Tiny Flies: A Mighty Pest That Threatens Agricultural Productivity—A Case for Next-Generation Control Strategies of Whiteflies
Abstract
:Simple Summary
Abstract
1. Introduction
2. A Threat to Agriculture
3. Next-Generation Strategies for the Effective Control of Whiteflies
3.1. RNAi-Mediated Control
3.2. Anti-Whitefly Proteins
4. Futuristic Strategies for the Management of Whiteflies
4.1. Nanotechnology: A Bliss for Crop Protection
4.2. Genome Editing
5. Obstacles/Challenges on the Road to Commercialization: From Laboratory to Field
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergé, J.B.; Ricroch, A.E. Emergence of minor pests becoming major pests in GE cotton in China: What are the reasons? What are the alternatives practices to this change of status? GM Crops 2010, 1, 214–219. [Google Scholar] [CrossRef]
- Fitt, G.; Cotter, S.; Sharma, H. The Helicoverpa problem in Australia: Biology and management. In Heliothis/Helicoverpa Management: Emerging Trends and Strategies for Future Research; CRC Press: Boca Raton, FL, USA, 2005; pp. 45–61. [Google Scholar]
- Bellotti, A.C.; Arias, B. Host plant resistance to whiteflies with emphasis on cassava as a case study. Crop Prot. 2001, 20, 813–823. [Google Scholar] [CrossRef] [Green Version]
- Navas-Castillo, J.; Fiallo-Olivé, E.; Sánchez-Campos, S. Emerging virus diseases transmitted by whiteflies. Annu. Rev. Phytopathol. 2011, 49, 219–248. [Google Scholar] [CrossRef]
- Horowitz, A.R.; Antignus, Y.; Gerling, D. Management of Bemisia tabaci whiteflies. In The Whitefly, Bemisia Tabaci (Homoptera: Aleyrodidae) Interaction with Geminivirus-Infected Host Plants; Springer: Dordrecht, The Netherlands, 2011; pp. 293–322. [Google Scholar]
- Sequeira, R.V. Integrated pest management of plant sucking bugs (Hemiptera: Miridae) in Australian cotton: Back to the future. Bull. Entomol. Res. 2019, 109, 561–573. [Google Scholar] [CrossRef]
- Stephenson, R.C.; Coker, C.E.; Posadas, B.C.; Bachman, G.R.; Harkess, R.L.; Adamczyk, J.J.; Knight, P.R. Economic Effect of Insect Pest Management Strategies on Small-scale Tomato Production in Mississippi. HortTechnology 2020, 30, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Naveed, M.; Salam, A.; Saleem, M.; Sayyed, A.H. Effect of foliar applications of some insecticides on Bemisia tabaci, predators and parasitoids: Implications in its management in Pakistan. Phytoparasitica 2008, 36, 377–387. [Google Scholar] [CrossRef]
- Price, J.F.; Schuster, D.J. Effects of natural and synthetic insecticides on sweetpotato whitefly Bemisia tabaci (Homoptera: Aleyrodidae) and its hymenopterous parasitoids. Fla. Entomol. 1991, 74, 60–68. [Google Scholar] [CrossRef]
- Bacci, L.; Crespo, A.L.; Galvan, T.L.; Pereira, E.J.; Picanco, M.C.; Silva, G.A.; Chediak, M. Toxicity of insecticides to the sweetpotato whitefly (Hemiptera: Aleyrodidae) and its natural enemies. Pest Manag. Sci. 2007, 63, 699–706. [Google Scholar] [CrossRef]
- Sugiyama, K.; Katayama, H.; Saito, T. Effect of insecticides on the mortalities of three whitefly parasitoid species, Eretmocerus mundus, Eretmocerus eremicus and Encarsia formosa (Hymenoptera: Aphelinidae). Appl. Entomol. Zool. 2011, 46, 311–317. [Google Scholar] [CrossRef]
- Kady, H.E.; Devine, G.J. Insecticide resistance in Egyptian populations of the cotton whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag. Sci. 2003, 59, 865–871. [Google Scholar] [CrossRef]
- Sterk, G.; Heuts, F.; Merck, N.; Bock, J. Sensitivity of non-target arthropods and beneficial fungal species to chemical and biological plant protection products: Results of laboratory and semi-field trials. In Proceedings of the V: 1st International Symposium on Biological Control of Arthropods, Honolulu, HI, USA, 14–18 January 2002; pp. 306–313. [Google Scholar]
- Ludgate, Z. Three Years of Monitoring Insecticide Resistance to Silverleaf Whitefly in Cotton; Department of Employment, Economic Development and Innovation: Queensland, Australia, 2010. [Google Scholar]
- Fernandez, E.; Gravalos, C.; Haro, P.J.; Cifuentes, D.; Bielza, P. Insecticide resistance status of Bemisia tabaci Q-biotype in south-eastern Spain. Pest Manag. Sci. 2009, 65, 885–891. [Google Scholar] [CrossRef]
- Hall, Z.; Lloyd, R.; Grams, R. Five Years of Resistance Monitoring for Silverleaf Whitefly in Cotton; Department of Agriculture, Fisheries and Forestry: Toowoomba, Australia, 2012. [Google Scholar]
- Gradish, A.E.; Scott-Dupree, C.D.; Shipp, L.; Harris, C.R.; Ferguson, G. Effect of reduced risk pesticides on greenhouse vegetable arthropod biological control agents. Pest Manag. Sci. 2011, 67, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Hoddle, M.S.; van Driesche, R.; Lyon, S.; Sanderson, J. Compatibility of Insect Growth Regulators with Eretmocerus eremicus (Hymenoptera: Aphelinidae) for Whitefly (Homoptera: Aleyrodidae) Control on Poinsettias. Biol. Control 2001, 20, 122–131. [Google Scholar] [CrossRef] [Green Version]
- Cutler, G.C.; Scott-Dupree, C.D. Novaluron: Prospects and limitations in insect pest management. Pest Technol. 2007, 1, 38–46. [Google Scholar]
- Gonzlí1ez-Zamora, J.; Gallardo, J.; García, M. Toxicity of different pesticides on pupae of Eretmocerus mundus Mercet (hymenoptera: Aphelinidae) parasitizing Bemisia tabaci (genn) (homoptera: Aleyrodidae). IOBC Wprs Bull. 1997, 20, 114–120. [Google Scholar]
- Jones, W.A.; Ciomperlik, M.; Wolfenbarger, D. Lethal and Sublethal Effects of Insecticides on Two Parasitoids Attacking Bemisia argentifolii (Homoptera: Aleyrodidae). Biol. Control 1998, 11, 70–76. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y. Cross-resistance and biochemical mechanisms of abamectin resistance in the B-type Bemisia tabaci. J. Appl. Entomol. 2007, 131, 98–103. [Google Scholar] [CrossRef]
- Anonymous. Abamectin. Pesticide Information Profile. 5/94. Available online: http://piat.org.nz/uploads/PIAT_content/pdfs/Indoxacarb%20and%20other%20neurotoxins%20info/EXTOXNET%20Avermectin.pdf (accessed on 8 November 2020).
- Thompson, G.D.; Dutton, R.; Sparks, T.C. Spinosad—A case study: An example from a natural products discovery programme. Pest Manag. Sci. 2000, 56, 696–702. [Google Scholar] [CrossRef]
- Anonymous. Conclusion on the peer review of the pesticide risk assessment of the active substance azadirachtin. EFSA J. 2011, 3, 1–76. [Google Scholar]
- Simmonds, M.; Manlove, J.; Blaney, W.; Khambay, B. Effects of selected botanical insecticides on the behaviour and mortality of the glasshouse whitefly Trialeurodes vaporariorum and the parasitoid Encarsia formosa. Entomol. Exp. Appl. 2002, 102, 39–47. [Google Scholar] [CrossRef]
- Andret-Link, P.; Fuchs, M. Transmission specificity of plant viruses by vectors. J. Plant Pathol. 2005, 87, 153–165. [Google Scholar]
- Colvin, J.; Omongo, C.; Govindappa, M.; Stevenson, P.C.; Maruthi, M.; Gibson, G.; Seal, S.; Muniyappa, V. Host-plant viral infection effects on arthropod-vector population growth, development and behaviour: Management and epidemiological implications. Adv. Virus Res. 2006, 67, 419–452. [Google Scholar]
- Gamarra, H.A.; Fuentes, S.; Morales, F.J.; Glover, R.; Malumphy, C.; Barker, I. Bemisia afer sensu lato, a vector of Sweet potato chlorotic stunt virus. Plant Dis. 2010, 94, 510–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiallo-Olivé, E.; Pan, L.-L.; Liu, S.-S.; Navas-Castillo, J. Transmission of begomoviruses and other whitefly-borne viruses: Dependence on the vector species. Phytopathology 2020, 110, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Sundararaj, R. Species diversity of whiteflies (aleyrodidae: Homoptera) in india. In Biodiversity: Life to Our Mother Earth; William, D.S.J., Albert Muthumalai, S.J., Eds.; Wood Biodegradation Division, Institute of Wood Science & Technology: Bengaluru, India, 2006; pp. 343–354. [Google Scholar]
- Kanmiya, K.; Ueda, S.; Kasai, A.; Yamashita, K.; Sato, Y.; Yoshiyasu, Y. Proposal of new specific status for tea-infesting populations of the nominal citrus spiny whitefly Aleurocanthus spiniferus (Homoptera: Aleyrodidae). Zootaxa 2011, 2797, 25–44. [Google Scholar] [CrossRef]
- Yamashita, K.; Hayashida, Y. Occurrence and control of the citrus spiny whitefly, Aleurocanthus spiniferus (Quaintance), on tea tree in Kyoto Prefecture. Plant Prot. 2006, 60, 378–380. [Google Scholar]
- Nguyen, R.; Hamon, A.B.; Fasulo, T.R. Citrus blackfly, Aleurocanthus woglumi Ashby (Insecta: Hemiptera: Aleyrodidae). 2007, pp. 1–4. Available online: https://edis.ifas.ufl.edu/pdf%5CIN%5CIN19900.pdf (accessed on 19 October 2020).
