Insect-Based Feed Ingredients for Aquaculture: A Case Study for Their Acceptance in Greece
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Aquaculture Conference Attendees Survey
2.2. Stakeholder Survey
2.3. Statistical Analyses
3. Results
3.1. Socio-Demographic Data
3.2. Personal Attitudes towards the Use of Insects in Aquafeeds
3.3. Stakeholders Perspectives towards the Use of Insects in Aquafeeds
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2020. Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- FGM (Federation of Greek Maricultures). Aquaculture in Greece: Annual Report. 2020, p. 16. Available online: https://www.fgm.com.gr/uploads/file/FGM_20_ENG_PRINT.pdf (accessed on 3 June 2021).
- FAO (Food and Agriculture Organization of the United Nations). National Aquaculture Sector Overview Fact Sheets: Greece. In FAO Fisheries and Aquaculture Department; FAO: Rome, Italy, 2021; Available online: http://www.fao.org/fishery/countrysector/naso_greece/en (accessed on 3 June 2021).
- Gatlin, D.M.; Barrows, F.T.; Brown, P.; Dabrowski, K.; Gaylord, T.G.; Hardy, R.W.; Herman, E.; Hu, G.; Krogdahl, A.; Nelson, R.; et al. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquac. Res. 2007, 38, 551–579. [Google Scholar] [CrossRef]
- Hua, K.; Cobcroft, J.M.; Cole, A.; Condon, K.; Jerry, D.R.; Mangott, A.; Praeger, C.; Vucko, M.J.; Zeng, C.; Zenger, K.; et al. The future of aquatic protein: Implications for protein sources in aquaculture diets. One Earth 2019, 1, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Tacon, A.G.J.; Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture 2008, 285, 146–158. [Google Scholar] [CrossRef]
- Shepherd, C.J.; Jackson, A.J. Global fish meal and fish-oil supply: Inputs, outputs and markets. J. Fish Biol. 2013, 83, 1046–1066. [Google Scholar] [CrossRef]
- Gasco, L.; Gai, F.; Maricchiolo, G.; Genovese, L.; Ragonese, S.; Bottari, T.; Caruso, G. Fishmeal alternative protein sources for aquaculture feeds. In Feeds for the Aquaculture Sector; Gasco, L., Gai, F., Maricchiolo, G., Genovese, L., Ragonese, S., Bottari, T., Caruso, G., Eds.; Springer Briefs in Molecular Science; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–28. [Google Scholar]
- Glencross, B.D.; Baily, J.; Berntssen, M.H.G.; Hardy, R.; MacKenzie, S.; Tocher, D.R. Risk assessment of the use of alternative animal and plant raw material resources in aquaculture feeds. Rev. Aquac. 2020, 12, 703–758. [Google Scholar] [CrossRef] [Green Version]
- Bell, G.J.; Waagbø, R.R. Safe and nutritious aquaculture produce: Benefits and Risks of Alternative Sustainable Aquafeeds. In Aquaculture in the Ecosystem; Holmer, M., Black, K., Duarte, C.M., Marbà, N., Karakassis, I., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 185–225. [Google Scholar]
- Jannathulla, R.; Rajaram, V.; Kalanjiam, R.; Ambasankar, K.; Muralidhar, M.; Dayal, J.S. Fishmeal availability in the scenarios of climate change: Inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. Aquac. Res. 2019, 50, 3493–3506. [Google Scholar] [CrossRef]
- Karapanagiotidis, Ι.Τ.; Psofakis, P.; Mente, E.; Malandrakis, E.; Golomazou, E. Effect of fishmeal replacement by poultry by-product meal on growth performance, proximate composition, digestive enzyme activity, haematological parameters and gene expression of gilthead seabream (Sparus aurata). Aquac. Nutr. 2019, 25, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Psofakis, P.; Karapanagiotidis, I.T.; Malandrakis, E.E.; Golomazou, E.; Exadactylos, A.; Mente, E. Effect of fishmeal replacement by hydrolyzed feather meal on growth performance, proximate composition, digestive enzyme activity, haematological parameters and growth-related gene expression of gilthead seabream (Sparus aurata). Aquaculture 2020, 521, 735006. [Google Scholar] [CrossRef]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Tran, G.; Heuzé, V.; Makkar, H.P.S. Insects in fish diets. Anim. Front. 2015, 5, 37–44. [Google Scholar]
