L.; Xiaoyan, N.; Shaozong, T.; Yizhang, Y. Insecticidal activity of extracts from Eupatorium adenophorum against four stored grain insects. Kunchong Zhishi 2001, 38, 214–216. [Google Scholar]
- Astray, G.; Gullón, P.; Gullón, B.; Munekata, P.E.S.; Lorenzo, J.M. Humulus lupulus L. as a natural source of functional biomolecules. Appl. Sci. 2020, 10, 5074. [Google Scholar] [CrossRef]
- Taniguchi, Y.; Taniguchi, H.; Yamada, M.; Matsukura, Y.; Koizumi, H.; Furihata, K.; Shindo, K. Analysis of the components of hard resin in hops (Humulus lupulus L.) and structural elucidation of their transformation products formed during the brewing process. J. Agric. Food Chem. 2014, 62, 11602–11612. [Google Scholar] [CrossRef]
- Česlová, L.; Holčapek, M.; Fidler, M.; Drštičková, J.; Lísa, M. Characterization of prenylflavonoids and hop bitter acids in various classes of Czech beers and hop extracts using high-performance liquid chromatography-mass spectrometry. J. Chromatogr. A 2009, 1216, 7249–7257. [Google Scholar] [CrossRef]
- Adfa, M.; Hattori, Y.; Yoshimura, T.; Komura, K.; Koketsu, M. Antifeedant and termiticidal activities of 6-alkoxycoumarins and related analogs against Coptotermes formosanus Shiraki. J. Chem. Ecol. 2011, 37, 598–606. [Google Scholar] [CrossRef]
- Aberl, A.; Coelhan, M. Determination of volatile compounds in different hop varieties by headspace-Trap GC/MS—In comparison with conventional hop essential oil analysis. J. Agric. Food Chem. 2012, 60, 2785–2792. [Google Scholar] [CrossRef]
- Katsiotis, S.T.; Langezaal, C.R.; Scheffer, J.J.C.; Verpoorte, R. Comparative study of the essential oils from hops of various Humulus lupulus L. cultivars. Flavour Fragr. J. 1989, 4, 187–191. [Google Scholar] [CrossRef]
- Eyres, G.; Dufour, J.-P. Hop essential oil: Analysis, chemical composition and odor characteristics. In Beer in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2009; pp. 239–254. [Google Scholar]
- Donner, P.; Pokorný, J.; Ježek, J.; Krofta, K.; Patzak, J.; Pulkrábek, J. Influence of weather conditions, irrigation and plant age on yield and α-acids content of Czech hop (Humulus lupulus L.) cultivars. Plant Soil Environ. 2020, 66, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Germinara, G.S.; De Cristofaro, A.; Rotundo, G. Bioactivity of short-chain aliphatic ketones against adults of the granary weevil, Sitophilus granarius (L.). Pest Manag. Sci. 2012, 68, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Germinara, G.S.; Conte, A.; Lecce, L.; Di Palma, A.; Del Nobile, M.A. Propionic acid in bio-based packaging to prevent Sitophilus granarius (L.) (Coleoptera, Dryophthoridae) infestation in cereal products. Innov. Food Sci. Emerg. Technol. 2010, 11, 498–502. [Google Scholar] [CrossRef]
