MtDNA Analysis Indicates Human-Induced Temporal Changes of Serbian Honey Bees Diversity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. DNA Extraction and PCR-RFLP Analysis
2.3. tRNAleu-cox2 Intergenic Region Sequencing
2.4. Statistical Analyses
2.5. Phylogeography
3. Results
3.1. PCR-RFLP Analysis
3.2. Genetic Diversity of Mitochondrial tRNAleu-cox2 Intergenic Region Sequences in Serbia
3.3. Genetic Diversity of Mitochondrial tRNAleu-cox2 Intergenic Region Sequences from GeneBank and Comparison with Novel Serbian Sequences
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Potts, S.G.; Imperatriz Fonseca, V.; Ngo, H.T.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.; Garibaldi, L.A.; Hill, R.; Settele, J.; Vanbergen, A.J. Summary for policymakers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. Nature 2016, 540, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Ruttner, F. Morphometric Analysis and Classification. In Biogeography and Taxonomy of Honeybees; Springer: Berlin/Heiderberg, Germany, 1988; pp. 66–78. [Google Scholar]
- Ilyasov, R.A.; Lee, M.-L.; Takahashi, J.-I.; Kwon, H.W.; Nikolenko, A.G. A revision of subspecies structure of western honey bee Apis mellifera. Saudi J. Biol. Sci. 2020, 27, 3615–3621. [Google Scholar] [CrossRef] [PubMed]
- De La Rúa, P.; Jaffé, R.; Dall’Olio, R.; Muñoz, I.; Serrano, J. Biodiversity, conservation and current threats to European honeybees. Apidologie 2009, 40, 263–284. [Google Scholar] [CrossRef] [Green Version]
- Bouga, M.; Alaux, C.; Bienkowska, M.; Büchler, R.; Carreck, N.L.; Cauia, E.; Chlebo, R.; Dahle, B.; Dall’Olio, R.; De la Rúa, P. A review of methods for discrimination of honey bee populations as applied to European beekeeping. J. Apic. Res. 2011, 50, 51–84. [Google Scholar] [CrossRef] [Green Version]
- Meixner, M.D.; Pinto, M.A.; Bouga, M.; Kryger, P.; Ivanova, E.; Fuchs, S. Standard methods for characterising subspecies and ecotypes of Apis mellifera. J. Apic. Res. 2013, 52, 1–28. [Google Scholar] [CrossRef]
- Cridland, J.M.; Tsutsui, N.D.; Ramírez, S.R. The Complex Demographic History and Evolutionary Origin of the Western Honey Bee, Apis mellifera. Genome Biol. Evol. 2017, 9, 457–472. [Google Scholar] [CrossRef] [Green Version]
- Palmer, K.A.; Oldroyd, B.P. Evolution of multiple mating in the genus Apis. Apidologie 2000, 31, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Koeniger, G. Reproduction and Mating Behavior. In Bee Genetics and Breeding; Academic Press, Inc.: Orlando, FL, USA, 1986; pp. 255–280. [Google Scholar]
- Kraus, F.B.; Neumann, P.; Moritz, R. Genetic variance of mating frequency in the honeybee (Apis mellifera L.). Insectes Sociaux 2005, 52, 1–5. [Google Scholar] [CrossRef]
- Requier, F.; Garnery, L.; Kohl, P.L.; Njovu, H.K.; Pirk, C.W.; Crewe, R.M.; Steffan-Dewenter, I. The Conservation of Native Honey Bees Is Crucial. Trends Ecol. Evol. 2019, 34, 789–798. [Google Scholar] [CrossRef]
- Muñoz, I.; Stevanović, J.; Stanimirović, Z.; De la Rua, P. Genetic variation of Apis mellifera from Serbia inferred from mitochondrial analysis. J. Apic. Sci. 2012, 56, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Oleksa, A.; Chybicki, I.; Tofilski, A.; Burczyk, J. Nuclear and mitochondrial patterns of introgression into native dark bees (Apis mellifera mellifera) in Poland. J. Apic. Res. 2011, 50, 116–129. [Google Scholar] [CrossRef] [Green Version]
- Dall’Olio, R.; Marino, A.; Lodesani, M.; Moritz, R.F. Genetic characterization of Italian honeybees, Apis mellifera ligustica, based on microsatellite DNA polymorphisms. Apidologie 2007, 38, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Ensen, A.B.J.; Almer, K.A.P.; Boomsma, J.J.; Pedersen, B.V. Varying degrees of Apis mellifera ligustica introgression in protected populations of the black honeybee, Apis mellifera mellifera, in northwest Europe. Mol. Ecol. 2005, 14, 93–106. [Google Scholar] [CrossRef]