- Pokhrel, S.; Thapa, R. Rice Whitefly (Aleurocybotus occiduus Maria), a new emerging threat of rice production and its natural control in Chitwan, Nepal. Agron. J. Nepal 2013, 2, 56–74. [Google Scholar] [CrossRef]
- Howard, F.W. Sap-feeders on palms. In Insects on Palm; Howard, F.W., Ed.; CABI Publishing: Wallingford, UK, 2001. [Google Scholar]
- Srinivasa, M. Host plants of the spiraling whitefly, Aleurodicus dispersus Russell (Hemiptera: Aleyrodidae). Pest Manag. Hortic. Ecosyst. 2000, 6, 79–105. [Google Scholar]
- Martin, J.H. Giant whiteflies (Sternorrhyncha, Aleyrodidae): A discussion of their taxonomic and evolutionary significance, with the description of a new species of Udamoselis Enderlein from Ecuador. Tijdschr. Entomol. 2007, 150, 13. [Google Scholar] [CrossRef] [Green Version]
- de Omena, R.P.M.; Guzzo, E.C.; Ferreira, J.M.S.; de Mendonça, F.A.C.; de Lima, A.F.; Racca-Filho, F.; Santana, A.E.G.; Ni, X. First report on the whitefly, Aleurodicus pseudugesii on the coconut palm, Cocos nucifera in Brazil. J. Insect Sci. 2012, 12, 1–6. [Google Scholar] [CrossRef]
- Stocks, I.C.; Hodges, G. The Rugose Spiraling Whitefly, Aleurodicus rugioperculatus Martin, a New Exotic Whitefly in South Florida (Hemiptera: Aleyrodidae); Florida Department of Agriculture and Consumer Services, Division of Plant Industry: St. Gainesville, FL, USA, 2012. [Google Scholar]
- Martin, J.H. Aleurodicus talamancensis, a new whitefly species damaging plantation bananas in Costa Rica, with discussion of a montane orchid-feeding population (Sternorrhyncha, Aleyrodidae). Zootaxa 2005, 843, 1–10. [Google Scholar] [CrossRef]
- Pandya, H. Population status and management of sugarcane whitefly (Aleurolobus barodensis Mask.) in Gujrat. Coop. Sugar 2005, 36, 479–482. [Google Scholar]
- Bassiri, G. Study on the Biology of Citrus Aleyrodids in South of Iran; Plant Pests and Diseases Research Institute: Tehran, Iran, 2003. [Google Scholar]
- Abd-Raboou, S.; Ahmed, N. Seasonal incidence of scale insects, whiteflies and psyllids (Hemiptera) of olive and their natural enemies in Egypt. Egypt. Acad. J. Biol. Sci. 2011, 4, 59–74. [Google Scholar] [CrossRef]
- Dreistadt, S.H. Pests of Landscape Trees and Shrubs: An Integrated Pest Management Guide, 3rd ed.; UC Agriculture & Natural Resources: Davis, CA, USA, 2016; Volume 3359. [Google Scholar]
- da Silva Alonso, R.; Racca-Filho, F.; de Lima, A.F. Occurrences of whiteflies (Hemiptera: Aleyrodidae) on cassava (Manihot esculenta Crantz) crops under field conditions in the State of Rio de Janeiro, Brazil. EntomoBrasilis 2012, 5, 78–79. [Google Scholar] [CrossRef] [Green Version]
- Kerns, D.; Wright, G.; Loghry, J. Wooly whiteflies (Aleurothrixus floccosus); Cooperative Extension; The University of Arizona: Tucson, AZ, USA, 2004. [Google Scholar]
- Gold, C. The effects of cropping systems on cassava whiteflies in Colombia: Implications for control of African cassava mosaic virus disease. Afr. Crop Sci. J. 1994, 2, 423–436. [Google Scholar]
- Kumashiro, B.R.; Heu, R.A.; Nishida, G.M.; Beardsley, J.W. New state records of immigrant insects in the Hawaiian Islands for the year 1999. Proc. Hawaii Entomol. Soc. 2001, 35, 170–184. [Google Scholar]
- Hata, T.; Hara, A. Anthurium whitefly, Aleurotulus anthuricola Nakahara: Biology and control in Hawaii. Int. J. Pest Manag. 1992, 38, 152–154. [Google Scholar]
- Stocks, I.C. Pest Alert: The Honeysuckle Whitefly, Aleyrodes Lonicerae Walker, New to Florida and the United States; Florida Department of Agriculture and Consumer Services, Division of Plant Industry: St. Gainesville, FL, USA, 2012. [Google Scholar]
- Nebreda, M.; Nombela, G.; Muniz, M. Comparative host suitability of some Brassica cultivars for the whitefly, Aleyrodes proletella (Homoptera: Aleyrodidae). Environ. Entomol. 2005, 34, 205–209. [Google Scholar] [CrossRef]
- Landis, B.; Gibson, K.; Schopp, R. The iris whitefly in the Pacific Northwest. Ann. Entomol. Soc. Am. 1958, 51, 486–490. [Google Scholar] [CrossRef]
- Abd-Rabou, S. Host plants, geographical distribution and natural enemies of the sycamore whitefly, Bemisia afer (Priesner & Hosny), a new economic pest in Egypt. In Proceedings of the 4th International Bemisia Workshop and International Whitefly Genomics Workshop, Duck Key, FL, USA, 3–8 December 2006. [Google Scholar]
- Mayer, R.T.; Inbar, M.; McKenzie, C.; Shatters, R.; Borowicz, V.; Albrecht, U.; Powell, C.A.; Doostdar, H. Multitrophic interactions of the silverleaf whitefly, host plants, competing herbivores, and phytopathogens. Arch. Insect Biochem. Physiol. 2002, 51, 151–169. [Google Scholar] [CrossRef]
- Uygun, N.; Ohnesorge, B.; Ulusoy, R. Two species of whiteflies on citrus in Eastern Mediterranean: Parabemisia myricae (Kuwana) and Dialeurodes citri (Ashmead). J. Appl. Entomol. 1990, 110, 471–482. [Google Scholar] [CrossRef]
- Bandyopadhyay, U.; Santhakumar, M. Record of host plants of whitefly, Dialeuropora decempuncta Quaintance and Baker in West Bengal. Insect Environ. 2002, 8, 177–178. [Google Scholar]
- Inayatullah, C. Sugar-cane aleurodids, Aleurolobus barodensis (Maskell) and Neomaskellia andropogonis Corbett (Hom.: Aleyrodidae), and their natural enemies in Pakistan. Insect Sci. Appl. 1984, 5, 279–282. [Google Scholar] [CrossRef]
- Butani, D. Bionomics and control of sugarcane whitefly (a review of literature on Aleurolobus barodensis Mask, and Neomaskellia bergii Sign, on sugar-cane in India) Labdev. J. Sci. Technol. 1966, 3, 159–167. [Google Scholar]
- Beardsley, J.W., Jr. New Immigrant Insects in Hawaii: 1962 through 1976. Taxon 1979, 13, 1962–1976. [Google Scholar]
- Stocks, I.C. Bondar’s Nesting Whitefly, Paraleyrodes Bondari, a Whitefly (Hemiptera: Aleyrodidae) New to Florida Attacking Ficus and Other Hosts; Florida Department of Agriculture and Consumer Services, Division of Plant Industry: St. Gainesville, FL, USA, 2012. [Google Scholar]
- Frank, J.H.; Thomas, M.C. Invasive Insects (Adventive Pest Insects) in Florida; EDIS; University of Florida: Gainesville, FL, USA, 2004. [Google Scholar]
- Hodges, G. The Fig Whitefly Singhiella Simplex (Singh) (Hemiptera: Aleyrodidae): A New Exotic Whitefly Found on Ficus Species in South Florida; Division of Plant Industry, Florida Department of Agriculture and Consumer Services: St. Gainesville, FL, USA, 2007. [Google Scholar]
- Nguyen, R.; Hamon, A.B. Ash Whitefly, Siphoninus phillyreae (Haliday) (Homoptera: Aleyrodidae: Aleyrodinae); University of Florida: Gainesville, FL, USA, 1990. [Google Scholar]
- Malumphy, C.; MacLeod, A.; Eyre, D. Banded-Winged Whitefly Trialeurodes abutiloneus; Plant Pest Fact Sheet; The Food and Environment Research Agency (FERA): Sand Hutton, UK, 2010.
