The Possible Role of Microorganisms in Mosquito Mass Rearing
Abstract
:Simple Summary
Abstract
1. Introduction
2. Mosquito Microbiota and Environmental Factors
2.1. Bacteria
2.2. Fungi
2.3. Algae
2.4. Protozoa
2.5. Viruses
3. Microorganisms as Mosquito Larval Diet
4. The Potential Use of Probiotics in Diet
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Weaver, S.C.; Reisen, W.K. Present and future arboviral threats. Antivir. Res. 2010, 85, 328–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Malaria Report 2019 [WWW Document], n.d. Available online: https://www.who.int/publications-detail/world-malaria-report-2019 (accessed on 15 April 2020).
- Schaffner, F.; Medlock, J.M.; Van Bortel, W. Public health significance of invasive mosquitoes in Europe. Clin. Microbiol. Infect. 2013, 19, 685–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gratz, N.G. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 2004, 18, 215–227. [Google Scholar] [CrossRef]
- Rezza, G.; Nicoletti, L.; Angelini, R.; Romi, R.; Finarelli, A.; Panning, M.; Cordioli, P.; Fortuna, C.; Boros, S.; Magurano, F.; et al. Infection with chikungunya virus in Italy: An outbreak in a temperate region. Lancet 2007, 370, 1840–1846. [Google Scholar] [CrossRef]
- Venturi, G.; Di Luca, M.; Fortuna, C.; Remoli, M.E.; Riccardo, F.; Severini, F.; Toma, L.; Del Manso, M.; Benedetti, E.; Caporali, M.G.; et al. Detection of a chikungunya outbreak in Central Italy, August to September 2017. Eurosurveillance 2017, 22. [Google Scholar] [CrossRef] [Green Version]
- Medlock, J.M.; Hansford, K.M.; Schaffner, F.; Versteirt, V.; Hendrickx, G.; Zeller, H.; Van Bortel, W. A Review of the Invasive Mosquitoes in Europe: Ecology, Public Health Risks, and Control Options. Vector Borne Zoonotic. Dis. 2012, 12, 435–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balestrino, F.; Medici, A.; Candini, G.; Carrieri, M.; Maccagnani, B.; Calvitti, M.; Maini, S.; Bellini, R. Gamma ray dosimetry and mating capacity studies in the laboratory on Aedes albopictus males. J. Med. Entomol. 2010, 47, 581–591. [Google Scholar] [CrossRef]
- Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management, 2nd ed.; Dyck, V.A.; Hendrichs, J.; Robinson, A.S. (Eds.) CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Knipling, E.F. Possibilities of Insect Control or Eradication Through the Use of Sexually Sterile Males1. J. Econ. Entomol. 1955, 48, 459–462. [Google Scholar] [CrossRef]
- Knipling, E.F. The Basic Principles of Insect Population Suppression and Management; Number 512; Science and Education Administration, US Department of Agriculture: Washington, DC, USA, 1979.
- Coleman, P.G.; Alphey, L. Editorial: Genetic control of vector populations: An imminent prospect. Trop. Med. Int. Health 2004, 9, 433–437. [Google Scholar] [CrossRef]
- Hendrichs, J.; Robinson, A.S. Sterile Insect Technique. In Encyclopedia of Insects, 2nd ed.; Resh, V.H.m., Carde’, R.T., Eds.; Academic Press: Burlington, MA, USA, 2009; pp. 953–957. [Google Scholar]
- Parker, A.; Mehta, K. Sterile insect technique: A model for a dose optimization for improved sterile insect quality. Florida Entomol. 2007, 90, 88–95. [Google Scholar] [CrossRef]
- Bellini, R.; Carrieri, M.; Balestrino, F.; Puggioli, A.; Malfacini, M.; Bouyer, J. Field competitiveness of Aedes albopictus [Diptera: Culicidae] irradiated males in pilot Sterile Insect Technique trials in Northern Italy. J. Med. Entomol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Malfacini, M.; Puggioli, A.; Carrieri, M.; Chersoni, L.; Albieri, A.; Dindo, M.L.; Balestrino, F.; Bellini, R. Development of sexting systems functional to mass production against Aedes albopictus Skuse in Northern Italy. Abstract, 2021.
