Insecticidal Activity of Lemongrass Essential Oil as an Eco-Friendly Agent against the Black Cutworm Agrotis ipsilon (Lepidoptera: Noctuidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Culture
2.2. Extraction of C. citratus Essential Oil
2.3. GC–MS Analysis of the Essential Oil
2.4. Bioassay
2.5. Lethal and Sublethal Effects
2.6. Biochemical Analysis
2.6.1. Oxidative Stress Enzyme Assays
Sample Preparation
Enzyme Measurement
2.6.2. Measurement of Detoxification Enzyme Activity
Measurement of Carboxylesterase (CarE) Activity
Measurement of Glutathione S-Transferase (GST) Activity
2.7. Statistical Analysis
3. Results
3.1. Chemical Compound of the Essential Oil from Lemongrass
3.2. Lemongrass EO Toxicity Test
3.3. Effects of C. citratus EO on Some Biological Parameters
3.4. Oxidative Stress Indices
3.5. Detoxification Enzymes Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zaka, S.M.; Iqbal, N.; Saeed, Q.; Akrem, A.; Batool, M.; Khan, A.A.; Anwar, A.; Bibi, M.; Azeem, S.; Rizvi, D.-e.-N.; et al. Toxic effects of some insecticides, herbicides, and plant essential oils against Tribolium confusum Jacquelin du val (Insecta: Coleoptera: Tenebrionidae). Saudi J. Biol. Sci. 2019, 26, 1767–1771. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, D.; Burgess, M. Environmental and Economic Costs of the Application of Pesticides Primarily in the United States. In Integrated Pest Management: Pesticide Problems; Pimentel, D., Peshin, R., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 3, pp. 47–71. [Google Scholar] [CrossRef]
- Alves, M.d.S.; Campos, I.M.; Brito, D.d.M.C.d.; Cardoso, C.M.; Pontes, E.G.; Souza, M.A.A.d. Efficacy of lemongrass essential oil and citral in controlling Callosobruchus maculatus (Coleoptera: Chrysomelidae), a post-harvest cowpea insect pest. Crop Prot. 2019, 119, 191–196. [Google Scholar] [CrossRef]
- Kwon, M.; Ahn, Y.-J.; Yoo, J.-K.; Choi, B.-R. Potent Insecticidal Activity of Extracts from Ginkgo biloba Leaves against Nilaparvata lugens (Homoptera: Delphacidae). Appl. Entomol. Zool. 1996, 31, 162–166. [Google Scholar] [CrossRef]
- Koul, O.; Walia, S.; Dhaliwal, G. Essential oils as green pesticides: Potential and constraints. Biopestic. Int. 2008, 4, 63–84. [Google Scholar]
- Khan, S.; Taning, C.N.T.; Bonneure, E.; Mangelinckx, S.; Smagghe, G.; Shah, M.M. Insecticidal activity of plant-derived extracts against different economically important pest insects. Phytoparasitica 2017, 45, 113–124. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; El-Hefny, M.; Ali, H.M.; Abdel-Megeed, A.; El-Settawy, A.A.A.; Böhm, M.; Mansour, M.M.A.; Salem, A.Z.M. Plants-derived bioactives: Novel utilization as antimicrobial, antioxidant and phytoreducing agents for the biosynthesis of metallic nanoparticles. Microb. Pathogen. 2021, 158, 105107. [Google Scholar] [CrossRef]
- Rajendran, S.; Sriranjini, V. Plant products as fumigants for stored-product insect control. J. Stored Prod. Res. 2008, 44, 126–135. [Google Scholar] [CrossRef]