- Gerling, D.; Guershon, M.; Erel, E.; Inbar, M. Diapause and its regulation in the whitefly Trialeurodes lauri. Bull. Entomol. Res. 2011, 101, 741. [Google Scholar] [CrossRef] [Green Version]
- Udayagiri, S.; Zalom, F.; Toscano, N. The Greenhouse Whitefly, An Emerging Pest on Central Coast Strawberries; The California Strawberry Commission: Watsonville, CA, USA, 2000. [Google Scholar]
- Shishehbor, P.; Brennan, P. Life history traits of castor whitefly, Trialeurodes ricini Misra (Hom., Aleyrodidae), on eight host plant species. J. Appl. Entomol. 1996, 120, 519–522. [Google Scholar] [CrossRef]
- Roditakis, N.E. Host plants of greenhouse whitefly, Trialeurodes vaporariorum westwood (Homoptera: Aleyrodidae) in crete. Attractiveness and impact on whitefly life stages. Agric. Ecosyst. Environ. 1990, 31, 217–224. [Google Scholar] [CrossRef]
- Sequeira, R.; Shields, A.; Moore, A.; De Barro, P. Inter-seasonal population dynamics and pest status of Bemisia tabaci (Gennadius) biotype B in an Australian cropping system. Bull. Entomol. Res. 2009, 99, 325. [Google Scholar] [CrossRef] [Green Version]
- Rajagopalan, P.A.; Naik, A.; Katturi, P.; Kurulekar, M.; Kankanallu, R.S.; Anandalakshmi, R. Dominance of resistance-breaking cotton leaf curl Burewala virus (CLCuBuV) in northwestern India. Arch. Virol. 2012, 157, 855–868. [Google Scholar] [CrossRef]
- Sattar, M.N.; Iqbal, Z.; Tahir, M.N.; Ullah, S. The prediction of a new CLCuD epidemic in the Old World. Front. Microbiol. 2017, 8, 631. [Google Scholar] [CrossRef] [Green Version]
- Mansoor, S.; Amrao, L.; Amin, I.; Briddon, R.; Malik, K.; Zafar, Y. First report of cotton leaf curl disease in central and southern Sindh province in Pakistan. Plant Dis. 2006, 90, 826. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Sharma, R.; Singh, S.; Jindal, J.; Dilawari, V. Efficiency of Bemisia tabaci (Gennadius) populations from different plant-hosts for acquisition and transmission of cotton leaf curl virus. Indian J. Biotechnol. 2010, 9, 271–275. [Google Scholar]
- Biswas, K.K.; Bhattacharyya, U.K.; Palchoudhury, S.; Balram, N.; Kumar, A.; Arora, R.; Sain, S.K.; Kumar, P.; Khetarpal, R.K.; Sanyal, A. Dominance of recombinant cotton leaf curl Multan-Rajasthan virus associated with cotton leaf curl disease outbreak in northwest India. PLoS ONE 2020, 15, e0231886. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Budhauliya, R.; Das, B.; Gopalakrishnan, R.; Sharma, S.; Chatterjee, S.; Raju, P.S.; Veer, V. Rebound of Cotton leaf curl Multan virus and its exclusive detection in cotton leaf curl disease outbreak, Punjab (India). 2015. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Kular, J.S.; Kumar, R.; Sidhu, S.S.; Chhuneja, P.K. Integrated whitefly [Bemisia tabaci (Gennadius)] management in Bt-cotton in North India: An agroecosystem-wide community-based approach. Curr. Sci. 2020, 119, 618. [Google Scholar]
- Abou-Jawdah, Y.; Sobh, H.; Fayad, A.; Lecoq, H.; Delecolle, B.; Trad-Ferre, J. Cucurbit yellow stunting disorder virus-a new threat to cucurbits in Lebanon. J. Plant Pathol. 2000, 82, 55–60. [Google Scholar]
- Louro, D.; Vicente, M.; Vaira, A.; Accotto, G.; Nolasco, G. Cucurbit yellow stunting disorder virus (genus Crinivirus) associated with the yellowing disease of cucurbit crops in Portugal. Plant Dis. 2000, 84, 1156. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Guerrero, J.; Matheron, M.; Olsen, M.; Idris, A. Widespread outbreak of Cucurbit yellow stunting disorder virus in melon, squash, and watermelon crops in the Sonoran Desert of Arizona and Sonora, Mexico. Plant Dis. 2007, 91, 773. [Google Scholar] [CrossRef]
- Wintermantel, W.M.; Gilbertson, R.L.; McCreight, J.D.; Natwick, E.T. Host-specific relationship between virus titer and whitefly transmission of Cucurbit yellow stunting disorder virus. Plant Dis. 2016, 100, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Liao, J.Y.; Hu, C.C.; Lin, T.K.; Chang, C.A.; Deng, T.C. Identification of Squash leaf curl Philippines virus on Benincasa hispida in Taiwan. Plant Pathol. Bull. 2007, 16, 11–18. [Google Scholar]
- Liu, L.; Chen, Y.; Zhu, W. First Report of Cucurbit yellow stunting disorder virus on Melon in China. Plant Dis. 2010, 94, 485. [Google Scholar] [CrossRef]
- Samsatly, J.; Sobh, H.; Jawhari, M.; Najjar, C.; Haidar, A.; Abou-Jawdah, Y. First report of Watermelon chlorotic stunt virus in cucurbits in Lebanon. Plant Dis. 2012, 96, 1703. [Google Scholar] [CrossRef] [PubMed]
- Bananej, K.; Menzel, W.; Kianfar, N.; Vahdat, A.; Winter, S. First report of Cucurbit chlorotic yellows virus infecting cucumber, melon, and squash in Iran. Plant Dis. 2013, 97, 1005. [Google Scholar] [CrossRef] [PubMed]
- Abrahamian, P.E.; Abou-Jawdah, Y. Whitefly-transmitted criniviruses of cucurbits: Current status and future prospects. Virus Dis. 2014, 25, 26–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valverde, R.; Lotrakul, P.; Landry, A.; Boudreaux, J. First report of Tomato yellow leaf curl virus in Louisiana. Plant Dis. 2001, 85, 230. [Google Scholar] [CrossRef]
- Avgelis, A.; Roditakis, N.; Dovas, C.; Katis, N.; Varveri, C.; Vassilakos, N.; Bem, F. First report of Tomato yellow leaf curl virus on tomato crops in Greece. Plant Dis. 2001, 85, 678. [Google Scholar] [CrossRef] [PubMed]
- Vaira, A.; Accotto, G.; Vecchiati, M.; Bragaloni, M. Tomato infectious chlorosis virus causes leaf yellowing and reddening of tomato in Italy. Phytoparasitica 2002, 30, 290–294. [Google Scholar] [CrossRef]
- Bird, J.; Idris, A.; Rogan, D.; Brown, J. Introduction of the exotic Tomato yellow leaf curl virus-Israel in tomato to Puerto Rico. Plant Dis. 2001, 85, 1028. [Google Scholar] [CrossRef]
- Fekih-Hassan, I.; Gorsane, F.; Djilani, F.; Fakhfakh, H.; Nakhla, M.; Maxwell, D.; Marrakchi, M. Detection of Tomato yellow leaf curl Sardinia virus in Tunisia. EPPO Bull. 2003, 33, 347–350. [Google Scholar] [CrossRef]
- Anfoka, G.; Abhary, M.; Nakhla, M. Molecular identification of species of the Tomato yellow leaf curl virus complex in Jordan. J. Plant Pathol. 2005, 87, 65–70. [Google Scholar]
- Crescenzi, A.; Comes, S.; Napoli, C.; Fanigliulo, A.; Pacella, R.; Accotto, G. Severe outbreaks of tomato yellow leaf curl Sardinia virus in Calabria, Southern Italy. Commun. Agric. Appl. Biol. Sci. 2004, 69, 575–580. [Google Scholar] [PubMed]
- Zhou, Y.C.; Noussourou, M.; Kon, T.; Rojas, M.; Jiang, H.; Chen, L.F.; Gamby, K.; Foster, R.; Gilbertson, R.L. Evidence of local evolution of tomato-infecting begomovirus species in West Africa: Characterization of tomato leaf curl Mali virus and tomato yellow leaf crumple virus from Mali. Arch. Virol. 2008, 153, 693–706. [Google Scholar] [CrossRef] [PubMed]
- Dalmon, A.; Bouyer, S.; Cailly, M.; Girard, M.; Lecoq, H.; Desbiez, C.; Jacquemond, M. First report of tomato cholorosis virus and tomato infectious chlorosis virus in tomato crops in France. Plant Dis. 2005, 89, 1243. [Google Scholar] [CrossRef]
- Anfoka, G.; Abhary, M.; Ahmad, F.H.; Hussein, A.; Rezk, A.; Akad, F.; Abou-Jawdah, Y.; Lapidot, M.; Vidavski, F.; Nakhla, M. Survey of tomato yellow leaf curl disease-associated viruses in the eastern mediterranean basin. J. Plant Pathol. 2008, 90, 313–322. [Google Scholar]
- Wu, J.; Dai, F.; Zhou, X. First report of Tomato yellow leaf curl virus in China. Plant Dis. 2006, 90, 1359. [Google Scholar] [CrossRef]
- Van Brunschot, S.; Persley, D.; Geering, A.; Campbell, P.; Thomas, J. Tomato yellow leaf curl virus in Australia: Distribution, detection and discovery of naturally occurring defective DNA molecules. Australas. Plant Pathol. 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Anfoka, G.; Ahmad, F.H.; Altaleb, M.; Al Shhab, M. Detection of satellite DNA beta in tomato plants with tomato yellow leaf curl disease in Jordan. Plant Dis. 2014, 98, 1017. [Google Scholar] [CrossRef]
- Lobin, K.; Druffel, K.; Pappu, H.; Benimadhu, S. First report of tomato yellow leaf curl virus in tomato in Mauritius. Plant Dis. 2010, 94, 1261. [Google Scholar] [CrossRef]
- Orfanidou, C.; Dimitriou, C.; Papayiannis, L.C.; Maliogka, V.; Katis, N. Epidemiology and genetic diversity of criniviruses associated with tomato yellows disease in Greece. Virus Res. 2014, 186, 120–129. [Google Scholar] [CrossRef]
- Al-Saleh, M.; Al-Shahwan, I.; Shakeel, M.; Amer, M.; Orfanidou, C.; Katis, N. First report of Tomato chlorosis virus (ToCV) in tomato crops in Saudi Arabia. Plant Dis. 2014, 98, 1590. [Google Scholar] [CrossRef]
- Chinnaraja, C.; Ramkissoon, A.; Ramsubhag, A.; Jayaraj, J. First report of tomato yellow leaf curl virus infecting tomatoes in trinidad. Plant Dis. 2016, 100, 1958. [Google Scholar] [CrossRef]