- Nogales-Mérida, S.; Gobbi, P.; Józefiak, D.; Mazurkiewicz, J.; Dudek, K.; Rawski, M.; Kierończyk, B.; Józefiak, A. Insect meals in fish nutrition. Rev. Aquac. 2019, 11, 1080–1103. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B. Can insects help to ease the problem of world food shortage. Search 1975, 6, 261–262. [Google Scholar]
- Van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Gasco, L.; Henry, M.; Piccolo, G.; Marono, S.; Gai, F.; Renna, M.; Lussiana, C.; Antonopoulou, E.; Mola, P.; Chatzifotis, S. Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Anim. Feed Sci. Technol. 2016, 220, 34–45. [Google Scholar] [CrossRef]
- Renna, M.; Schiavone, A.; Gai, F.; Dabbou, S.; Lussiana, C.; Malfatto, V.; Prearo, M.; Capucchio, M.T.; Biasato, I.; Biasibetti, E.; et al. Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J. Anim. Sci. Biotechnol. 2017, 8, 57. [Google Scholar] [CrossRef]
- Józefiak, A.; Nogales-Mérida, S.; Mikołajczak, Z.; Rawski, M.; Kierończyk, B.; Mazurkiewicz, J. The utilization of full-fat insect meal in rainbow trout (Oncorhynchus mykiss) nutrition: The effects on growth performance, intestinal microbiota and gastro-intestinal tract histomorphology. Ann. Anim. Sci. 2019, 19, 747–765. [Google Scholar] [CrossRef] [Green Version]
- Cardinaletti, G.; Randazzo, B.; Messina, M.; Zarantoniello, M.; Giorgini, E.; Zimbelli, A.; Bruni, L.; Parisi, G.; Olivotto, I.; Tulli, F. Effects of graded dietary inclusion level of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss). Animals 2019, 9, 251. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Muros, M.J.; de Haro, C.; Sanz, A.; Trenzado, C.E.; Villareces, S.; Barroso, F.G. Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquac. Nutr. 2016, 22, 943–955. [Google Scholar] [CrossRef]
- Rodjaroen, S.; Thongprajukaew, K.; Khongmuang, P.; Malawa, S.; Tuntikawinwong, K.; Saekhow, S. Ontogenic development of digestive enzymes in mealworm larvae (Tenebrio molitor) and their suitable harvesting time for use as fish feed. Insects 2020, 11, 393. [Google Scholar] [CrossRef]
- Karapanagiotidis, I.T.; Daskalopoulou, E.; Vogiatzis, I.; Rumbos, C.; Mente, E.; Athanassiou, C.G. Substitution of fishmeal by fly Hermetia illucens prepupae meal in the diet of gilthead seabream (Sparus aurata). In Proceedings of the 1st International Congress of Applied Ichthyology and Aquatic Environment, HydroMedit 2014, Volos, Greece, 13–15 November 2014; pp. 110–114. [Google Scholar]
- Piccolo, G.; Iaconisi, V.; Marono, S.; Gasco, L.; Loponte, R.; Nizza, S.; Bovera, F.; Parisi, G. Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Anim. Feed Sci. Technol. 2017, 226, 12–20. [Google Scholar] [CrossRef]
- Zarantoniello, M.; Randazzo, B.; Nozzi, V.; Truzzi, C.; Giorgini, E.; Cardinaletti, G.; Freddi, L.; Ratti, S.; Girolametti, F.; Osimani, A.; et al. Physiological responses of Siberian sturgeon (Acipenser baerii) juveniles fed on full-fat insect-based diet in an aquaponic system. Sci. Rep. 2021, 11, 1057. [Google Scholar] [CrossRef]
- Vargas-Abúndez, A.J.; Randazzo, B.; Foddai, M.; Sanchini, L.; Truzzi, C.; Giorgini, E.; Gasco, L.; Olivotto, I. Insect meal based diets for clownfish: Biometric, histological, spectroscopic, biochemical and molecular implications. Aquaculture 2019, 498, 1–11. [Google Scholar] [CrossRef]
- Zarantoniello, M.; Randazzo, B.; Truzzi, C.; Giorgini, E.; Marcellucci, C.; Vargas-Abúndez, J.A.; Zimbelli, A.; Annibaldi, A.; Parisi, G.; Tulli, F.; et al. A six-months study on black soldier fly (Hermetia illucens) based diets in zebrafish. Sci. Rep. 2019, 9, 8598. [Google Scholar] [CrossRef] [PubMed]