- Pino, O.; Sánchez, Y.; Rojas, M.M. Plant secondary metabolites as an alternative in pest management. I: Background, research approaches and trends. Rev. Protección Veg. 2013, 28, 81–94. [Google Scholar]
- Mondal, D.; Mondal, T. A Review on efficacy of Azadirachta indica A. Juss based biopesticides: An Indian perspective. Res. J. Recent Sci. 2012, 1, 94–99. [Google Scholar]
- Prakash, A.; Rao, J. Botanical Pesticides in Agriculture; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Rattan, R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010, 29, 913–920. [Google Scholar] [CrossRef]
- Omotoso, S.E.; Akinpelu, B.A.; Soyelu, O.J. Insecticidal effect of lemongrass oil on behavioural responses and biochemical changes in cowpea weevil, Callosobruchus maculatus (Fabricius). J. Phytopathol. Pest. Manag. 2020, 7, 14–30. [Google Scholar]
- Feroz, A. Efficacy and cytotoxic potential of deltamethrin, essential oils of Cymbopogon citratus and Cinnamonum camphora and their synergistic combinations against stored product pest, Trogoderma granarium (Everts). J. Stored Prod. Res. 2020, 87, 101614. [Google Scholar] [CrossRef]
- Manh, H.D.; Hue, D.T.; Hieu, N.T.; Tuyen, D.T.; Tuyet, O.T. The Mosquito Larvicidal Activity of Essential Oils from Cymbopogon and Eucalyptus Species in Vietnam. Insects 2020, 11, 128. [Google Scholar] [CrossRef]
- Tisserand, R.; Young, R. Essential Oil Safety-E-Book: A Guide for Health Care Professionals; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Eden, W.T.; Alighiri, D.; Supardi, K.I.; Cahyono, E. The Mosquito Repellent Activity of the Active Component of Air Freshener Gel from Java Citronella Oil (Cymbopogon winterianus). J. Parasitol. Res. 2020, 2020, 9053741. [Google Scholar] [CrossRef] [PubMed]
- Zibaee, I. Synergistic effect of some essential oils on toxicity and knockdown effects, against mosquitos, cockroaches and housefly. Arthropods 2015, 4, 107. [Google Scholar]
- Avoseh, O.; Oyedeji, O.; Rungqu, P.; Nkeh-Chungag, B.; Oyedeji, A. Cymbopogon Species; Ethnopharmacology, Phytochemistry and the Pharmacological Importance. Molecules 2015, 20, 7438–7453. [Google Scholar] [CrossRef]
- Rahayu, R.; Mairawita, J. Efficacy and residual activity of lemongrass essential oil (Cymbopogon flexuosus) against German cockroaches (Blattella germanica). J. Entomol. 2018, 15, 149–154. [Google Scholar] [CrossRef]
- Solomon, B.; Gebre-Mariam, T.; Asres, K. Mosquito Repellent Actions of the Essential Oils of Cymbopogon citratus, Cymbopogon nardus and Eucalyptus citriodora: Evaluation and Formulation Studies. J. Essent. Oil Bear. Plants 2012, 15, 766–773. [Google Scholar] [CrossRef]
- Kapur, A.; Felder, M.; Fass, L.; Kaur, J.; Czarnecki, A.; Rathi, K.; Zeng, S.; Osowski, K.K.; Howell, C.; Xiong, M.P.; et al. Modulation of oxidative stress and subsequent induction of apoptosis and endoplasmic reticulum stress allows citral to decrease cancer cell proliferation. Sci. Rep. 2016, 6, 27530. [Google Scholar] [CrossRef] [PubMed]