- Torre, C.; Agüero, J.; Aranda, M. First evidence of Tomato yellow leaf curl virus-Israel IS76 recombinant isolates associated with severe yellow leaf curl epidemics in resistant tomatoes in Spain. Plant Dis. 2019, 103, 780. [Google Scholar] [CrossRef]
- Moodley, V.; Gubba, A.; Mafongoya, P.L. A survey of whitefly-transmitted viruses on tomato crops in South Africa. Crop Prot. 2019, 123, 21–29. [Google Scholar] [CrossRef]
- Fonsah, E.G.; Chen, Y.; Diffie, S.; Srinivasan, R.; Riley, D. Economic productivity and profitability analysis for whiteflies and Tomato yellow leaf curl virus (TYLCV) management options. J. Agric. Environ. Sci 2018, 7, 1–9. [Google Scholar]
- Alam, M.; Islam, M.; Haque, M.; Humayun, R.; Khalequzzaman, K. Bio-rational management of whitefly (Bemisia tabaci) for suppressing tomato yellow leaf curl virus. Bangladesh J. Agric. Res. 2016, 41, 583–597. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.; Henneberry, T.E.; Anderson, P. History, current status, and collaborative research projects for Bemisia tabaci. Crop Prot. 2001, 20, 709–723. [Google Scholar] [CrossRef] [Green Version]
- Colvin, J.; Nagaraju, N.; Moreno-Leguizamon, C.; Govindappa, R.; Reddy, T.M.; Padmaja, S.; Joshi, N.; Hanson, P.M.; Seal, S.E.; Muniyappa, V. Socio-economic and scientific impact created by whitefly-transmitted, plant-virus disease resistant tomato varieties in Southern India. J. Integr. Agric. 2012, 11, 337–345. [Google Scholar] [CrossRef]
- Mishra, M.; Saurabh, S.; Maurya, R.; Mudawal, A.; Parmar, D.; Singh, P.K. Proteome analysis of Bemisia tabaci suggests specific targets for RNAi mediated control. J. Proteom. 2016, 132, 93–102. [Google Scholar] [CrossRef]
- Shukla, A.K.; Upadhyay, S.K.; Mishra, M.; Saurabh, S.; Singh, R.; Singh, H.; Thakur, N.; Rai, P.; Pandey, P.; Hans, A.L. Expression of an insecticidal fern protein in cotton protects against whitefly. Nat. Biotechnol. 2016, 34, 1046–1051. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Chandrashekar, K.; Thakur, N.; Verma, P.C.; Borgio, J.F.; Singh, P.K.; Tuli, R. RNA interference for the control of whiteflies (Bemisia tabaci) by oral route. J. Biosci. 2011, 36, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N.; Upadhyay, S.K.; Verma, P.C.; Chandrashekar, K.; Tuli, R.; Singh, P.K. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene. PLoS ONE 2014, 9, e87235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhyay, S.K.; Singh, H.; Dixit, S.; Mendu, V.; Verma, P.C. Molecular characterization of vitellogenin and vitellogenin receptor of Bemisia tabaci. PLoS ONE 2016, 11, e0155306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, W.Q.; Wang, X.R.; Liang, Y.; Liu, S.S.; Wang, X.W. Transcriptome analyses suggest a novel hypothesis for whitefly adaptation to tobacco. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Wang, H.L.; Wang, X.W.; Liu, S.S. Transcriptome analysis and comparison reveal divergence between the Mediterranean and the greenhouse whiteflies. PLoS ONE 2020, 15, e0237744. [Google Scholar]
- Hasegawa, D.K.; Chen, W.; Zheng, Y.; Kaur, N.; Wintermantel, W.M.; Simmons, A.M.; Fei, Z.; Ling, K.-S. Comparative transcriptome analysis reveals networks of genes activated in the whitefly, Bemisia tabaci when fed on tomato plants infected with Tomato yellow leaf curl virus. Virology 2018, 513, 52–64. [Google Scholar] [CrossRef]
- Lapadula, W.J.; Mascotti, M.L.; Ayub, M.J. Whitefly genomes contain ribotoxin coding genes acquired from plants. Sci. Rep. 2020, 10, 1–5. [Google Scholar] [CrossRef]
- Hussain, S.; Farooq, M.; Malik, H.J.; Amin, I.; Scheffler, B.E.; Scheffler, J.A.; Liu, S.S.; Mansoor, S. Whole genome sequencing of Asia II 1 species of whitefly reveals that genes involved in virus transmission and insecticide resistance have genetic variances between Asia II 1 and MEAM1 species. BMC Genom. 2019, 20, 507. [Google Scholar] [CrossRef] [Green Version]
- Vyas, M.; Raza, A.; Ali, M.Y.; Ashraf, M.A.; Mansoor, S.; Shahid, A.A.; Brown, J.K. Knock down of whitefly gut gene expression and mortality by orally delivered gut gene-specific dsRNAs. PLoS ONE 2017, 12, e0168921. [Google Scholar] [CrossRef] [PubMed]
- Eakteiman, G.; Moses-Koch, R.; Moshitzky, P.; Mestre-Rincon, N.; Vassão, D.G.; Luck, K.; Sertchook, R.; Malka, O.; Morin, S. Targeting detoxification genes by phloem-mediated RNAi: A new approach for controlling phloem-feeding insect pests. Insect Biochem. Mol. Biol. 2018, 100, 10–21. [Google Scholar] [CrossRef]
- Grover, S.; Jindal, V.; Banta, G. RNA interference mediated knockdown of juvenile hormone esterase gene in Bemisia tabaci (Gennadius): Effects on adults and their progeny. J. Asia Pac. Entomol. 2019, 22, 56–62. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, S.Q.; Shen, B.B.; Ali, S.; Wang, X.M.; Jin, F.L.; Cuthbertson, A.G.; Qiu, B.L. RNAi knock-down of the Bemisia tabaci Toll gene (BtToll) increases mortality after challenge with destruxin A. Mol. Immunol. 2017, 88, 164–173. [Google Scholar] [CrossRef]
- Wamiq, G.; Khan, J.A. Overexpression of ghr-miR166b generates resistance against Bemisia tabaci infestation in Gossypium hirsutum plants. Planta 2018, 247, 1175–1189. [Google Scholar] [CrossRef] [PubMed]
- Luan, J.B.; Ghanim, M.; Liu, S.S.; Czosnek, H. Silencing the ecdysone synthesis and signaling pathway genes disrupts nymphal development in the whitefly. Insect Biochem. Mol. Biol. 2013, 43, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, X.; Bai, R.; Shi, Y.; Tang, Q.; An, S.; Song, Q.; Yan, F. RNA interference of the P450 CYP6CM1 gene has different efficacy in B and Q biotypes of Bemisia tabaci. Pest Manag. Sci. 2015, 71, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Asokan, R.; Rebijith, K.; Roopa, H.; Kumar, N.K. Non-invasive delivery of dsGST is lethal to the sweet potato whitefly, Bemisia tabaci (G.) (Hemiptera: Aleyrodidae). Appl. Biochem. Biotechnol. 2015, 175, 2288–2299. [Google Scholar] [CrossRef]
- Yang, X.; He, C.; Xie, W.; Liu, Y.; Xia, J.; Yang, Z.; Guo, L.; Wen, Y.; Wang, S.; Wu, Q. Glutathione S-transferases are involved in thiamethoxam resistance in the field whitefly Bemisia tabaci Q (Hemiptera: Aleyrodidae). Pestic. Biochem. Physiol. 2016, 134, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Malik, H.J.; Raza, A.; Amin, I.; Scheffler, J.A.; Scheffler, B.E.; Brown, J.K.; Mansoor, S. RNAi-mediated mortality of the whitefly through transgenic expression of double-stranded RNA homologous to acetylcholinesterase and ecdysone receptor in tobacco plants. Sci. Rep. 2016, 6, 38469. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, L.; Hu, Q.; Zhang, B.; Wu, W.; Jin, F.; Jiang, J. Expression of dsRNA in recombinant Isaria fumosorosea strain targets the TLR7 gene in Bemisia tabaci. BMC Biotechnol. 2015, 15, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.Z.; Bing, X.l.; Liu, S.S.; Chen, X.X. RNA interference of an antimicrobial peptide, Btdef, reduces Tomato yellow leaf curl China virus accumulation in the whitefly Bemisia tabaci. Pest Manag. Sci. 2017, 73, 1421–1427. [Google Scholar] [CrossRef]
- Raza, A.; Malik, H.J.; Shafiq, M.; Amin, I.; Scheffler, J.A.; Scheffler, B.E.; Mansoor, S. RNA interference based approach to down regulate osmoregulators of whitefly (Bemisia tabaci): Potential technology for the control of whitefly. PLoS ONE 2016, 11, e0153883. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xia, J.; Pan, H.; Gong, C.; Xie, W.; Guo, Z.; Zheng, H.; Yang, X.; Yang, F.; Wu, Q. Genome-wide characterization and expression profiling of sugar transporter family in the whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Front. Physiol. 2017, 8, 322. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.B.; Monteiro, T.R.; Cabral, G.B.; Aragão, F.J. RNAi-mediated resistance to whitefly (Bemisia tabaci) in genetically engineered lettuce (Lactuca sativa). Transgenic Res. 2017, 26, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Lü, Z.C.; Wan, F.H. Using double-stranded RNA to explore the role of heat shock protein genes in heat tolerance in Bemisia tabaci (Gennadius). J. Exp. Biol. 2011, 214, 764–769. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.K.; Lee, G.S.; Lee, S.; Lee, K.Y. Oral ingestion of heat shock protein 70 dsRNA is lethal under normal and thermal stress conditions in the sweetpotato whitefly, Bemisia tabaci. J. Asia Pac. Entomol. 2015, 18, 797–800. [Google Scholar] [CrossRef]