- Motte, C.; Rios, A.; Lefebvre, T.; Do, H.; Henry, M.; Jintasataporn, O. Replacing fish meal with defatted insect meal (yellow mealworm Tenebrio molitor) improves the growth and immunity of pacific white shrimp (Litopenaeus vannamei). Animals 2019, 9, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. EU Commission Regulation 2017/893 of 24 May 2017 Amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as Regards the Provisions on Processed Animal Protein; Official Journal of the European Union, L 138/92, European Commission: Luxembourg, 2017. [Google Scholar]
- Józefiak, D.; Józefiak, A.; Kierończyk, B.; Rawski, M.; Świątkiewicz, S.; Długosz, J.; Engberg, R.M. Insects—A natural nutrient source for poultry—A review. Ann. Anim. Sci. 2016, 16, 297–313. [Google Scholar] [CrossRef] [Green Version]
- Boafo, H.A.; Affedzie-Obresi, S.; Gbemavo, D.S.J.C.; Clottey, V.A.; Nkegbe, E.; Adu-Aboagye, G.; Kenis, M. Use of termites by farmers as poultry feed in Ghana. Insects 2019, 10, 69. [Google Scholar] [CrossRef] [Green Version]
- Khusro, M.; Andrew, N.; Nicholas, A. Insects as poultry feed: A scoping study for poultry production systems in Australia. Worlds Poult. Sci. J. 2012, 68, 435–446. [Google Scholar] [CrossRef]
- Sayed, W.A.A.; Ibrahim, N.S.; Hatab, M.H.; Zhu, F.; Rumpold, B.A. Comparative study of the use of insect meal from Spodoptera littoralis and Bactrocera zonata for feeding japanese quail chicks. Animals 2019, 9, 136. [Google Scholar] [CrossRef] [Green Version]
- Zielińska, E.; Zieliński, D.; Karaś, M.; Jakubczyk, A. Exploration of consumer acceptance of insects as food in Poland. J. Insects Food Feed 2020, 6, 383–392. [Google Scholar] [CrossRef]
- House, J. Consumer acceptance of insect-based foods in the Netherlands: Academic and commercial implications. Appetite 2016, 107, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbeke, W.; Spranghers, T.; Clercq, P.D.; Smet, S.D.; Sas, B.; Eeckhout, M. Insects in animal feed: Acceptance and its determinants among farmers, agriculture sector stakeholders and citizens. Anim. Feed Sci. Technol. 2015, 204, 72–78. [Google Scholar] [CrossRef]
- Mancuso, T.; Baldi, L.; Gasco, L. An empirical study on consumer acceptance of farmed fish fed on insect meals: The Italian case. Aquac. Int. 2016, 24, 1489–1507. [Google Scholar] [CrossRef] [Green Version]
- Popoff, M.; MacLeod, M.; Leschen, W. Attitudes towards the use of insect-derived materials in Scottish salmon feeds. J. Insects Food Feed 2017, 3, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Llagostera, P.F.; Kallas, Z.; Reig, L.; Amores de Gea, D. The use of insect meal as a sustainable feeding alternative in aquaculture: Current situation, Spanish consumers’ perceptions and willingness to pay. J. Clean. Prod. 2019, 229, 10–21. [Google Scholar] [CrossRef]
- Chia, S.Y.; Macharia, J.; Diiro, G.M.; Kassie, M.; Ekesi, S.; van Loon, J.J.A.; Dicke, M.; Tanga, C.M. Smallholder farmers’ knowledge and willingness to pay for insect-based feeds in Kenya. PLoS ONE 2020, 15, e0230552. [Google Scholar] [CrossRef]
- Domingues, C.H.D.F.; Borgesm, J.A.R.; Ruviaro, C.F.; Guidolin, D.G.F.; Carrijo, J.R.M. Understanding the factors influencing consumer willingness to accept the use of insects to feed poultry, cattle, pigs and fish in Brazil. PLoS ONE 2020, 15, e0224059. [Google Scholar] [CrossRef]
- Sebatta, C.; Ssepuuya, G.; Sikahwa, E.; Mugisha, J.; Diiro, G.; Sengendo, M.; Fuuna, P.; Fiaboe, K.K.M.; Nakimbugwe, D. Farmers’ acceptance of insects as an alternative protein source in poultry feeds. Int. J. Agric. Res. Innov. Technol. 2018, 8, 32–41. [Google Scholar] [CrossRef] [Green Version]
- OECD. OECD Better Life Index: Greece. 2021. Available online: http://www.oecdbetterlifeindex.org/countries/greece/#:~:text=In%20Greece%2C%20the%20average%20household,much%20as%20the%20bottom%2020%25 (accessed on 3 June 2021).