- Sanches, L.J.; Marinello, P.C.; Panis, C.; Fagundes, T.R.; Morgado-Díaz, J.A.; de-Freitas-Junior, J.C.M.; Cecchini, R.; Cecchini, A.L.; Luiz, R.C. Cytotoxicity of citral against melanoma cells: The involvement of oxidative stress generation and cell growth protein reduction. Tumor Biol. 2017, 39, 1010428317695914. [Google Scholar] [CrossRef]
- Caccia, M.G.; Del Valle, E.; Doucet, M.E.; Lax, P. Susceptibility of Spodoptera frugiperda and Helicoverpa gelotopoeon (Lepidoptera: Noctuidae) to the entomopathogenic nematode Steinernema diaprepesi (Rhabditida: Steinernematidae) under laboratory conditions. Chil. J. Agric. Res. 2014, 74, 123–126. [Google Scholar] [CrossRef]
- Ladhari, A.; Omezzine, F.; Chaieb, I.; Haouala, R. Antifeeding and insecticidal effects of Capparis spinosa L. on Spodoptera littoralis (Boisduval) larvae. Afr. J. Agric. Res. 2013, 8, 5232–5238. [Google Scholar]
- Kandil, M.A.; Abdel-kerim, R.N.; Moustafa, M.A.M. Lethal and sub-lethal effects of bio-and chemical insecticides on the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Egypt. J. Biol. Pest. Control. 2020, 30, 76. [Google Scholar] [CrossRef]
- Capinera, J.L. Encyclopedia of Entomology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Wang, X.Y.; Yang, Z.Q.; Shen, Z.R.; Lu, J.; Xu, W.B. Sublethal effects of selected insecticides on fecundity and wing dimorphism of green peach aphid (Hom., Aphididae). J. Appl. Entomol. 2008, 132, 135–142. [Google Scholar] [CrossRef]
- Vojoudi, S.; Saber, M.; Gharekhani, G.; Esfandiari, E. Toxicity and sublethal effects of hexaflumuron and indoxacarb on the biological and biochemical parameters of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Iran. Crop Prot. 2017, 91, 100–107. [Google Scholar] [CrossRef]
- Felton, G.W. Oxidative Stress of Vertebrates and Invertebrates. In Oxidative Stress and Antioxidant Defenses in Biology; Ahmad, S., Ed.; Springer: Boston, MA, USA, 1995; pp. 356–434. [Google Scholar] [CrossRef]
- Rindler, P.M.; Plafker, S.M.; Szweda, L.I.; Kinter, M. High Dietary Fat Selectively Increases Catalase Expression within Cardiac Mitochondria. J. Biol. Chem. 2013, 288, 1979–1990. [Google Scholar] [CrossRef]
- Beheedy, A. Toxicological and Histopathological Studies on Agrotis ipsilon(Hufn), 1990. 196 p. Alex-Uni F.O.Agri.(Saba Basha)-Department of Plant Protection (Entomology). Available online: https://agris.fao.org/agris-search/search.do?recordID=EG1998002101 (accessed on 19 June 2019).
- Mesbah, H.A.; Tayeb, E.-S.H.; Kordy, A.M.; El-Shershaby, M.M.A.; El-Wakil, N.H. Latent Effect of Two Formulated Botanical Fine Dusts on Agrotis ipsilon (Hufn.) Generation. Alex. Sci. Exch. J. 2016, 37, 221–230. [Google Scholar]
- He, F.; Sun, S.; Tan, H.; Sun, X.; Qin, C.; Ji, S.; Li, X.; Zhang, J.; Jiang, X. Chlorantraniliprole against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae): From biochemical/physiological to demographic responses. Sci. Rep. 2019, 9, 10328. [Google Scholar] [CrossRef] [PubMed]