- Ghanim, M.; Kontsedalov, S.; Czosnek, H. Tissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius). Insect Biochem. Mol. Biol. 2007, 37, 732–738. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, Y.; Wang, Z.; Wu, M.; Fu, J.; Guo, J.; Chang, L.; Zhang, J. Inaccessibility to double-stranded RNAs in plastids restricts RNA interference in Bemisia tabaci (whitefly). Pest Manag. Sci. 2020, 76, 3168–3176. [Google Scholar] [CrossRef]
- Bar, L.; Czosnek, H.; Sobol, I.; Ghanim, M.; Hariton Shalev, A. Downregulation of dystrophin expression in pupae of the whitefly Bemisia tabaci inhibits the emergence of adults. Insect Mol. Biol. 2019, 28, 662–675. [Google Scholar] [CrossRef]
- Kanakala, S.; Kontsedalov, S.; Lebedev, G.; Ghanim, M. Plant-mediated silencing of the whitefly Bemisia tabaci cyclophilin B and heat shock protein 70 impairs insect development and virus transmission. Front. Physiol. 2019, 10, 557. [Google Scholar] [CrossRef]
- Shi, X.B.; Wang, X.Z.; Zhang, D.Y.; Zhang, Z.H.; Zhang, Z.; Cheng, J.E.; Zheng, L.M.; Zhou, X.G.; Tan, X.Q.; Liu, Y. Silencing of odorant-binding protein gene OBP3 using RNA interference reduced virus transmission of Tomato Chlorosis Virus. Int. J. Mol. Sci. 2019, 20, 4969. [Google Scholar] [CrossRef] [Green Version]
- Akad, F.; Eybishtz, A.; Edelbaum, D.; Gorovits, R.; Dar-Issa, O.; Iraki, N.; Czosnek, H. Making a friend from a foe: Expressing a GroEL gene from the whitefly Bemisia tabaci in the phloem of tomato plants confers resistance to tomato yellow leaf curl virus. Arch. Virol. 2007, 152, 1323–1339. [Google Scholar] [CrossRef]
- Hariton Shalev, A.; Sobol, I.; Ghanim, M.; Liu, S.S.; Czosnek, H. The whitefly Bemisia tabaci Knottin-1 gene is implicated in regulating the quantity of Tomato yellow leaf curl virus ingested and transmitted by the insect. Viruses 2016, 8, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satyavathi, V.; Prasad, V.; Kirthi, N.; Maiya, S.; Savithri, H.; Sita, G.L. Development of cotton transgenics with antisense AV2 gene for resistance against cotton leaf curl virus (CLCuD) via Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult. 2005, 81, 55–63. [Google Scholar]
- Hashmi, J.A.; Zafar, Y.; Arshad, M.; Mansoor, S.; Asad, S. Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences. Virus Genes 2011, 42, 286–296. [Google Scholar] [CrossRef]
- Ali, I.; Amin, I.; Briddon, R.W.; Mansoor, S. Artificial microRNA-mediated resistance against the monopartite begomovirus cotton leaf curl Burewala virus. Virol. J. 2013, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Vanderschuren, H.; Fütterer, J.; Gruissem, W. Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting virus replication genes. Plant Biotechnol. J. 2005, 3, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Vanderschuren, H.; Akbergenov, R.; Pooggin, M.M.; Hohn, T.; Gruissem, W.; Zhang, P. Transgenic cassava resistance to African cassava mosaic virus is enhanced by viral DNA-A bidirectional promoter-derived siRNAs. Plant Mol. Biol. 2007, 64, 549–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanderschuren, H.; Alder, A.; Zhang, P.; Gruissem, W. Dose-dependent RNAi-mediated geminivirus resistance in the tropical root crop cassava. Plant Mol. Biol. 2009, 70, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Chellappan, P.; Masona, M.V.; Vanitharani, R.; Taylor, N.J.; Fauquet, C.M. Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. Plant Mol. Biol. 2004, 56, 601–611. [Google Scholar] [CrossRef]
- Yang, Y.; Sherwood, T.; Patte, C.; Hiebert, E.; Polston, J. Use of Tomato yellow leaf curl virus (TYLCV) Rep gene sequences to engineer TYLCV resistance in tomato. Phytopathology 2004, 94, 490–496. [Google Scholar] [CrossRef] [Green Version]
- Raj, S.; Singh, R.; Pandey, S.; Singh, B. Agrobacterium-mediated tomato transformation and regeneration of transgenic lines expressing Tomato leaf curl virus coat protein gene for resistance against TLCV infection. Curr. Sci. 2005, 88, 1674–1679. [Google Scholar]
- Peretz, Y.; Eybishtz, A.; Sela, I. Silencing of ORFs C2 and C4 of tomato yellow leaf curl virus engenders resistant or tolerant plants. Open Virol. J. 2011, 5, 141. [Google Scholar] [CrossRef] [Green Version]
- Bonfim, K.; Faria, J.C.; Nogueira, E.O.; Mendes, É.A.; Aragão, F.J. RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol. Plant Microbe Interact. 2007, 20, 717–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aragao, F.J.; Nogueira, E.O.; Tinoco, M.L.P.; Faria, J.C. Molecular characterization of the first commercial transgenic common bean immune to the Bean golden mosaic virus. J. Biotechnol. 2013, 166, 42–50. [Google Scholar] [CrossRef]
- Faria, J.C.; Albino, M.; Dias, B.; Cançado, L.J.; da Cunha, N.B.; Silva, L.D.; Vianna, G.R.; Aragão, F.J. Partial resistance to Bean golden mosaic virus in a transgenic common bean (Phaseolus vulgaris L.) line expressing a mutated rep gene. Plant Sci. 2006, 171, 565–571. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Zhang, B.; Shen, Y.; Yin, K. Effect of the protein elicitor AMEP412 from Bacillus subtilis artificially fed to adults of the whitefly, Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae). Egypt. J. Biol. Pest Control 2020, 30, 1–5. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, X.; Daniell, H. Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, lepidopteran insects, bacterial and viral pathogens. Plant Biotechnol. J. 2012, 10, 313–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vajhala, C.S.; Sadumpati, V.K.; Nunna, H.R.; Puligundla, S.K.; Vudem, D.R.; Khareedu, V.R. Development of Transgenic Cotton Lines Expressing Allium sativum Agglutinin (ASAL) for Enhanced Resistance against Major Sap-Sucking Pests. PLoS ONE 2013, 8, e72542. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Gupta, S.; Hess, D.; Das, K.P.; Das, S. Binding of insecticidal lectin Colocasia esculenta tuber agglutinin (CEA) to midgut receptors of Bemisia tabaci and Lipaphis erysimi provides clues to its insecticidal potential. Proteomics 2014, 14, 1646–1659. [Google Scholar] [CrossRef]
- Bhagat, Y.; Bhat, R.; Udikeri, S. Toxicity of E. coli Expressed Remusatia vivipara Lectin and Sclerotium rolfsii lectin delivered via artificial diet against Bemisia tabaci (Genn.) and Amrasca biguttula biguttula (Ishida). Trends Biosci. 2014, 7, 3178–3187. [Google Scholar]
- Liu, S.M.; Li, J.; Zhu, J.Q.; Wang, X.W.; Wang, C.S.; Liu, S.S.; Chen, X.X.; Li, S. Transgenic plants expressing the AaIT/GNA fusion protein show increased resistance and toxicity to both chewing and sucking pests. Insect Sci. 2016, 23, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Sani, I.; Ismail, S.I.; Abdullah, S.; Jalinas, J.; Jamian, S.; Saad, N. A review of the biology and control of whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), with special reference to biological control using entomopathogenic fungi. Insects 2020, 11, 619. [Google Scholar] [CrossRef]
- Nisa, R.M.; Irni, M.; Amaryllis, A.; Sugeng, S.; Iman, R. Chitinolytic bacteria isolated from chili rhizosphere: Chitinase characterization and its application as biocontrol for whitefly (Bemisia tabaci Genn.). Am. J. Agric. Biol. Sci. 2010, 5, 430–435. [Google Scholar]
- Anwar, W.; Javed, M.A.; Shahid, A.A.; Nawaz, K.; Akhter, A.; Ur Rehman, M.Z.; Hameed, U.; Iftikhar, S.; Haider, M.S. Chitinase genes from Metarhizium anisopliae for the control of whitefly in cotton. R. Soc. Open Sci. 2019, 6, 190412. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.K.; Singh, R.; Singh, P.K.; Vasudev, P.G. Insecticidal fern protein Tma12 is possibly a lytic polysaccharide monooxygenase. Planta 2019, 249, 1987–1996. [Google Scholar] [CrossRef]
- Dixit, S.; Upadhyay, S.K.; Singh, H.; Sidhu, O.P.; Verma, P.C.; Chandrashekar, K. Enhanced methanol production in plants provides broad spectrum insect resistance. PLoS ONE 2013, 8, e79664. [Google Scholar] [CrossRef] [PubMed]
- Kantrao, S.; Ravindra, M.A.; Akbar, S.; Jayanthi, P.K.; Venkataraman, A. Effect of biosynthesized Silver nanoparticles on growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae): Interaction with midgut protease. J. Asia Pac. Entomol. 2017, 20, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Chinnaperumal, K.; Govindasamy, B.; Paramasivam, D.; Dilipkumar, A.; Dhayalan, A.; Vadivel, A.; Sengodan, K.; Pachiappan, P. Bio-pesticidal effects of Trichoderma viride formulated titanium dioxide nanoparticle and their physiological and biochemical changes on Helicoverpa armigera (Hub.). Pestic. Biochem. Physiol. 2018, 149, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.L.; Li, X.G.; Zhu, F.; Lei, C.L. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Agric. Food Chem. 2009, 57, 10156–10162. [Google Scholar] [CrossRef]