- Walker, E.D.; Olds, E.J.; Merritt, R.W. Gut Content Analysis of Mosquito Larvae (Diptera: Culicidae) Using Dapi Stain and Epifluorescence Microscopy. J. Med. Entomol. 1988, 25, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Muniaraj, M.; Arunachalam, N.; Paramasivan, R.; Mariappan, T.; Samuel, P.P.; Rajamannar, V. Bdelloid rotifer, Philodina species in the breeding containers of Aedes aegypti and Aedes albopictus. Trop. Biomed. 2012, 29, 646–649. [Google Scholar]
- Souza, R.S.; Diaz-Albiter, H.M.; Dillon, V.M.; Dillon, R.J.; Genta, F.A. Digestion of Yeasts and Beta-1,3-Glucanases in Mosquito Larvae: Physiological and Biochemical Considerations. PLoS ONE 2016, 11, e0151403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Travanty, N.V.; Apperson, C.S.; Ponnusamy, L. A Diverse Microbial Community Supports Larval Development and Survivorship of the Asian Tiger Mosquito (Diptera: Culicidae). J. Med. Entomol. 2019, 56, 632–640. [Google Scholar] [CrossRef]
- Nayar, J.K.; Sauerman, D.M. A Comparative Study of Growth and Development in Florida Mosquitoes1: Part 2: Effects of larval nurture on adult characteristics at emergence. J. Med. Entomol. 1970, 7, 235–241. [Google Scholar] [CrossRef]
- Scriber, J.M.; Slansky, F. The Nutritional Ecology of Immature Insects. Annu. Rev. Entomol. 1981, 26, 183–211. [Google Scholar] [CrossRef]
- Engel, P.; Moran, N.A. The gut microbiota of insects—Diversity in structure and function. FEMS Microbiol. Rev. 2013, 37, 699–735. [Google Scholar] [CrossRef] [PubMed]
- Augustinos, A.A.; Kyritsis, G.A.; Papadopoulos, N.T.; Abd-Alla, A.; Cáceres, C.; Bourtzis, K. Exploitation of the Medfly Gut Microbiota for the Enhancement of Sterile Insect Technique: Use of Enterobacter sp. in Larval Diet-Based Probiotic Applications. PLoS ONE 2015, 10, e0136459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coon, K.; Vogel, K.; Brown, M.R.; Strand, M.R. Mosquitoes rely on their gut microbiota for development. Mol. Ecol. 2014, 23, 2727–2739. [Google Scholar] [CrossRef] [Green Version]
- Coon, K.; Valzania, L.; McKinney, D.A.; Vogel, K.; Brown, M.R.; Strand, M.R. Bacteria-mediated hypoxia functions as a signal for mosquito development. Proc. Natl. Acad. Sci. USA 2017, 114, E5362–E5369. [Google Scholar] [CrossRef] [Green Version]
- Guégan, M.; Zouache, K.; Démichel, C.; Minard, G.; Van, V.T.; Potier, P.; Mavingui, P.; Moro, C.V. The mosquito holobiont: Fresh insight into mosquito-microbiota interactions. Microbiome 2018, 6, 49. [Google Scholar] [CrossRef]
- Souza, R.S.; Virginio, F.; Riback, T.I.S.; Suesdek, L.; Barufi, J.B.; Genta, F.A. Microorganism-Based Larval Diets Affect Mosquito Development, Size and Nutritional Reserves in the Yellow Fever Mosquito Aedes aegypti (Diptera: Culicidae). Front. Physiol. 2019, 10, 152. [Google Scholar] [CrossRef] [PubMed]
- Dennison, N.J.; Jupatanakul, N.; Dimopoulos, G. The mosquito microbiota influences vector competence for human pathogens. Curr. Opin. Insect Sci. 2014, 3, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Van Tol, S.; Dimopoulos, G. Influences of the Mosquito Microbiota on Vector Competence. Prog. Mosq. Res. 2016, 243–291. [Google Scholar] [CrossRef]