- Clevenger, J.F. Apparatus for the determination of volatile oil. J. Am. Pharm. Assoc. 1928, 17, 345–349. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Ali, M.F.; Mansour, M.M.A.; Ali, H.M.; Abdel Moneim, E.M.; Abdel-Megeed, A. Anti-Termitic Activity of Three Plant Extracts, Chlorpyrifos, and a Bioagent Compound (Protecto) against Termite Microcerotermes eugnathus Silvestri (Blattodea: Termitidae) in Egypt. Insects 2020, 11, 756. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Ali, H.M.; Basalah, M.O. Essential oils from wood, bark, and needles of Pinus roxburghii Sarg. from Alexandria, Egypt: Antibacterial and antioxidant activities. BioResources 2014, 9, 7454–7466. [Google Scholar] [CrossRef]
- Abdelsalam, N.R.; Salem, M.Z.M.; Ali, H.M.; Mackled, M.I.; El-Hefny, M.; Elshikh, M.S.; Hatamleh, A.A. Morphological, biochemical, molecular, and oil toxicity properties of Taxodium trees from different locations. Ind. Crop Prod. 2019, 139, 111515. [Google Scholar] [CrossRef]
- El-Sabrout, A.M.; Salem, M.Z.M.; Bin-Jumah, M.; Allam, A.A. Toxicological Activity of Some Plant Essential Oils Against Tribolium castaneum and Culex pipiens Larvae. Processes 2019, 7, 933. [Google Scholar] [CrossRef]
- Behiry, S.I.; Nasser, R.A.; Abd El-Kareem, M.S.M.; Ali, H.M.; Salem, M.Z.M. Mass Spectroscopic Analysis, MNDO Quantum Chemical Studies and Antifungal Activity of Essential and Recovered Oil Constituents of Lemon-Scented Gum against Three Common Molds. Processes 2020, 8, 275. [Google Scholar] [CrossRef]
- Ali, H.M.; Elgat, W.A.A.A.; El-Hefny, M.; Salem, M.Z.M.; Taha, A.S.; Al Farraj, D.A.; Elshikh, M.S.; Hatamleh, A.A.; Abdel-Salam, E.M. New Approach for Using of Mentha longifolia L. and Citrus reticulata L. Essential Oils as Wood-Biofungicides: GC-MS, SEM, and MNDO Quantum Chemical Studies. Materials 2021, 14, 1361. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elkader, D.Y.; Salem, M.Z.M.; Komeil, D.A.; Al-Huqail, A.A.; Ali, H.M.; Salah, A.H.; Akrami, M.; Hassan, H.S. Post-Harvest Enhancing and Botrytis cinerea Control of Strawberry Fruits Using Low Cost and Eco-Friendly Natural Oils. Agronomy 2021, 11, 1246. [Google Scholar] [CrossRef]
- Hamada, H.; Awad, M.; El-Hefny, M.; Moustafa, M. Insecticidal activity of garlic (Allium sativum) and ginger (Zingiber officinale) oils on the cotton leafworm, Spodoptera littoralis (Boisd.)(Lepidoptera: Noctuidae). Afr. Entomol. 2018, 26, 84–94. [Google Scholar] [CrossRef]
- Moustafa, M.A.M.; Fouad, E.A.; Abdel-Mobdy, Y.; Hamow, K.Á.; Mikó, Z.; Molnár, B.P.; Fónagy, A. Toxicity and sublethal effects of chlorantraniliprole and indoxacarb on Spodoptera littoralis (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 2021, 56, 115–124. [Google Scholar] [CrossRef]
- Aebi, H. Catalase. In Methods of Enzymatic Analysis, 2nd ed.; Bergmeyer, H.U., Ed.; Academic Press: Cambridge, MA, USA, 1974; pp. 673–684. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1984; Volume 105, pp. 121–126. [Google Scholar]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Asparen, K.V. A study of housefly esterase by means of a sensitive colorimetric method. J. Insect Physiol. 1962, 8, 401–416. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-Transferases: The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: Cambridge, UK, 1971. [Google Scholar]