- Pascual Villalobos, M.; Cantó Tejero, M.; Vallejo, R.; Guirao, P.; Rodríguez Rojo, S.; Cocero, M. Use of nanoemulsions of plant essential oils as aphid repellents. Ind. Crops Prod. 2017, 110, 45–57. [Google Scholar] [CrossRef]
- Shifa, F.; Mukhtar, M.; Pandit, A.; Murtaza, I.; Nazir, N.; Hakeem, K.A. A critical study of reduced pesticide application rates of nano-deltamethrin in comparison to its conventional analogue against Trialeurodes vaporariorum. J. Entomol. Zool. Stud. 2019, 7, 969–974. [Google Scholar]
- Bhattacharyya, A.; Prasad, R.; Buhroo, A.A.; Duraisamy, P.; Yousuf, I.; Umadevi, M.; Bindhu, M.; Govindarajan, M.; Khanday, A.L. One-pot fabrication and characterization of silver nanoparticles using Solanum lycopersicum: An eco-friendly and potent control tool against rose aphid, Macrosiphum rosae. J. Nanosci. 2016, 2016, 4679410. [Google Scholar] [CrossRef] [Green Version]
- Al Shammari, H.I.; AL-Khazraji, H.I.; Falih, S.K. The Effectivity Of Silver Nanoparticles Prepared By Jujube Ziziphus sp. Extract Against Whitefly Bemisia tabaci Nymphs. Res. J. Pharm. Biol. Chem. Sci. 2018, 9, 551–558. [Google Scholar]
- Rouhani, M.; Samih, M.A.; Kalantari, S. Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chil. J. Agric. Res. 2012, 72, 590. [Google Scholar] [CrossRef] [Green Version]
- Khooshe-Bast, Z.; Sahebzadeh, N.; Ghaffari-Moghaddam, M.; Mirshekar, A. Insecticidal effects of zinc oxide nanoparticles and Beauveria bassiana TS11 on Trialeurodes vaporariorum (Westwood, 1856) (Hemiptera: Aleyrodidae). Acta Agric. Slov. 2016, 107, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Rouhani, M.; Samih, M.; Aslani, A.; Beiki, K. Side effect of nano-Zno-Tio2-Ag mix-oxide nanoparticles on Frankliniella occidentalis Pergande (Thys.: Thripidae). In Proceedings of the Proceedings Symposium: Third International Symposium on Insect Physiology, Biochemistry and Molecular Biology, Shanghai, China, 2–5 July 2011; p. 51. [Google Scholar]
- Samih, M.; Rouhani, M.; Aslani, A.; Beiki, K. Insecticidal properties of amitraz, nano-amitraz, nano-ZnO and nano-ZnO-Al2O3 nanoparticles on Agonoscena pistaciae (Hem.: Aphelaridae). In Proceedings of the Proceedings Symposium: Third International Symposium on Insect Physiology, Biochemistry and Molecular Biology, Shanghai, China, 2–5 July 2011; p. 131. [Google Scholar]
- Pereira, K.D.C.; Quintela, E.D.; da Silva, D.J.; Do Nascimento, V.A.; da Rocha, D.V.M.; Silva, J.F.A.E.; Forim, M.R.; Silva, F.G.; Cazal, C.D.M. Characterization of Nanospheres Containing Zanthoxylum riedelianum Fruit Essential Oil and Their Insecticidal and Deterrent Activities against Bemisia tabaci (Hemiptera: Aleyrodidae). Molecules 2018, 23, 2052. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xu, J.; Wang, X.; Qiu, B.; Cuthbertson, A.G.; Du, C.; Wu, J.; Ali, S. Isaria fumosorosea-based zero-valent iron nanoparticles affect the growth and survival of sweet potato whitefly, Bemisia tabaci (Gennadius). Pest Manag. Sci. 2019, 75, 2174–2181. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, J.; Sun, T.; Ali, S. Synthesis of Cordyceps fumosorosea-Biochar Nanoparticles and Their Effects on Growth and Survival of Bemisia tabaci (Gennadius). Front. Microbiol. 2021, 12, 253. [Google Scholar]
- Perlatti, B.; de Souza Bergo, P.L.; Fernandes, J.B.; Forim, M.R. Polymeric nanoparticle-based insecticides: A controlled release purpose for agrochemicals. In Insecticides-Development of Safer and More Effective Technologies; IntechOpen: London, UK, 2013. [Google Scholar]
- Mitter, N.; Worrall, E.A.; Robinson, K.E.; Li, P.; Jain, R.G.; Taochy, C.; Fletcher, S.J.; Carroll, B.J.; Lu, G.M.; Xu, Z.P. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 2017, 3, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mao, B.H.; Chen, Z.Y.; Wang, Y.J.; Yan, S.J. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci. Rep. 2018, 8, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koutroumpa, F.A.; Monsempes, C.; François, M.C.; de Cian, A.; Royer, C.; Concordet, J.P.; Jacquin Joly, E. Heritable genome editing with CRISPR/Cas9 induces anosmia in a crop pest moth. Sci. Rep. 2016, 6, 1–9. [Google Scholar]
- Liu, H.; Liu, Q.; Zhou, X.; Huang, Y.; Zhang, Z. Genome editing of Wnt-1, a gene associated with segmentation, via CRISPR/Cas9 in the pine caterpillar moth, Dendrolimus punctatus. Front. Physiol. 2017, 7, 666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Trionnaire, G.; Tanguy, S.; Hudaverdian, S.; Gléonnec, F.; Richard, G.; Cayrol, B.; Monsion, B.; Pichon, E.; Deshoux, M.; Webster, C. An integrated protocol for targeted mutagenesis with CRISPR-Cas9 system in the pea aphid. Insect Biochem. Mol. Biol. 2019, 110, 34–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, W.B.; Gonzalez, M.T.; Tomich, J. BAPC-assisted CRISPR/Cas9 system: Targeted delivery into adult ovaries for heritable germline gene editing (Arthropoda: Hemiptera). bioRxiv 2018, 478743. [Google Scholar] [CrossRef]
- Heu, C.C.; McCullough, F.M.; Luan, J.; Rasgon, J.L. CRISPR-Cas9-based genome editing in the silverleaf whitefly (Bemisia tabaci). CRISPR J. 2020, 3, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.P.; Luo, T.; Fu, H.W.; Wang, L.; Tan, Y.Y.; Huang, J.Z.; Wang, Q.; Ye, G.Y.; Gatehouse, A.M.; Lou, Y.G. Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis. Nat. Plants 2018, 4, 338–344. [Google Scholar] [CrossRef]
- Xu, R.; Li, H.; Qin, R.; Wang, L.; Li, L.; Wei, P.; Yang, J. Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice 2014, 7, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, Y.; Li, T.; Qiu, H.; Xia, Z.; Dong, Y. Target-specific mutations efficiency at multiple loci of CRISPR/Cas9 system using one sgRNA in soybean. Transgenic Res. 2021, 30, 51–62. [Google Scholar] [CrossRef]
Site of Action | Class of Chemical | Example | Resistance Development in B. tabaci | Ecotoxicity | Approval for Use/WHO Classification | Effect on Encarsia spp. or Eretmocerus eremicus | References | |||
---|---|---|---|---|---|---|---|---|---|---|
Mammals Acute Oral Toxicity | Birds | Fishes | Bees | |||||||
Chemical Insecticides | ||||||||||
GABA gated chloride channels | Organo-chlorines | Endosulfan | Yes | H | M | VH | M | NA/II | II c | [8] |
DTT | Yes | M | PNT | M | M | NA/II | - | - | ||
Lindane | No | M | M | VH | H | NA/II | IV c | [9] | ||
Phenyl- pyrazole (Chlorpyriphos) | Fipronil | Yes | M | H | M | H | A/II | - | - | |
AChE inhibitors | Organo- phosphates | Malathione | Yes | S | M | H | H | A/III | IV c | [10] |
Acephate | Yes | S | M | S | M | NA/II | IV c,d | [10,11] | ||
Methyl- carbamates | Aldicarb | Yes a | VH | VH | M | H | NA/Ia | - | [12] | |
Carbosulfan | Yes a | M | H | VH | H | NA/II | - | [12] | ||
Sodium channel inhibitors | Synthetic pyrethroids | Bifenthrin | Yes | H | S | VH | H | A/II | I c/IV d | [11,13] |
Fenpropathrin | Yes | S | S | VH | H | NA/II | IV d | [9] | ||
nAChR agonist | Neonicotinoids | Acetamiprid | Yes | M | M | M | M | A/II | IV c,d | [10,11] |
Imidacloprid | Yes | M | H | S | H | A/II | III c/IV d | [10,11] | ||
Sulfoximine | Sufoxaflor | No | S | S | S | H | A/NL | - | - | |
Inhibitors of mitochondrial ATP synthase I | Thiourea | Diafenthiuron | No | S | S | VH | H | NL/III | I c | [8,14] |
Salivary pump inhibitors | Pyridine-azomethines | Pymetrozine | Yes | PNT | PNT | M | PNT | A/NL | I c,d | [11] |
Pyridinecarboxa-mide | Flonicamid | - | S | PNT | M | PNT | A/NL | - | - | |
Inhibitors of mitochondrial electron transport complex I | Pyridazin | Pyridaben | Yes a | M | PNT | VH | H | A/II | IV c,d | [11,15] |
Pyrazole | Tolfenpyrad | - | M | M | H | - | NL/NL | IV c,d | [10,11] | |
Inhibitors of lipid synthesis | Derivatives of Tetronic acid and Tetramic acid | Spiromesifen | Yes a | PNT | PNT | H | PNT | A/NL | - | [15] |
Spirotetramat | No a | PNT | PNT | M | PNT | A/III | - | [16] | ||
Ryanodine receptor modulators | Diamides | Cyantranilipro-le | - | PNT | PNT | S | H | P/NL | - | - |
Chlorantranili-prole | - | PNT | PNT | S | M | A/U | I d | [17] | ||
Unknown | Quinazinalone | Pyrifluquinazon | - | M | S | - | - | NL/NL | - | - |
Insect Growth Regulators | ||||||||||
Juvenile hormone mimic | JHA | Fenoxycarb | No | PNT | PNT | M | PNT | A/U | III d | [18] |
Pyriproxyfen | Yes | PNT | S | M | PNT | A/U | I c/IV d | [13,18] | ||
Kinoprene | No | PNT | PNT | S | PNT | NA/O | IV d | [18] | ||
Chitin synthesis inhibitor type 0 | Benzoylureas | Novaluron | No | PNT | PNT | M | PNT | A/U | I c | [19] |
Teflubenzuron | No | PNT | PNT | VH | PNT | A/U | I d | [20] | ||
Chitin synthesis inhibitor type 1 | Unclassified | Buprofezin | Yes | PNT | PNT | H | PNT | A/III | I c/III d | [18,21] |
Insecticides of Microbial Origin | ||||||||||