- Jensen, A.B.; Palmer, K.A.; Chaline, N.; Raine, N.E.; Tofilski, A.; Martin, S.J.; Pedersen, B.V.; Boomsma, J.J.; Ratnieks, F.L. Quantifying honey bee mating range and isolation in semi-isolated valleys by DNA microsatellite paternity analysis. Conserv. Genet. 2005, 6, 527–537. [Google Scholar] [CrossRef]
- Jaffe, R.; Dietemann, V.; Allsopp, M.H.; Costa, C.; Crewe, R.M.; Dall’Olio, R.; De la Rua, P.; El-Niweiri, M.A.; Fries, I.; Kezic, N.; et al. Estimating the Density of Honeybee Colonies across Their Natural Range to Fill the Gap in Pollinator Decline Censuses. Conserv. Biol. 2010, 24, 583–593. [Google Scholar] [CrossRef] [Green Version]
- Pinto, M.A.; Henriques, D.; Chávez-Galarza, J.; Kryger, P.; Garnery, L.; van der Zee, R.; Dahle, B.; Soland-Reckeweg, G.; De la Rúa, P.; Dall’Olio, R. Genetic integrity of the Dark European honey bee (Apis mellifera mellifera) from protected populations: A genome-wide assessment using SNPs and mtDNA sequence data. J. Apic. Res. 2014, 53, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Harpur, B.A.; Minaei, S.; Kent, C.F.; Zayed, A. Admixture increases diversity in managed honey bees: Reply to De la Rúa et al. (2013). Mol. Ecol. 2013, 22, 3211–3215. [Google Scholar] [CrossRef]
- Harpur, B.A.; Minaei, S.; Kent, C.F.; Zayed, A. Management increases genetic diversity of honey bees via admixture. Mol. Ecol. 2012, 21, 4414–4421. [Google Scholar] [CrossRef] [PubMed]
- Tihelka, E.; Cai, C.; Pisani, D.; Donoghue, P.C.J. Mitochondrial genomes illuminate the evolutionary history of the Western honey bee (Apis mellifera). Sci. Rep. 2020, 10, 14515. [Google Scholar] [CrossRef]
- Garnery, L.; Cornuet, J.-M.; Solignac, M. Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis. Mol. Ecol. 1992, 1, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Cornuet, J.; Garnery, L. Mitochondrial DNA variability in honeybees and its phylogeographic implications. Apidologie 1991, 22, 627–642. [Google Scholar] [CrossRef] [Green Version]
- Oleksa, A.; Kusza, S.; Tofilski, A. Mitochondrial DNA Suggests the Introduction of Honeybees of African Ancestry to East-Central Europe. Insects 2021, 12, 410. [Google Scholar] [CrossRef]
- Techer, M.A.; Clémencet, J.; Simiand, C.; Preeaduth, S.; Azali, H.A.; Reynaud, B.; Hélène, D. Large-scale mitochondrial DNA analysis of native honey bee Apis mellifera populations reveals a new African subgroup private to the South West Indian Ocean islands. BMC Genet. 2017, 18, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garnery, L.; Franck, P.; Baudry, E.; Vautrin, D.; Cornuet, J.-M.; Solignac, M. Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica) I. Mitochondrial DNA. Genet. Sel. Evol. 1998, 30, S31–S47. [Google Scholar] [CrossRef]
- Martimianakis, S.; Klossa-Kilia, E.; Bouga, M.; Kilias, G. Phylogenetic relationships of Greek Apis mellifera subspecies based on sequencing of mtDNA segments (COI and ND5). J. Apic. Res. 2011, 50, 42–50. [Google Scholar] [CrossRef]
- Ivanova, E.N. Investigation on Genetic Variability in Honey Bee Populations from Bulgaria, Greece and Serbia. Biotechnol. Biotechnol. Equip. 2010, 24, 385–389. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, E.N.; Petrov, P.; Bouga, M.; Emmanouel, N.G.; Tunca, R.I.; Kence, M. Genetic variation in honey bee (Apis mellifera L.) populations from Bulgaria. J. Apic. Sci. 2010, 54, 51–62. [Google Scholar]
- Momeni, J.; Parejo, M.; Nielsen, R.O.; Langa, J.; Montes, I.; Papoutsis, L.; Farajzadeh, L.; Bendixen, C.; Căuia, E.; Charrière, J.-D.; et al. Authoritative subspecies diagnosis tool for European honey bees based on ancestry informative SNPs. BMC Genom. 2021, 22, 101. [Google Scholar] [CrossRef]
- Kuliçi, M.; Bajrami, Z.; Kume, K. Genetic local differentiation of A. m carnica population as well as subspecies A. m. macedonica, A. m. ligustica, A. m. mellifera, A. m. caucasica, in Germany, Alpine Region, Austria, Croatia, Serbia, Northern Kosovo, Albania and Macedonia. J. Nat. Sci. Res. 2014, 4, 53–60. [Google Scholar]