- SAS. User Guide: Statistics (Release 8.02); SAS Institute: Cary, NC, USA, 2001. [Google Scholar]
- Kasali, A.A.; Oyedeji, A.O.; Ashilokun, A.O. Volatile leaf oil constituents of Cymbopogon citratus (DC) Stapf. Flavour Fragr. J. 2001, 16, 377–378. [Google Scholar] [CrossRef]
- Schaneberg, B.T.; Khan, I.A. Comparison of Extraction Methods for Marker Compounds in the Essential Oil of Lemon Grass by GC. J. Agric. Food Chem. 2002, 50, 1345–1349. [Google Scholar] [CrossRef]
- Tajidin, N.; Ahmad, S.; Rosenani, A.; Azimah, H.; Munirah, M. Chemical composition and citral content in lemongrass (Cymbopogon citratus) essential oil at three maturity stages. Afr. J. Biotechnol. 2012, 11, 2685–2693. [Google Scholar] [CrossRef]
- Mansour, M.M.A.; El-Hefny, M.; Salem, M.Z.M.; Ali, H.M. The Biofungicide Activity of Some Plant Essential Oils for the Cleaner Production of Model Linen Fibers Similar to Those Used in Ancient Egyptian Mummification. Processes 2020, 8, 79. [Google Scholar] [CrossRef]
- Mohamed Hanaa, A.R.; Sallam, Y.I.; El-Leithy, A.S.; Aly, S.E. Lemongrass (Cymbopogon citratus) essential oil as affected by drying methods. Ann. Agric. Sci. 2012, 57, 113–116. [Google Scholar] [CrossRef]
- Matasyoh, J.C.; Wagara, I.N.; Nakavuma, J.L. Chemical composition of Cymbopogon citratus essential oil and its effect on mycotoxigenic Aspergillus species. Afr. J. Food Sci. 2011, 5, 138–142. [Google Scholar]
- Boukhatem, M.N.; Ferhat, M.A.; Kameli, A.; Saidi, F.; Kebir, H.T. Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs. Libyan J. Med. 2014, 9, 25431. [Google Scholar] [CrossRef]
- Koba, K.; Sanda, K.; Guyon, C.; Raynaud, C.; Chaumont, J.P.; Nicod, L. In vitro cytotoxic activity of Cymbopogon citratus L. and Cymbopogon nardus L. essential oils from Togo. Bangladesh J. Pharmacol. 2009, 4, 29–34. [Google Scholar] [CrossRef]
- Anaruma, N.D.; Schmidt, F.L.; Duarte, M.C.T.; Figueira, G.M.; Delarmelina, C.; Benato, E.A.; Sartoratto, A. Control of Colletotrichum gloeosporioides (Penz.) Sacc. in yellow passion fruit using Cymbopogon citratus essential oil. Braz. J. Microbiol. 2010, 41, 66–73. [Google Scholar] [CrossRef]
- Plata-Rueda, A.; Rolim, G.D.; Wilcken, C.F.; Zanuncio, J.C.; Serrão, J.E.; Martínez, L.C. Acute Toxicity and Sublethal Effects of Lemongrass Essential Oil and Their Components against the Granary Weevil, Sitophilus granarius. Insects 2020, 11, 379. [Google Scholar] [CrossRef]
- Pinto, Z.T.; Sánchez, F.F.; Santos, A.R.d.; Amaral, A.C.F.; Ferreira, J.L.P.; Escalona-Arranz, J.C.; Queiroz, M.M.d.C. Chemical composition and insecticidal activity of Cymbopogon citratus essential oil from Cuba and Brazil against housefly. Rev. Bras. Parasitol. Veterinária 2015, 24, 36–44. [Google Scholar] [CrossRef]
- Brügger, B.P.; Martínez, L.C.; Plata-Rueda, A.; Castro, B.M.d.C.e.; Soares, M.A.; Wilcken, C.F.; Carvalho, A.G.; Serrão, J.E.; Zanuncio, J.C. Bioactivity of the Cymbopogon citratus (Poaceae) essential oil and its terpenoid constituents on the predatory bug, Podisus nigrispinus (Heteroptera: Pentatomidae). Sci. Rep. 2019, 9, 8358. [Google Scholar] [CrossRef] [PubMed]