- Coon, K.L.; Brown, M.R.; Strand, M.R. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol. Ecol. 2016, 25, 5806–5826. [Google Scholar] [CrossRef] [Green Version]
- Bogale, H.N.; Cannon, M.V.; Keita, K.; Camara, D.; Barry, Y.; Keita, M.; Coulibaly, D.; Kone, A.K.; Doumbo, O.K.; Thera, M.A.; et al. Relative contributions of various endogenous and exogenous factors to the mosquito microbiota. Parasites Vectors 2020, 13, 619. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yek, S.; Wilson, R.; Rahman, S. Characterization of the Aedes albopictus (Diptera: Culicidae) holobiome: Bacterial composition across land use type and mosquito sex in Malaysia. Acta Trop. 2020, 212, 105683. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, D.; Augustinos, A.; Doudoumis, V.; Mokhtar, N.B.; Maiga, H.; Tsiamis, G.; Bourtzis, K. Multiple Factors Determine the Structure of Bacterial Communities Associated with Aedes albopictus Under Artificial Rearing Conditions. Front. Microbiol. 2020, 11, 605. [Google Scholar] [CrossRef] [PubMed]
- Scolari, F.; Casiraghi, M.; Bonizzoni, M. Aedes spp. and Their Microbiota: A Review. Front. Microbiol. 2019, 10, 2036. [Google Scholar] [CrossRef] [Green Version]
- Mancini, M.V.; Damiani, C.; Accoti, A.; Tallarita, M.; Nunzi, E.; Cappelli, A.; Bozic, J.; Catanzani, R.; Rossi, P.; Valzano, M.; et al. Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing. BMC Microbiol. 2018, 18, 126. [Google Scholar] [CrossRef] [Green Version]
- Scolari, F.; Sandionigi, A.; Carlassara, M.; Bruno, A.; Casiraghi, M.; Bonizzoni, M. Exploring Changes in the Microbiota of Aedes albopictus: Comparison Among Breeding Site Water, Larvae, and Adults. Front. Microbiol. 2021, 12. [Google Scholar] [CrossRef]
- Muturi, E.J.; Ramirez, J.L.; Rooney, A.; Dunlap, C. Association between fertilizer-mediated changes in microbial communities and Aedes albopictus growth and survival. Acta Trop. 2016, 164, 54–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gendrin, M.; Rodgers, F.; Yerbanga, R.S.; Ouedraogo, J.B.; Basáñez, M.-G.; Cohuet, A.; Christophides, G.K. Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria. Nat. Commun. 2015, 6, 5921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guégan, M.; Minard, G.; Tran, F.-H.; Van, V.T.; Dubost, A.; Moro, C.V. Short-term impacts of anthropogenic stressors on Aedes albopictus mosquito vector microbiota. FEMS Microbiol. Ecol. 2018, 94. [Google Scholar] [CrossRef]
- Yadav, K.K.; Bora, A.; Datta, S.; Chandel, K.; Gogoi, H.K.; Prasad, G.B.K.S.; Veer, V. Molecular characterization of midgut microbiota of Aedes albopictus and Aedes aegypti from Arunachal Pradesh, India. Parasites Vectors 2015, 8, 641. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, T.; Wu, Y.; Zhong, D.; Zhou, G.; Su, X.; Xu, J.; Sotero, C.F.; Sadruddin, A.A.; Wu, K.; et al. Bacterial microbiota assemblage in Aedes albopictus mosquitoes and its impacts on larval development. Mol. Ecol. 2018, 27, 2972–2985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chouaia, B.; Rossi, P.; Epis, S.; Mosca, M.; Ricci, I.; Damiani, C.; Ulissi, U.; Crotti, E.; Daffonchio, D.; Bandi, C.; et al. Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiol. 2012, 12, S2. [Google Scholar] [CrossRef] [Green Version]