Glutamate gated chloride channels | Avermactins Macrocyclic lactone | Abamectin | Yes a | H b | S b | H b | H b | A/NL | III c I d | [10,13,22] [17,23] |
GABA gated chloride channels | Spinosad | Spinosad | - | PNT | PNT | S | H | A/III | III c | [13,24] |
Insecticides of Botanical Origin | ||||||||||
Mitochondrial ET complex I inhibitors | Rotenone | Rotenone | - | - | - | - | H | -/II | - | - |
Antifeedant and anti-molting | Limonoid | Azadirachtin | Yes a | S | S | VH | PNT | A/NL | II c | [13,15,25] |
Voltage gated sodium channel blockers | Pyrethrins, Oleoresin | Pyrethrum | - | S | S | H | H | A/II | IV c | [26] |
Scientific Name | Common Name | Important Host Plants/Crops | Reference |
---|---|---|---|
Acaudaleyrodes rachipora | Babul whitefly | Many arid zone forestry tree species | [31] |
Aleurocanthus arecae | Arecanut whitefly | Arecanut and coconut | [31] |
Aleurocanthus camelliae | Camellia spiny whitefly | Tea | [32] |
Aleurocanthus rugosa | Betelvine whitefly | Betelvine | [31] |
Aleurocanthus spiniferus | Orange spiny whitefly | Rose, grape, peach, pear, guava, and citrus | [33] |
Aleurocanthus woglumi | Citrus blackfly | Lemon, orange, and pomelo. | [34] |
Aleuroclava cardamomi | Cardamom whitefly | Cardamom | [31] |
Aleurocybotus occiduus | Rice whitefly | Rice, sorghum and maize | [35] |
Aleurodicus cocois | Coconut whitefly | Coconut, cashew | [36] |
Aleurodicus disperses | Spiraling whitefly | Chillies, capsicum, cassava, tomato, eggplant, mulberry, etc. | [37] |
Aleurodicus dugesii | Giant whitefly | Bamboo, citrus, hibiscus, jasmine, etc. | [38] |
Aleurodicus pseudugesii | NA | Coconut palm | [39] |
Aleurodicus rugioperculatus | Rugose spiraling whitefly | Brazilian pepper, mango, palm, and coconut, etc. | [40] |
Aleurodicus talamancensis | NA | Banana | [41] |
Aleurolobus barodensis | Sugarcane whitefly | Sugarcane | [42] |
Aleurolobus niloticus | Nabk whitefly | Nabk | [43] |
Aleurolobus olivinus | Olive whitefly | Olive | [44] |
Aleuroplatus coronate | Crown whitefly | Oak, chestnut, etc. | [45] |
Aleurothrixus aepim | NA | Cassava | [46] |
Aleurothrixus floccosus | Woolly whitefly | Citrus, cassava, guava, etc. | [47] |
Aleurotrachelus socialis | Cassava whitefly | Cassava | [48] |
Aleurotrachelu sp. | Fringed guava whitefly | Guava and kava | [49] |
Aleurotulus anthuricola | Anthurium whitefly | Anthurium | [50] |
Aleyrodes lonicerae | Honeysuckle whitefly | Honeysuckle | [51] |
Aleyrodes proletella | Cabbage whitefly | Cabbage and other brassicas | [52] |
Aleyrodes spiraeoides | Iris whitefly | Iris, gladiolus, cotton, and potato, etc. | [53] |
Bemisia afer | Sycamore whitefly | Cotton, cassava | [54] |
Bemisia tabaci complex | Silverleaf or Sweetpotato whitefly | Cotton, cassava, cucurbits, tomatoes, peppers, brassicas, legumes | [55] |
Bemisia tuberculata | NA | Cassava | [48] |
Dialeurodes citri | Citrus whitefly | Citrus, coffee, jasmine, pear, Osage orange, pomegranate, etc. | [56] |
Dialeurodes kirkaldyi | Jasmine whitefly | Jasmine | [31] |
Dialeuropora decempuncta | Breadfruit whitefly | Mango, sunflower, cucumber, breadfruit, white mulberry, rose, tomato, etc. | [57] |
Kanakarajiella vulgaris | Jasmine whitefly | Jasmine | [31] |
Neomaskellia andropogonis | Sugarcane whitefly | Sugarcane | [58] |
Neomaskellia bergii | Cane mealy wing whitefly | Sugarcane | [59] |
Orchampoplatus mammaeferus | Croton whitefly | Garden croton | [60] |
Parabemisia myricae | Japanese bay berry whitefly | Citrus spp. and Gardenia. | [56] |
Paraleyrodes bondari | Bondar’s nesting whitefly | Citrus, Hibiscus, Ficus, etc. | [61] |
Singhiella cardamomi | Cardamom whitefly | Cardamom | [31] |
Singhiella citrifolii | Cloudy winged whitefly | Citrus, Ficusnitida etc. | [62] |
Singhiella pallid | Betelvine whitefly | Betelvine | [31] |
Singhiella simplex | Ficus or Fig whitefly | Ficus | [63] |
Siphoninus phillyreae | Ash whitefly | Pomegranate, plum, peach, citrus, apple, and pear | [64] |
Tetraleurodes mori | Mulberry whitefly | Citrus, other trees | [45] |
Tetraleurodes ursorum | Bearberry whitefly | Cassava | [65] |
Trialeurodes abutiloneus | Banded winged whitefly | Cotton, cucurbits, soybean, brassica, citrus, tomato, beans, eggplant, sweetpotato, etc. | [65] |
Trialeurodes lauri | NA | Sweet Bay, Grecian strawberry, etc. | [66] |
Trialeurodes manihoti | NA | Cassava | [46] |
Trialeurodes packardi | Strawberry whitefly | Strawberry | [67] |
Trialeurodes ricini | Castor bean whitefly | Castor bean, Indian bean, cotton, pumpkin, sweet potato, tomato, potato, melon, cucumber, okra, and curry plant | [68] |
Trialeurodes vaporariorum | Greenhouse whitefly | Bean, melon, lettuce, cucumber, tomato, squash, potato, eggplant, strawberry, grape, tobacco, rose, etc. | [69] |
Trialeurodes variabilis | Cassava whitefly | Cassava and Papaya | [48] |
Crop | Year of Whitefly Outbreaks or Recorded Disease Incidences | Disease/Virus/ Whitefly Incidence * | Country/ Territory | Reference(s) |
---|---|---|---|---|
Cotton | 2001–2002 | B. tabaci | Australia | [70] |
2001–2002 | CLCuD (100) | Pakistan | [71] | |
2002–2003 | CLCuD | Pakistan | [72] | |
2004–2005 | CLCuD (20) | Pakistan | [73] | |
2004 | CLCuD (up to 100) | India | [74] | |
2008 | CLCuD (54.24) | Pakistan | [72] | |
2009 | CLCuD (83.1) | Pakistan | [72] | |
2009–2010 | CLCuD | India (up to 100% yield loss) | [71] | |
2012–2014 | CLCuD (37.5 to 63.6) | India | [75] | |
2015–2016 | Whitefly and CLCuD | India (35% yield loss of worth US$ 630–670 million) | [76,77] | |
Cucurbits | 2000 | CYSD (up to 100) | Labanon (40–60% yield reduction) | [78] |
2002–2003 | CVYV, CYSD | Portugal | [79] | |
2006 | CYSD | Mexico and USA | [80] | |
2007–2009 | CYSD (39–100) | USA | [81] | |
2007 | SLCD | Taiwan | [82] | |
2008 | CYSD | China | [83] | |
2009–2010 | WmCSV (up to 90), SLCD (up to 100) | Lebanon | [84] | |
2011–2012 | CCYV (up to 49), CYSD (up to 36) | Iran | [85] | |
2012–2013 | CCYV, CYSD (up to 60) | Lebanon | [86] | |
Tomato | 2000 | TYLCD (90) | USA (Louisiana, up to 100% yield reduction) | [87] |
TYLCD (15–60) | Greece (loss of US$ 0.5 million) | [88] | ||
TICV (93) | Italy | [89] | ||
2001 | TYLCD (75) | Puerto Rico | [90] | |
2001–2002 | TYLCD (up to 40) | Tunisia | [91] | |
2002–2003 | TYLCD (up to 100) | Jordan | [92] | |
2003–2004 | TYLCD (up to 100) | Italy | [93] | |
TYLCD/ToLCD (53) | Mali | [94] | ||
2002–2004 | ToCV (31) | France | [95] | |
2002–2003/2005 | TYLCD (89.19) | Israel | [96] | |
2005/2007 | TYLCD (88.81) | Lebanon | [96] | |
2005/2007 | TYLCD (88.61) | Jordan | [96] | |
2005/2007 | TYLCD (91.25) | Egypt | [96] | |
2006 | TYLCD (90) | China | [97] | |
2006 | TYLCD (100) | Australia | [98] | |
2007 | TICV | Jordan | [99] | |
2009 | TYLCD (up to 50) | Mauritius | [100] | |
2009–2012 | TICV (62.5), ToCV (20.5) | Greece | [101] | |
2014 | TICV (100) | Saudi Arabia | [102] | |
2014–2016 | TYLCD (85) | Trinidad | [103] | |
2015–2016 | TYLCD | Spain | [104] | |
2015–2016 | ToCV (47) | South Africa | [105] |
Sr. No. | Target Genes | Source of Gene Sequence | Target | Function | Developmental Stage Affected | Bioassay Method | Tested Concentration | Significant Effects/Results | Time Span of the Experiment | References |
---|---|---|---|---|---|---|---|---|---|---|
Energy Metabolism | ||||||||||
1 | ADP/ATP Translocase | B. tabaci | B. tabaci | Transmembrane transport | Adults | Artificial diet | 20 μg/mL | 15% mortality | 6 days | [112] |
2 | Trehalase1 | B. tabaci | B. tabaci | Instant source of energy, role in abiotic stress | Adults | Artificial diet | 30 μg/mL | 70% mortality | 6 days | [120] |
3 | Trehalose transporter1 | B. tabaci | B. tabaci | Regulation of trehalose levels in the hemolymph | Adults | Artificial diet | 30 μg/mL | 73% mortality | 6 days | [120] |
4 | ghr-MIR166b | Gossypium hirsutum | B. tabaci | Regulates the energy metabolism by targeting the ATP synthase gene of B. tabaci | Adults | In planta (transgenic tobacco) | NA | 78% mortality | 15 days | [124] |
Leaf disc | NA | 90% | 6 days | |||||||
Metamorphosis of Insects | ||||||||||
5 | Cyp315a1 | B. tabaci | B. tabaci | Ecdysone biosynthesis | Adults and 4th instar nymphs | Detached tomato leaf, pre-soaked in a solution of dsRNA | 0.5 mg/mL | No significant changes | 6 days | [125] |
6 | Cyp18a1 | B. tabaci | B. tabaci | Ecdysone degradation | Adults and 4th instar nymphs | Detached tomato leaf, pre-soaked in a solution of dsRNA | 0.5 mg/mL | No significant changes | 6 days | [125] |
7 | EcR | B. tabaci | B. tabaci | Ecdysone signaling pathway | Adults and 4th instar nymphs | Detached tomato leaf, pre-soaked in a solution of dsRNA | 0.5 mg/mL | Decreased fecundity in adults, mortality in fourth instar nymphs | 6 days | [125] |