- AllAboutFeed. Why Are Insects Not Allowed in Animal Feed? Reed Business Media. 2014. Available online: https://www.rts.ch/la-1ere/programmes/detours/6154029.html/BINARY/Consommer%20des%20insectes%20(en%20anglais) (accessed on 3 June 2021).
- PROteINSECT. D6.2 Public Engagement Report 1; PROteINSECT: 2014. p. 34. Available online: https://www.proteinsect.eu/fileadmin/user_upload/deliverables/Toolkit-final-V1_1.pdf (accessed on 3 June 2021).
- AllAboutFeed. Insect Meal Allowance Expected in 2020. 2020. Available online: https://www.allaboutfeed.net/all-about/new-proteins/insect-meal-allowance-expected-in-2020/ (accessed on 3 March 2021).
- Arru, B.; Furesi, R.; Gasco, L.; Madau, F.A.; Pulina, P. The introduction of insect meal into fish diet: The first economic analysis on European sea bass farming. Sustainability 2019, 11, 1697. [Google Scholar] [CrossRef] [Green Version]
- IPIFF (International Platform of Insects for Food and Feed). The European Insect Sector Today: Challenges, Opportunities and Regulatory Landscape. IPIFF Vision Paper on the Future of the Insect Sector towards 2030. 2019. Available online: https://ipiff.org/wp-content/uploads/2019/12/2019IPIFF_VisionPaper_updated.pdf (accessed on 3 March 2021).
- Li, S.; Ji, H.; Zhang, B.; Zhou, J.; Yu, H. Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio var. Jian): Growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure. Aquaculture 2017, 477, 62–70. [Google Scholar] [CrossRef]
- Zarantoniello, M.; Zimbelli, A.; Randazzo, B.; Compagni, M.D.; Truzzi, C.; Antonucci, M.; Riolo, P.; Loreto, N.; Osimani, A.; Milanović, V.; et al. Black Soldier Fly (Hermetia illucens) reared on roasted coffee by-product and Schizochytrium sp. as a sustainable terrestrial ingredient for aquafeeds production. Aquaculture 2020, 518, 734659. [Google Scholar] [CrossRef]
- Truzzi, C.; Giorgini, E.; Annibaldi, A.; Antonucci, M.; Illuminati, S.; Scarponi, G.; Riolo, P.; Isidoro, N.; Conti, C.; Zarantoniello, M.; et al. Fatty acids profile of black soldier fly (Hermetia illucens): Influence of feeding substrate based on coffee-waste silverskin enriched with microalgae. Anim. Feed Sci. Tech. 2020, 259, 114309. [Google Scholar] [CrossRef]
- Lock, E.R.; Arsiwalla, T.; Waagbø, R. Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquac. Nutr. 2014, 22, 1202–1213. [Google Scholar] [CrossRef]
- Van der Fels-Klerx, H.J.; Camenzuli, L.; Belluco, S.; Meijer, N.; Ricci, A. Food safety issues related to uses of insects for feeds and foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1172–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milanovic, V.; Osimani, A.; Pasquini, M.; Aquilanti, L.; Garofalo, C.; Taccari, M.; Cardinali, F.; Riolo, P.; Clementi, F. Getting insight into the prevalence of antibiotic resistance genes in specimens of marketed edible insects. Int. J. Food Microbiol. 2016, 227, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Osimani, A.; Garofalo, C.; Aquilanti, L.; Milanovic, V.; Cardinali, F.; Taccari, M.; Clementi, F. Transferable antibiotic resistances in marketed edible grasshoppers (Locusta migratorio migratorioides). J. Food Sci. 2017, 82, 1184–1192. [Google Scholar] [CrossRef] [PubMed]
Socio-Demographic Information | Frequency | % of Total |
---|---|---|
Gender | ||
Female | 117 | 51.3 |
Male | 111 | 48.7 |
Age | ||
≤20 years | 65 | 28.5 |
21–30 years | 95 | 41.7 |