- Lindh, J.; Borg-Karlson, A.-K.; Faye, I. Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water. Acta Trop. 2008, 107, 242–250. [Google Scholar] [CrossRef]
- Bacot, A. The effect of the presence of bacteria or yeast on the hatching of the eggs of Stegomyia fasciata (the yellow fever mosquito). J. Roy. Mic. Soc. 1917, 1917, 173–174. [Google Scholar]
- Gjullin, C.M.; Hegarty, C.P.; Bollen, W.B. The necessity of a low oxygen concentration for the hatching of Aedes mosquito eggs. J. Cell Comp. Physiol. 1941, 17, 193–202. [Google Scholar] [CrossRef]
- Judson, C.L. The Physiology of Hatching of Aedine Mosquito Eggs: Hatching Stimulus. Ann. Entomol. Soc. Am. 1960, 53, 688–691. [Google Scholar] [CrossRef]
- Fallis, S.P.; Snow, K.R. The hatching stimulus for eggs of Aedes punctor (Diptera: Culicidae). Ecol. Entomol. 1983, 8, 23–28. [Google Scholar] [CrossRef]
- Ponnusamy, L.; Böröczky, K.; Wesson, D.M.; Schal, C.; Apperson, C.S. Bacteria Stimulate Hatching of Yellow Fever Mosquito Eggs. PLoS ONE 2011, 6, e24409. [Google Scholar] [CrossRef] [PubMed]
- Arbaoui, A.A.; Chua, T.H. Bacteria as a Source of Ovoposition Attractant fot Aedes aegypti Mosquitoes. Trop. Biomed. 2014, 31, 134–142. [Google Scholar] [PubMed]
- Soman, R.S.; Reuben, R. Studies on the Preference Shown by Ovipositing Females of Aedes aegypti for Water Containing Immature Stages of the Same Species. J. Med. Entomol. 1970, 7, 485–489. [Google Scholar] [CrossRef]
- Benzon, G.L.; Apperson, C.S. Reexamination of Chemically Mediated Oviposition Behavior in Aedes aegypti (L.) (Diptera: Culicidae)1. J. Med. Entomol. 1988, 25, 158–164. [Google Scholar] [CrossRef]
- Ponnusamy, L.; Schal, C.; Wesson, D.M.; Arellano, C.; Apperson, C.S. Oviposition responses of Aedes mosquitoes to bacterial isolates from attractive bamboo infusions. Parasites Vectors 2015, 8, 486. [Google Scholar] [CrossRef] [Green Version]
- McMeniman, C.J.; Lane, R.V.; Cass, B.N.; Fong, A.W.C.; Sidhu, M.; Wang, Y.-F.; O’Neill, S.L. Stable Introduction of a Life-Shortening Wolbachia Infection into the Mosquito Aedes aegypti. Science 2009, 323, 141–144. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, M.G.; Walker, E.D.; Smith, T.W.; Merritt, R.W.; Klug, M.J. Effects of Larval Mosquitoes (Aedes triseriatus) and Stemflow on Microbial Community Dynamics in Container Habitats. Appl. Environ. Microbiol. 1999, 65, 2661–2673. [Google Scholar] [CrossRef] [Green Version]
- Bozic, J.; Capone, A.; Pediconi, D.; Mensah, P.; Cappelli, A.; Valzano, M.; Mancini, M.V.; Scuppa, P.; Martin, E.; Epis, S.; et al. Mosquitoes can harbour yeasts of clinical significance and contribute to their environmental dissemination. Environ. Microbiol. Rep. 2017, 9, 642–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steyn, A.; Roets, F.; Botha, A. Yeasts Associated with Culex pipiens and Culex theileri Mosquito Larvae and the Effect of Selected Yeast Strains on the Ontogeny of Culex pipiens. Microb. Ecol. 2015, 71, 747–760. [Google Scholar] [CrossRef] [PubMed]