Dose (µg/Adult) | Exposure Time (h) | % Mortality (Mean ± S.E.) | Regression Equation | χ2 | LD50 (95% CL, µg/Adult) | LD90 (95% CL, µg/Adult) |
---|---|---|---|---|---|---|
75.00 | 24 h | 100.00 ± 0.00 a | y = 3.33x − 4.24 | 8.77 | 25.77 (20.34–34.50) | 42.64 (34.05–61.18) |
37.50 | 77.50 ± 4.50 b | |||||
18.75 | 32.50 ± 7.50 c | |||||
9.37 | 22.50 ± 5.90 c | |||||
4.69 | 2.50 ± 2.50 d | |||||
2.34 | 0.00 ± 0.00 d | |||||
0.00 | 0.00 ± 0.00 d | |||||
F | 95.88 | |||||
d.f. | 6 | |||||
p | <0.001 | |||||
75.00 | 48 h | 100.00 ± 0.00 a | y = 0.087x − 2.027 | 10.60 | 22.94 (17.79–31.08) | 38.69 (30.67–56.18) |
37.50 | 85.00 ± 3.27 a | |||||
18.75 | 37.50 ± 4.53 b | |||||
9.37 | 27.50 ± 6.50 b | |||||
4.69 | 5.00 ± 3.27 c | |||||
2.34 | 0.00 ± 0.00 d | |||||
0.00 | 0.00 ± 0.00 d | |||||
F | 128.68 | |||||
d.f. | 6 | |||||
p | <0.001 |
Dose (µg/Adult) | Exposure Time (h) | % Mortality (Mean ± S.E.) | Regression Equation | χ2 | LD50 (95% CL, µg/Adult) | LD90 (95% CL, µg/Adult) |
---|---|---|---|---|---|---|
75.00 | 24 h | 100.00 ± 0.00 a | y = 4.10x − 4.38 | 16.37 | 16.17 (9.65–28.85) | 33.20 (20.96–157.85) |
37.50 | 97.50 ± 2.50 a | |||||
18.75 | 57.50 ± 4.53 b | |||||
9.37 | 7.50 ± 3.66 c | |||||
4.69 | 5.00 ± 3.27 c | |||||
2.34 | 0.00 ± 0.00 c | |||||
0.00 | 0.00 ± 0.00 c | |||||
F | 290.48 | |||||
d.f. | 6 | |||||
p | <0.001 | |||||
75.00 | 48 h | 100.00 ± 0.00 a | y = 3.84x − 4.51 | 6.21 | 14.91 (12.82–17.41) | 32.14 (26.29–42.77) |
37.50 | 97.50 ± 2.50 a | |||||
18.75 | 60.00 ± 5.34 b | |||||
9.37 | 15.00 ± 3.27 c | |||||
4.69 | 7.50 ± 3.66 cd | |||||
2.34 | 0.00 ± 0.00 d | |||||
0.00 | 0.00 ± 0.00 d | |||||
F | 241.28 | |||||
d.f. | 6 | |||||
p | <0.001 |
Dose (µg/Adult) | Exposure Time (h) | % Mortality (Mean ± S.E.) | Regression Equation | χ2 | LD50 (95% CL, µg/Adult) | LD90 (95% CL, µg/Adult) |
---|---|---|---|---|---|---|
75.00 | 24 h | 100.00 ± 0.00 a | y = 0.07x − 2.163 | 2.25 | 31.07 (27.33–36.03) | 49.48 (43.19–59.09) |
37.50 | 67.50 ± 5.26 b | |||||
18.75 | 17.50 ± 4.53 c | |||||
9.37 | 7.50 ± 3.66 cd | |||||
4.69 | 5.00 ± 3.27 cd | |||||
2.34 | 2.50 ± 2.50 d | |||||
0.00 | 0.00 ± 0.00 d | |||||
F | 137.14 | |||||
d.f. | 6 | |||||
p | <0.001 | |||||
75.00 | 48 h | 100.00 ± 0.00 a | y = 0.06x − 1.89 | 0.64 | 28.66 (25.01–33.52) | 48.08 (41.71–57.81) |
37.50 | 72.50 ± 3.66 b | |||||
18.75 | 22.50 ± 5.90 c | |||||
9.37 | 12.50 ± 3.66 cd | |||||
4.69 | 5.50 ± 3.27 d | |||||
2.34 | 5.50 ± 3.27 d | |||||
0.00 | 2.50 ± 2.50 d | |||||
F | 118.39 | |||||
d.f. | 6 | |||||
p | <0.001 |
Concentration (µg/Disk) | Mortality (%) | RGR 1 | RCR | ECI | FDI (%) |
---|---|---|---|---|---|
750.00 | 16.00 a | −0.011 ± 0.008 a | 0.066 ± 0.047 a | −31.915 ± 11.695 a | 74.000 ± 20.199 a |