- Keane, S.; Ryan, M.F. Purification, characterisation, and inhibition by monoterpenes of acetylcholinesterase from the waxmoth, Galleria mellonella (L.). Insect Biochem. Mol. Biol. 1999, 29, 1097–1104. [Google Scholar] [CrossRef]
- López, M.D.; Pascual-Villalobos, M.J. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind. Crop Prod. 2010, 31, 284–288. [Google Scholar] [CrossRef]
- Price, D.N.; Berry, M.S. Comparison of effects of octopamine and insecticidal essential oils on activity in the nerve cord, foregut, and dorsal unpaired median neurons of cockroaches. J. Insect Physiol. 2006, 52, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Ballester-Costa, C.; Sendra, E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical composition and in vitro antibacterial properties of essential oils of four Thymus species from organic growth. Ind. Crop Prod. 2013, 50, 304–311. [Google Scholar] [CrossRef]
- Ojebode, M.E.; Olaiya, C.O.; Adegbite, A.E.; Karigidi, K.O.; Ale, T.O. Efficacy of some plant extracts as storage protectants against Callosobruchus maculatus. J. Biotechnol. Biomater. 2016, 6, 217. [Google Scholar]
- Jeyasankar, A.; Chennaiyan, V.; Chinnamani, T. Evaluation of five essential plant oils as a source of repellent and larvicidal activities against larvae of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Entomol. 2016, 13, 98–103. [Google Scholar] [CrossRef]
- Haddi, K.; Turchen, L.M.; Viteri Jumbo, L.O.; Guedes, R.N.C.; Pereira, E.J.G.; Aguiar, R.W.S.; Oliveira, E.E. Rethinking biorational insecticides for pest management: Unintended effects and consequences. Pest. Manag. Sci. 2020, 76, 2286–2293. [Google Scholar] [CrossRef]
- Oliveira, E.R.d.; Alves, D.S.; Carvalho, G.A.; Oliveira, B.M.R.G.d.; Aazza, S.; Bertolucci, S.K.V. Toxicity of Cymbopogon flexuosus essential oil and citral for Spodoptera frugiperda. Cienc. Agrotecnol. 2018, 42, 408–419. [Google Scholar] [CrossRef]
- Park, J.-H.; Jeon, Y.-J.; Lee, C.-H.; Chung, N.; Lee, H.-S. Insecticidal toxicities of carvacrol and thymol derived from Thymus vulgaris Lin. against Pochazia shantungensis Chou & Lu., newly recorded pest. Sci. Rep. 2017, 7, 40902. [Google Scholar] [CrossRef]
- Pumnuan, J.; Insung, A. Fumigant toxicity of plant essential oils in controlling thrips, Frankliniella schultzei (Thysanoptera: Thripidae) and mealybug, Pseudococcus jackbeardsleyi (Hemiptera: Pseudococcidae). J. Entomol. Res. 2016, 40, 1–10. [Google Scholar] [CrossRef]
- Kurniasih, N.; Nuryadin, W.; Harahap, M.N.; Supriadin, A.; Kinasih, I. Toxicity of essential oils from orange (Citrus sinesis L. Obbeck) and lemongrass (Cymbopogon nardus L. Rendle) on Aedes aegypti a vector of Dengue Hemorrhagic Fever (DHF). J. Phys. Conf. Ser. 2021, 1869, 012015. [Google Scholar] [CrossRef]
- Jovanović, J.; Krnjajić, S.; Ćirković, J.; Radojković, A.; Popović, T.; Branković, G.; Branković, Z. Effect of encapsulated lemongrass (Cymbopogon citratus L.) essential oil against potato tuber moth Phthorimaea operculella. Crop Prot. 2020, 132, 105109. [Google Scholar] [CrossRef]