- Hinman, E.H. A Study of The Food of Mosquito Larvae (Culicidae). Am. J. Epidemiol. 1930, 12, 238–270. [Google Scholar] [CrossRef]
- Bond, J.G.; Arredondo-Jimenez, J.I.; Rodriguez, M.H.; Quiroz-Martinez, H.; Williams, T. Oviposition habitat selection for a predator refuge and food source in a mosquito. Ecol. Entomol. 2005, 30, 255–263. [Google Scholar] [CrossRef]
- Garros, C.; Ngugi, N.; Githeko, A.E.; Tuno, N.; Yan, G.; Ngungi, N. Gut content identification of larvae of the Anopheles gambiae complex in western Kenya using a barcoding approach. Mol. Ecol. Resour. 2008, 8, 512–518. [Google Scholar] [CrossRef] [Green Version]
- Charles, V.; Vijayan, V.A.; Ashraf, A.; Hosmani, S.P. Feeding habitats of mosquito larvae and their gut flora at Mysore. Nat. Environ. Pollut. Technol. 2011, 10, 219–224. [Google Scholar]
- Bond, J.G.; Rojas, J.C.; Arredondo-Jiménez, J.I.; Quiroz-Martínez, H.; Valle, J.; Williams, T. Population control of the malaria vector Anopheles pseudopunctipennis by habitat manipulation. Proc. R. Soc. B Boil. Sci. 2004, 271, 2161–2169. [Google Scholar] [CrossRef] [Green Version]
- Marten, G.G. Mosquito control by plankton management: The potential of indigestible green algae. J. Trop. Med. Hyg. 1986, 89, 213–222. [Google Scholar]
- Kiviranta, J.; Abdel-Hameed, A. Toxicity of the blue-green alga Oscillatoria agardhii to the mosquito Aedes aegypti and the shrimp Artemia salina. World J. Microbiol. Biotechnol. 1994, 10, 517–520. [Google Scholar] [CrossRef]
- Porter, K.G.; Pace, M.L.; Battey, J.F. Ciliate protozoans as links in freshwater planktonic food chains. Nat. Cell Biol. 1979, 277, 563–565. [Google Scholar] [CrossRef]
- Sanders, R.W.; Wickham, S.A. Planktonic protozoa and metazoa: Predation, food quality and population control. Mar. Microb. Food Webs 1993, 7, 197–223. [Google Scholar]
- Moureau, G.; Ninove, L.; Izri, A.; Cook, S.; De Lamballerie, X.; Charrel, R.N. Flavivirus RNA in phlebotomine sandflies. Vector Borne Zoonotic Dis. 2010, 10, 195–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stollar, V.; Thomas, V.L. An agent in the Aedes aegypti cell line (Peleg) which causes fusion of Aedes albopictus cells. Virology 1975, 64, 367–377. [Google Scholar] [CrossRef]
- Sang, R.C.; Gichogo, A.; Gachoya, J.; Dunster, M.D.; Ofula, V.; Hunt, A.R.; Crabtree, M.B.; Miller, B.R.; Dunster, L.M. Isolation of a new flavivirus related to cell fusing agent virus (CFAV) from field-collected flood-water Aedes mosquitoes sampled from a dambo in Central Kenya. Arch. Virol. 2003, 148, 1085–1093. [Google Scholar] [CrossRef]
- Hoshino, K.; Isawa, H.; Tsuda, Y.; Yano, K.; Sasaki, T.; Yuda, M.; Takasaki, T.; Kobayashi, M.; Sawabe, K. Genetic characterization of a new insect flavivirus isolated from Culex pipiens mosquito in Japan. Virology 2007, 359, 405–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedict, M.Q.; Hunt, C.M.; Vella, M.G.; Gonzalez, K.M.; Dotson, E.M.; Collins, C.M. Pragmatic selection of larval mosquito diets for insectary rearing of Anopheles gambiae and Aedes aegypti. PLoS ONE 2020, 15, e0221838. [Google Scholar] [CrossRef] [Green Version]