8 | E75 | B. tabaci | B. tabaci | Ecdysone signaling pathway | Adults and 4th instar nymphs | Detached tomato leaf, pre-soaked in a solution of dsRNA | 0.5 mg/mL | No significant change in adults, mortality in fourth instar nymphs | 6 days | [125] |
9 | Juvenile hormone esterase | B. tabaci | B. tabaci | Hydrolysis of juvenile hormone | Adults | Artificial diet | 2.5 μg/μL | Significant reduction in fecundity and survival of whiteflies | 2 days | [122] |
Detoxification Pathway | ||||||||||
10 | P450 CYP6CM1 | B. tabaci | B. tabaci biotype, B and Q | Metabolism of hormones and the catabolism of toxins | Adults | Artificial diet | 40 μg/mL | 86% and 56% mortality in biotype B and Q, respectively | 7 days | [126] |
11 | GST | B. tabaci | B. tabaci | Protect cellular macromolecules from harmful xenobiotics | Adults | Artificial diet | 1.0 μg/μL | 77% mortality | 3 days | [127] |
Adults | Artificial diet | 1000 mg/L | Increased mortality in thiomethoxam resistant strain | 3 days | [128] | |||||
Adults and nymphs | Artificial diet | 100 μg/mL | Significantly delayed and reduced progeny emergence, prolonged development period of nymphs | 3 days | [121] | |||||
Adults and nymphs | Transgenic Arabidopsis thaliana | NA | Significantly delayed and reduced progeny emergence, prolonged development period of nymphs | 38 days | ||||||
12 | AChE | B. tabaci | B. tabaci | Neuronal transmission and signaling between synapses | Adults | Transgenic tobacco | NA | 90% mortality | 4 days | [129] |
13 | BtGSTs5 | B. tabaci | B. tabaci | neutralization of activated glucosinolates | Artificial diet and transgenic A. thaliana | 100 μg/mL | Plant-mediated dsRNA reduces the insect’s fitness | 4 days | [121] | |
Insect Immunity and Development | ||||||||||
14 | Toll-like receptor | B. tabaci | B. tabaci | Larval innate, as well as adaptive immunity | Nymphs | Leaf dipped in the solution of Recombinant Isaria fumosorosea strain expressing dsRNA | 2 × 107 spores per mL | 90.33% mortality of nymphs | 12 days | [130] |
Adult | Artificial diet | 100 μg/mL DA + 20 μg/mL dsRNA | LC50 of destruxin A and dsRNA = 103.45 μg/mL in comparison to LC50 = 352.7 μg/mL of diet containing DA only | 1 days | [123] | |||||
15 | Defensin-like peptide | B. tabaci | B. tabaci | Anti-microbial activities against bacteria, fungi and other parasites | Adult | Artificial diet | 0.5 μg/μL | Significantly compromised virus carrying capacity of whitefly and density of endosymbiont Rickettsia | 2 days | [131] |
Cellular Transport and Osmoregulation | ||||||||||
16 | Aquaporin | B. tabaci | B. tabaci | Water transport across cell membranes | Adults | Transgenic | NA | 78% mortality | 6 days | [132] |
17 | Alpha glucosidase | B. tabaci | B. tabaci | Osmo regulation | Adults | Transgenic | NA | 65% mortality | 6 days | [132] |
Artificial diet | 30 μg/mL | 84% mortality | 6 days | [120] | ||||||
18 | Sugar transporters (STs) | B. tabaci | B. tabaci | Essential for sugar exchange and maintenance of osmotic pressure | Adults | Artificial diet | 100 ng/200 μL | Mortality | 4 days | [133] |
19 | V ATPase A | B. tabaci | B. tabaci | ATP hydrolysis coupled proton transport | Adult | Artificial diet | 20 μg/mL dsRNA and siRNA | 85.62% in siRNA and 97.5% mortality in dsRNA treatment | 6 days | [112] |
Transgenic lettuce | NA | 84–98% mortality and 95- fold lower fecundity | 5 days | [134] | ||||||
Transgenic tobacco | NA | 34–83% mortality, respectively | 6 days | [113] | ||||||
Thermal Tolerance | ||||||||||
20 | HSP 23 | B. tabaci | B. tabaci | Cold acclimation, response to heat | Adults | Artificial diet | 0.5 μg/μL | Reduced female survival rate | 3 h | [135] |
21 | HSP 70 | B. tabaci | B. tabaci | Heat shock-mediated polytene chromosome puffing | Adults | Artificial diet | 0.5 μg/μL | Reduced female survival rate | 3 h | [135] |
250 ng/μL | dsRNA-treated whiteflies lost their vitality and thermal tolerance which leads to increased mortality rate | 1 day | [136] | |||||||
30 μg/mL | 35% mortality | 6 days | [120] | |||||||
22 | HSP 90 | B. tabaci | B. tabaci | Response to heat | Adults | Artificial diet | 0.3–0.5 μg/μL | No significant changes | 1 h and 3 h | [135] |
Embryogenesis and Reproduction | ||||||||||
23 | BtCG5885 | B. tabaci | B. tabaci | Embryogenesis | Adults | Injection | 0.1–0.5 μg | Disruption of actin network in developing eggs | 2 days | [137] |
24 | BtGATAd | B. tabaci | B. tabaci | Embryogenesis | Adults | Injection | 0.1–0.5 μg | Disruption of actin network in developing eggs | 2 days | [137] |
25 | Vitellogenin receptor | B. tabaci | B. tabaci | Uptake of vitellogenin by endocytosis | Adults | Artificial diet | 40 μg/mL | Reduction in total egg count, presence of distorted eggs and egg mortality 63.83 ± 6.35% | 3 days | [114] |
Cell Division, Shape, Motility, and Intracellular Trafficking | ||||||||||
26 | Alpha tubulin | B. tabaci | B. tabaci | Essential for fast growth of the microtubules during the initial cleavage divisions of embryogenesis | Adult | Artificial diet | 20 μg/mL | 34% mortality | 3 days | [112] |
27 | Ribosomal Protein L9 | B. tabaci | B. tabaci | Mitotic spindle elongation; translation; centrosome duplication | Adult | Artificial diet | 20 μg/mL | 37% mortality | 3 days | [112] |
28 | Actin | B. tabaci | B. tabaci | Cell mobility | Adults | Artificial diet | 20 μg/mL | 18% mortality | 6 days | [112] |
29 | BtACTB | B. tabaci | B. tabaci | Physiological function | Adults | Transgenic tobacco | NA | Reduced survival rate, and impaired fecundity | 7 days | [138] |
30 | Dystrophin | B. tabaci | B. tabaci | Conserved protein essential for the development of the muscle system | Adults | Roots of tomato dipped into dsRNA solution | 0.5 μg/ul | Significant inhibition of the emergence of adults from pupae | 23 days | [139] |
Virus Transmission | ||||||||||
31 | Cyclophilin B and hsp 70 | B. tabaci | Tomato yellow leaf curl virus (TYLCV) | Cyclophilin B and hsp 70 interact and co-localize with TYLV in whitefly midgut and help in virus transmission | Adults | Transgenic plant | NA | Whiteflies showed decreased ability to transmit TYLCV under lab conditions | 3 days | [140] |
32 | Odorant-binding proteins (OBPs) | B. tabaci | Tomato chlorosis virus (ToCV) | OBPs help in identifying plant VOCs in the olfactory recognition of insects | Adults | Artificial diet | 500 ng/μL | The viral transmission rate was reduced by 83.3% | 40 days | [141] |
33 | GroEL | B. tabaci | Tomato yellow leaf curl virus (TYLCV) | Member of chaperonin family helps in virus transmission via binding through coat proteins of the virus | Adults | Transgenic Tomato | NA | Mild or no viral symptoms have been recorded for up to 3 generations of transgenic tomato | 2 days | [142] |
34 | Knot-1 | B. tabaci | Tomato yellow leaf curl virus | Regulates the number of virions in the hemolymph | Adults | Detached tomato leaf, pre-soaked in a solution of dsRNA | 0.5 μg/μL | Knot-1 gene silencing leads to a 3-fold increase in the amount of TYLCV acquisition | 2 days | [143] |
35 | Knot -3 | B. tabaci | Tomato yellow leaf curl virus | Regulates the number of virions in the hemolymph | Adults | Detached tomato leaf, pre-soaked in a solution of dsRNA | 0.5 μg/μL | No significant effects were observed | 2 days | [143] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saurabh, S.; Mishra, M.; Rai, P.; Pandey, R.; Singh, J.; Khare, A.; Jain, M.; Singh, P.K. Tiny Flies: A Mighty Pest That Threatens Agricultural Productivity—A Case for Next-Generation Control Strategies of Whiteflies. Insects 2021, 12, 585. https://doi.org/10.3390/insects12070585
Saurabh S, Mishra M, Rai P, Pandey R, Singh J, Khare A, Jain M, Singh PK. Tiny Flies: A Mighty Pest That Threatens Agricultural Productivity—A Case for Next-Generation Control Strategies of Whiteflies. Insects. 2021; 12(7):585. https://doi.org/10.3390/insects12070585
Chicago/Turabian StyleSaurabh, Sharad, Manisha Mishra, Preeti Rai, Rashmi Pandey, Jyoti Singh, Akansha Khare, Meeta Jain, and Pradhyumna Kumar Singh. 2021. "Tiny Flies: A Mighty Pest That Threatens Agricultural Productivity—A Case for Next-Generation Control Strategies of Whiteflies" Insects 12, no. 7: 585. https://doi.org/10.3390/insects12070585
APA StyleSaurabh, S., Mishra, M., Rai, P., Pandey, R., Singh, J., Khare, A., Jain, M., & Singh, P. K. (2021). Tiny Flies: A Mighty Pest That Threatens Agricultural Productivity—A Case for Next-Generation Control Strategies of Whiteflies. Insects, 12(7), 585. https://doi.org/10.3390/insects12070585