- Sharaby, A.; El-Nojiban, A. Evaluation of some plant essential oils against the black cutworm Agrotis ipsilon. Glob. J. Adv. Res. 2015, 2, 701–711. [Google Scholar]
- Sabbour, M.M.; Abd El-Aziz, S. Efficacy of some botanical oils formulated with microbial agents against the cotton leafworm and greasy cutworm attaching cotton plants. Bull. Entomol. Soc. Egypt Econ. Ser. 2002, 28, 135–151. [Google Scholar]
- Kodrík, D.; Bednářová, A.; Zemanová, M.; Krishnan, N. Hormonal Regulation of Response to Oxidative Stress in Insects—An Update. Int. J. Mol. Sci. 2015, 16, 25788–25816. [Google Scholar] [CrossRef]
- Marriel, N.B.; Tomé, H.V.V.; Guedes, R.C.N.; Martins, G.F. Deltamethrin-mediated survival, behavior, and oenocyte morphology of insecticide-susceptible and resistant yellow fever mosquitos (Aedes aegypti). Acta Trop. 2016, 158, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Chen, D.; Wang, C.; Li, M.; Li, X.; Zhang, Y.; Li, X.; Zhu, X. Susceptibility of Four Species of Aphids in Wheat to Seven Insecticides and Its Relationship to Detoxifying Enzymes. Front. Physiol. 2021, 11, 1852. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, Y. Cross-resistance and biochemical mechanisms of abamectin resistance in the B-type Bemisia tabaci. J. Appl. Entomol. 2007, 131, 98–103. [Google Scholar] [CrossRef]
- Liao, C.-Y.; Xia, W.-K.; Feng, Y.-C.; Li, G.; Liu, H.; Dou, W.; Wang, J.-J. Characterization and functional analysis of a novel glutathione S-transferase gene potentially associated with the abamectin resistance in Panonychus citri (McGregor). Pestic. Biochem. Physiol. 2016, 132, 72–80. [Google Scholar] [CrossRef] [PubMed]
RT | Area% | Compound Name | Match Factor (MF) |
---|---|---|---|
7.97 | 0.83 | Isoneral | 850 |
8.37 | 1.49 | Isogeranial | 900 |
8.60 | 0.71 | Dihydronopol | 750 |
9.77 | 35.00 | Neral or β-citral (Citral B) | 955 |
10.47 | 35.91 | Geranial or α-citral (Citral A) | 850 |
10.61 | 3.58 | trans-Verbenol | 750 |
10.71 | 0.91 | Epoxy-linalooloxide | 800 |
10.97 | 1.45 | Geranyl vinyl ether | 955 |
11.26 | 7.84 | Nerylacetal | 929 |
11.76 | 9.08 | 5-Octyldihydro-2(3H)-furanone | 930 |
12.69 | 1.24 | Geraniol acetate | 950 |
13.74 | 1.24 | (Z,E)-α-farnesene | 939 |
16.77 | 0.72 | β-Caryophyllene epoxide | 850 |
LC15 (mg/L) (95% Confidence Limit) | LC50 (mg/L) (95% Confidence Limit) | Slope ± SE | ꭓ2 |
---|---|---|---|
427.67(134.84–746.35) | 2623.06 (1797.26–4144.71) | 1.31 ± 0.26 | 0.72 |
Treatments | Mean ± SE | ||||
---|---|---|---|---|---|
Larval Duration | Pupal Duration | Pupation% | Pupal Weight (g) | ||
Female | Male | ||||
Control | 20.36 ± 0.17 a* | 18.24 ± 0.24 a | 100 ± 0.0 a | 0.36 ± 0.02 a | 0.35 ± 0.01 b |
LC15 | 21.20 ± 0.18 b | 18.70 ± 0.12 b | 100 ± 0.0 a | 0.41 ± 0.01 a | 0.39 ± 0.007 a |
LC50 | 21.28 ± 0.17 b | 19.57 ± 0.13 c | 94.81 ± 1.01 b | 0.40 ± 0.01 a | 0.40 ± 0.007 a |
F | 7.33 | 16.50 | 26.16 | 1.84 | 5.75 |
p-value | 0.0008 | <0.0001 | 0.0011 | 0.165 | 0.0043 |