- Clements, A.N. Development, Nutrition and Reproduction. In The Biology of Mosquitoes; Print on demand; CABI: Wallingford, UK, 2008. [Google Scholar]
- Kivuyo, H.S.; Mbazi, P.H.; Kisika, D.S.; Munga, S.; Rumisha, S.F.; Urasa, F.M.; Kweka, E.J. Performance of Five Food Regimes on Anopheles gambiae Senso Stricto Larval Rearing to Adult Emergence in Insectary. PLoS ONE 2014, 9, e110671. [Google Scholar] [CrossRef]
- Li, Y.; Kamara, F.; Zhou, G.; Puthiyakunnon, S.; Li, C.; Liu, Y.; Zhou, Y.; Yao, L.; Yan, G.; Chen, X.-G. Urbanization Increases Aedes albopictus Larval Habitats and Accelerates Mosquito Development and Survivorship. PLoS Negl. Trop. Dis. 2014, 8, e3301. [Google Scholar] [CrossRef] [Green Version]
- Nijhout, H.F.; Roff, D.A.; Davidowitz, G. Conflicting processes in the evolution of body size and development time. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Elora, S.; Sarkar, M. Larval diet influences development, growth, and survival of mosquitoes in artificial rearing condition. Int. J. Mosq. Res. 2018, 5, 7–11. [Google Scholar]
- Ahmad, R.; Chu, W.-L.; Ismail, Z.; Lee, H.-L.; Phang, S.-M. Effect of ten chlorophytes on larval survival, development and adult body size of the mosquito Aedes aegypti. Southeast Asian J. Trop. Med. Public Heal. 2004, 35, 79–87. [Google Scholar]
- Östman, Ö.; Lundström, J.O.; Vinnersten, T.Z.P. Effects of mosquito larvae removal with Bacillus thuringiensis israelensis (Bti) on natural protozoan communities. Hydrobiologia 2008, 607, 231–235. [Google Scholar] [CrossRef]
- Skiff, J.J.; Yee, D.A. The Effects of Protozoans on Larval Container Mosquito Performance. Ann. Entomol. Soc. Am. 2015, 108, 282–288. [Google Scholar] [CrossRef]
- Winters, A.E.; Yee, N.A. Variation in performance of two co-occurring mosquito species across diverse resource environments: Insights from nutrient and stable isotope analyses. Ecol. Entomol. 2012, 37, 56–64. [Google Scholar] [CrossRef]
- Duguma, D.; Kaufman, M.G.; Domingos, A.B.S. Aquatic microfauna alter larval food resources and affect development and biomass of West Nile and Saint Louis encephalitis vector Culex nigripalpus (Diptera: Culicidae). Ecol. Evol. 2017, 7, 3507–3519. [Google Scholar] [CrossRef] [PubMed]
- Mitraka, E.; Stathopoulos, S.; Sidén-Kiamos, I.; Christophides, G.K.; Louis, C. Asaia accelerates larval development of Anopheles gambiae. Pathog. Glob. Health 2013, 107, 305–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamden, H.; Guerfali, M.M.; Fadhl, S.; Saidi, M.; Chevrier, C. Fitness Improvement of Mass-Reared Sterile Males of Ceratitis capitata (Vienna 8 strain) (Diptera: Tephritidae) After Gut Enrichment with Probiotics. J. Econ. Entomol. 2013, 106, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Zhang, H.; Cai, P.; Gu, X.; Wang, D.; Ji, Q. Enhanced fitness of a Bactrocera cucurbitae genetic sexing strain based on the addition of gut-isolated probiotics (Enterobacter spec.) to the larval diet. Entomol. Exp. Appl. 2017, 162, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Shuttleworth, L.A.; Khan, M.A.M.; Osborne, T.; Collins, D.; Srivastava, M.; Reynolds, O.L. A walk on the wild side: Gut bacteria fed to mass-reared larvae of Queensland fruit fly [Bactrocera tryoni (Froggatt)] influence development. BMC Biotechnol. 2019, 19, 85. [Google Scholar] [CrossRef]