31–40 years | 25 | 11.0 |
41–50 years | 26 | 11.4 |
≥51 years | 17 | 7.5 |
Mean (SEM) | 28.5 (0.8) | |
Participation in HydroMediT as | ||
Academic-researcher | 39 | 17.1 |
Staff of the Aquaculture business | 13 | 5.7 |
Staff of the Aquafeed business | 10 | 4.4 |
Staff of the Public Sector | 7 | 3.1 |
Student | 158 | 69.3 |
No response | 1 | 0.4 |
Income | ||
≤20,000$ | 103 | 45.2 |
20,001–30,000$ | 51 | 22.4 |
30,001–40,000$ | 28 | 12.3 |
40,001–50,000$ | 12 | 5.3 |
≥ 50,001$ | 15 | 6.5 |
No response | 19 | 8.3 |
Educational level | ||
High School or equivalent | 68 | 29.8 |
College or technical school | 37 | 16.2 |
University degree | 49 | 21.5 |
Post-graduate degree | 73 | 32.2 |
No response | 1 | 0.4 |
Company | Company Type | Time in Operation (Years) | Number of Employees | Main Products | Annual Capacity Production (tons) | Target Market |
---|---|---|---|---|---|---|
Company 1 | Aquaculture | 29 | 20 | European sea bass (D. labrax) Gilthead sea bream (S. aurata) | 300 (sea bass) 300 (sea bream) | Europe |
Company 2 | Aquaculture | 20 | 550 | European sea bass (D. labrax) Gilthead sea bream (S. aurata) Meagre (Argyrosomus regius) Red porgy (Pagrus pagrus) | 16,000 (total) | National |
Company 3 | Aquaculture | 31 | 356 | European sea bass (D. labrax) Gilthead sea bream (S. aurata) Meagre (A. regius) | 3000 (sea bass) 5500 (sea bream) 500 (meagre) | Europe Third countries |
Company 4 | Aquaculture | 1 | 3 | Gilthead sea bream (S. aurata) | 150 (sea bream) | Europe |
Company 5 | Aquaculture | 35 | 130 | European sea bass (D. labrax) Gilthead sea bream (S. aurata) | 1650 (sea bass) 450 (sea bream) | National Europe Third countries |
Company 6 | Aquafeed | 6 | 4 | Aquafeeds for the gilthead sea bream (S. aurata) and other marine species | 5500 (total) | National Europe |
Company 7 | Aquafeed | 30 | >1000 | Aquafeeds for several marine species | 76,000 (total) | National |
Company 8 | Aquafeed | 10 | 70 | Aquafeeds for the European sea bass (D. labrax), gilthead sea bream (S. aurata), meagre (A. regius), red porgy (P. pagrus) and greater amberjack (Seriola dumerili) | 100,000 (total) | National Europe |
Company 9 | Aquafeed | 17 | 35 | Aquafeeds for the European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) | 11,500 (for sea bass) 3500 (for sea bream) | National |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rumbos, C.I.; Mente, E.; Karapanagiotidis, I.T.; Vlontzos, G.; Athanassiou, C.G. Insect-Based Feed Ingredients for Aquaculture: A Case Study for Their Acceptance in Greece. Insects 2021, 12, 586. https://doi.org/10.3390/insects12070586
Rumbos CI, Mente E, Karapanagiotidis IT, Vlontzos G, Athanassiou CG. Insect-Based Feed Ingredients for Aquaculture: A Case Study for Their Acceptance in Greece. Insects. 2021; 12(7):586. https://doi.org/10.3390/insects12070586
Chicago/Turabian StyleRumbos, Christos I., Eleni Mente, Ioannis T. Karapanagiotidis, Georgios Vlontzos, and Christos G. Athanassiou. 2021. "Insect-Based Feed Ingredients for Aquaculture: A Case Study for Their Acceptance in Greece" Insects 12, no. 7: 586. https://doi.org/10.3390/insects12070586
APA StyleRumbos, C. I., Mente, E., Karapanagiotidis, I. T., Vlontzos, G., & Athanassiou, C. G. (2021). Insect-Based Feed Ingredients for Aquaculture: A Case Study for Their Acceptance in Greece. Insects, 12(7), 586. https://doi.org/10.3390/insects12070586