Treatments | Mean ± SE | ||
---|---|---|---|
Emergence% | Sex Ratio | ||
Female | Male | ||
Control | 98.61 ± 1.39 a* | 60.94 ± 7.04 a | 39.06 ± 7.04 a |
LC15 | 98.48 ± 1.51 a | 45.11 ± 5.32 a | 54.89 ± 5.32 a |
LC50 | 97.09 ± 1.45 a | 44.45 ± 5.69 a | 55.55 ± 5.69 a |
F | 0.33 | 2.37 | 2.37 |
p-value | 0.728 | 0.174 | 0.174 |
Treatments | Mean ± SE | |||
---|---|---|---|---|
Catalase (U/mg of Protein) | Lipid Peroxidase (mole/mg of Protein) | Catalase (U/mg of Protein) | Lipid Peroxidase (mole/mg of Protein) | |
24 h | 96 h | |||
Control | 0.00138 ± 0.00003 a* | 0.00181 ± 0.00004 a | 0.00125 ± 0.00002 b | 0.00185 ± 0.00002 b |
LC15 | 0.00151 ± 0.00001 a | 0.00196 ± 0.00014 a | 0.00138 ± 0.00009 ab | 0.00192 ± 0.000005 ab |
LC50 | 0.00153 ± 0.00008 a | 0.00171 ± 0.00004 a | 0.00151 ± 0.00005 a | 0.00196 ± 0.00002 a |
F | 3.08 | 1.87 | 3.73 | 7.33 |
p-value | 0.1203 | 0.2337 | 0.0886 | 0.0245 |
Treatments | Mean ± SE | |||||
---|---|---|---|---|---|---|
Carboxylesterase (μmole/min/mg of Protein) | GST (μmole/min/mg of Protein | Carboxylesterase (μmole/min/mg of Protein) | GST (μmole/min/mg of Protein | |||
α-Esterase | β-Esterase | α-Esterase | β-Esterase | |||
24 h | 96 h | |||||
Control | 13.24 ± 0.87 a* | 17.09 ± 1.26 a | 14.09 ± 0.47 a | 12.78 ± 0.62 a | 14.53 ± 1.16 a | 12.46 ± 0.28 a |
LC15 | 9.36 ± 0.52 b | 14.59 ± 0.86 ab | 9.62 ± 0.49 b | 10.48 ± 0.55 ab | 13.25 ± 1.30 a | 8.80 ± 0.65 b |
LC50 | 8.79 ± 0.40 b | 13.45 ± 0.16 b | 9.36 ± 0.91 b | 9.46 ± 0.91 b | 8.65 ± 0.21 b | 7.00 ± 0.78 b |
F | 14.52 | 4.37 | 16.19 | 5.63 | 7.37 | 20.47 |
p-value | 0.0050 | 0.0673 | 0.0038 | 0.0420 | 0.0219 | 0.0021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moustafa, M.A.M.; Awad, M.; Amer, A.; Hassan, N.N.; Ibrahim, E.-D.S.; Ali, H.M.; Akrami, M.; Salem, M.Z.M. Insecticidal Activity of Lemongrass Essential Oil as an Eco-Friendly Agent against the Black Cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). Insects 2021, 12, 737. https://doi.org/10.3390/insects12080737
Moustafa MAM, Awad M, Amer A, Hassan NN, Ibrahim E-DS, Ali HM, Akrami M, Salem MZM. Insecticidal Activity of Lemongrass Essential Oil as an Eco-Friendly Agent against the Black Cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). Insects. 2021; 12(8):737. https://doi.org/10.3390/insects12080737
Chicago/Turabian StyleMoustafa, Moataz A. M., Mona Awad, Alia Amer, Nancy N. Hassan, El-Desoky S. Ibrahim, Hayssam M. Ali, Mohammad Akrami, and Mohamed Z. M. Salem. 2021. "Insecticidal Activity of Lemongrass Essential Oil as an Eco-Friendly Agent against the Black Cutworm Agrotis ipsilon (Lepidoptera: Noctuidae)" Insects 12, no. 8: 737. https://doi.org/10.3390/insects12080737
APA StyleMoustafa, M. A. M., Awad, M., Amer, A., Hassan, N. N., Ibrahim, E. -D. S., Ali, H. M., Akrami, M., & Salem, M. Z. M. (2021). Insecticidal Activity of Lemongrass Essential Oil as an Eco-Friendly Agent against the Black Cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). Insects, 12(8), 737. https://doi.org/10.3390/insects12080737