- Ben Ami, E.; Yuval, B.; Jurkevitch, E. Manipulation of the microbiota of mass-reared Mediterranean fruit flies Ceratitis capitata (Diptera: Tephritidae) improves sterile male sexual performance. ISME J. 2010, 4, 28–37. [Google Scholar]
- Lauzon, C.R.; Potter, S.E. Description of the irradiated and nonirradiated midgut of Ceratitis capitata Wiedemann (Diptera: Tephritidae) and Anastrepha ludens Loew (Diptera: Tephritidae) used for sterile insect technique. J. Pest Sci. 2012, 85, 217–226. [Google Scholar] [CrossRef]
- Gavriel, S.; Jurkevitch, E.; Gazit, Y.; Yuval, B. Bacterially enriched diet improves sexual performance of sterile male Mediterranean fruit flies. J. Appl. Entomol. 2011, 135, 564–573. [Google Scholar] [CrossRef]
- Strand, M.R. Composition and functional roles of the gut microbiota in mosquitoes. Curr. Opin. Insect Sci. 2018, 28, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, L.; Xu, N.; Nojima, S.; Wesson, D.M.; Schal, C.; Apperson, C.S. Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. Proc. Natl. Acad. Sci. USA 2008, 105, 9262–9267. [Google Scholar] [CrossRef] [Green Version]
- Calkins, C.O.; Parker, A.G. Sterile Insect Quality. In The Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 269–296. [Google Scholar]
- Balestrino, F.; Puggioli, A.; Carrieri, M.; Bouyer, J.; Bellini, R. Quality control methods for Aedes albopictus sterile male production. PLoS Negl. Trop. Dis. 2017, 11, e0005881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Culbert, N.J.; Balestrino, F.; Dor, A.; Herranz, G.S.; Yamada, H.; Wallner, T.; Bouyer, J. A rapid quality control test to foster the development of genetic control in mosquitoes. Sci. Rep. 2018, 8, 16179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chersoni, L.; Checcucci, A.; Malfacini, M.; Puggioli, A.; Balestrino, F.; Carrieri, M.; Piunti, I.; Dindo, M.L.; Mattarelli, P.; Bellini, R. The Possible Role of Microorganisms in Mosquito Mass Rearing. Insects 2021, 12, 645. https://doi.org/10.3390/insects12070645
Chersoni L, Checcucci A, Malfacini M, Puggioli A, Balestrino F, Carrieri M, Piunti I, Dindo ML, Mattarelli P, Bellini R. The Possible Role of Microorganisms in Mosquito Mass Rearing. Insects. 2021; 12(7):645. https://doi.org/10.3390/insects12070645
Chicago/Turabian StyleChersoni, Luca, Alice Checcucci, Marco Malfacini, Arianna Puggioli, Fabrizio Balestrino, Marco Carrieri, Irene Piunti, Maria Luisa Dindo, Paola Mattarelli, and Romeo Bellini. 2021. "The Possible Role of Microorganisms in Mosquito Mass Rearing" Insects 12, no. 7: 645. https://doi.org/10.3390/insects12070645
APA StyleChersoni, L., Checcucci, A., Malfacini, M., Puggioli, A., Balestrino, F., Carrieri, M., Piunti, I., Dindo, M. L., Mattarelli, P., & Bellini, R. (2021). The Possible Role of Microorganisms in Mosquito Mass Rearing. Insects, 12(7), 645. https://doi.org/10.3390/insects12070645