375.00 | 4.00 b | −0.020 ± 0.006 ab | 0.188 ± 0.009 b | −10.363 ± 2.465 b | 27.951 ± 7.782 b |
187.50 | 0.00 b | −0.0130 ± 0.007 b | 0.199 ± 0.007 b | −6.304 ± 2.620 b | 21.222 ± 7.185 b |
93.75 | 0.00 b | −0.003 ± 0.003 c | 0.230 ± 0.015 b | −1.134 ± 1.173 b | 12.621 ± 4.576 b |
46.87 | 0.00 b | −0.001 ± 0.002 c | 0.224 ± 0.018 b | −0.416 ± 0.780 b | 15.780 ± 4.405 b |
Control | 0.00 b | 0.012 ± 0.003 c | 0.278 ± 0.039 b | 6.973 ± 0.513 b |
Concentration (µg/Disk) | Mortality (%) | RGR 1 | RCR | ECI | FDI (%) |
---|---|---|---|---|---|
750.00 | 62.00 a | −0.091 ± 0.020 a | 0.122 ± 0.024 ab | −86.710 ± 20.378 a | 41.033 ± 13.712 a |
375.00 | 34.00 ab | −0.035 ± 0.009 ab | 0.110 ± 0.020 a | −46.266 ± 21.573 abc | 55.427 ± 9.801 a |
187.50 | 40.00 ab | −0.060 ± 0.015 a | 0.129 ± 0.043 ab | −75.607 ± 26.856 ab | 44.223 ± 21.273 a |
93.75 | 16.00 bc | −0.048 ± 0.016 ab | 0.123 ± 0.036 ab | −65.118 ± 24.932 abc | 48.037 ± 16.664 a |
46.87 | 4.00 c | 0.008 ± 0.007 bc | 0.207 ± 0.016 ab | 3.228 ± 3.222 bc | 18.489 ± 5.192 a |
Control | 0.00 c | 0.023 ± 0.077 c | 0.242 ± 0.020 b | 9.028 ± 2.166 c |
Concentration (µg/Disk) | Mortality (%) | RGR 1 | RCR | ECI | FDI (%) |
---|---|---|---|---|---|
750.00 | 38.00 a | −0.015 ± 0.002 a | 0.132 ± 0.009 a | −11.596 ± 1.410 a | 40.463 ± 6.509 a |
375.00 | 10.00 b | −0.008 ± 0.004 a | 0.161 ± 0.003 ab | −5.248 ± 2.352 ab | 21.816 ± 2.537 ab |
187.50 | 6.00 b | −0.003 ± 0.011 ab | 0.186 ± 0.016 bc | −0.529 ± 6.876 ab | 4.827 ± 5.844 b |
93.75 | 0.00 b | 0.006 ± 0.002 ab | 0.189 ± 0.009 bc | 3.337 ± 1.064 b | 4.616 ± 3.320 b |
46.87 | 0.00 b | 0.005 ± 0.003 ab | 0.190 ± 0.007 bc | 2.756 ± 1.426 b | 7.376 ± 3.119 b |
Control | 0.00 b | 0.016 ± 0.002 b | 0.204 ± 0.009 c | 7.735 ± 0.854 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paventi, G.; Rotundo, G.; Pistillo, M.; D’Isita, I.; Germinara, G.S. Bioactivity of Wild Hop Extracts against the Granary Weevil, Sitophilus granarius (L.). Insects 2021, 12, 564. https://doi.org/10.3390/insects12060564
Paventi G, Rotundo G, Pistillo M, D’Isita I, Germinara GS. Bioactivity of Wild Hop Extracts against the Granary Weevil, Sitophilus granarius (L.). Insects. 2021; 12(6):564. https://doi.org/10.3390/insects12060564
Chicago/Turabian StylePaventi, Gianluca, Giuseppe Rotundo, Marco Pistillo, Ilaria D’Isita, and Giacinto Salvatore Germinara. 2021. "Bioactivity of Wild Hop Extracts against the Granary Weevil, Sitophilus granarius (L.)" Insects 12, no. 6: 564. https://doi.org/10.3390/insects12060564
APA StylePaventi, G., Rotundo, G., Pistillo, M., D’Isita, I., & Germinara, G. S. (2021). Bioactivity of Wild Hop Extracts against the Granary Weevil, Sitophilus granarius (L.). Insects, 12(6), 564. https://doi.org/10.3390/insects12060564