- Bouga, M.; Harizanis, P.C.; Kilias, G.; Alahiotis, S. Genetic divergence and phylogenetic relationships of honey bee Apis mellifera (Hymenoptera: Apidae) populations from Greece and Cyprus using PCR—RFLP analysis of three mtDNA segments. Apidologie 2005, 36, 335–344. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, I.; De la Rúa, P. Wide genetic diversity in Old World honey bees threaten by introgression. Apidologie 2021, 52, 200–217. [Google Scholar] [CrossRef]
- De la Rúa, P.; Galián, J.; Serrano, J.; Moritz, R.F. Genetic structure of Balearic honeybee populations based on microsatellite polymorphism. Genet. Sel. Evol. 2003, 35, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Franck, P.; Garnery, L.; Celebrano, G.; Solignac, M.; Cornuet, J.-M. Hybrid origins of honeybees from Italy (Apis mellifera ligustica) and Sicily (A. m. sicula). Mol. Ecol. 2000, 9, 907–921. [Google Scholar] [CrossRef] [PubMed]
- Nedić, N.; Stanisavljević, L.; Mladenović, M.; Stanisavljević, J. Molecular characterization of the honeybee Apis mellifera carnica in Serbia. Arch. Biol. Sci. 2009, 61, 587–598. [Google Scholar] [CrossRef]
- Whitfield, C.W.; Behura, S.K.; Berlocher, S.H.; Clark, A.G.; Johnston, J.S.; Sheppard, W.S.; Smith, D.R.; Suarez, A.V.; Weaver, D.; Tsutsui, N.D. Thrice out of Africa: Ancient and recent expansions of the honey bee, Apis mellifera. Science 2006, 314, 642–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallberg, A.; Han, F.; Wellhagen, G.; Dahle, B.; Kawata, M.; Haddad, N.; Simões, Z.L.P.; Allsopp, M.H.; Kandemir, I.; De la Rúa, P. A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nat. Genet. 2014, 46, 1081–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevanovic, J.; Stanimirovic, Z.; Radakovic, M.; Kovacevic, S.R. Biogeographic study of the honey bee (Apis mellifera L.) from Serbia, Bosnia and Herzegovina and Republic of Macedonia based on mitochondrial DNA analyses. Russ. J. Genet. 2010, 46, 603–609. [Google Scholar] [CrossRef]
- Stanimirovic, Z.; Stevanovic, J.; Andjelkovic, M. Chromosomal diversity in Apis mellifera carnica from Serbia. Apidologie 2005, 36, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Kozmus, P.; Stevanović, J.; Stanimirović, Z.; Stojić, V.; Kulišić, Z.; Meglič, V. Analysis of mitochondrial DNA in honey bees (Apis mellifera) from Serbia. Acta Vet. Beograd 2007, 57, 465–476. [Google Scholar]
- Nedić, N.; Francis, R.M.; Stanisavljević, L.; Pihler, I.; Kezić, N.; Bendixen, C.; Kryger, P. Detecting population admixture in honey bees of Serbia. J. Apic. Res. 2014, 53, 303–313. [Google Scholar] [CrossRef]
- The Official Gazette of the Republic of Serbia, Nos. 41/2009, 93/2012 and 14/2106, Serbia. [In Serbian]. In Law on Animal Breeding; 2009. Available online: https://www.vet.minpolj.gov.rs/legislativa/zakoni/Zakon%20o%20sto%C4%8Darstvu.pdf (accessed on 14 July 2021).
- Muñoz, I.; Dall’Olio, R.; Lodesani, M.; De la Rúa, P. Population genetic structure of coastal Croatian honeybees (Apis mellifera carnica). Apidologie 2009, 40, 617–626. [Google Scholar] [CrossRef] [Green Version]
- Coroian, C.O.; Muñoz, I.; Schlüns, E.A.; Paniti-Teleky, O.R.; Erler, S.; Furdui, E.M.; Mărghitaş, L.A.; Dezmirean, D.S.; Schlüns, H.; De La Rua, P. Climate rather than geography separates two European honeybee subspecies. Mol. Ecol. 2014, 23, 2353–2361. [Google Scholar] [CrossRef] [PubMed]
- Mărghitaş, L.A.; Coroian, C.; Dezmirean, D.; Stan, L.; Furdui, E. Genetic diversity of honeybees from Moldova (Romania) based on mtDNA Analysis. Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca. Anim. Sci. Biotechnol. 2010, 67, 396–402. [Google Scholar]
- Cherevatov, O.; Panchuk, I.; Kerek, S.; Volkov, R. Molecular diversity of the CoI–CoII spacer region in the mitochondrial genome and the origin of the carpathian bee. Cytology Genet. 2019, 53, 276–281. [Google Scholar] [CrossRef]
- Sušnik, S.; Kozmus, P.; Poklukar, J.; Meglic, V. Molecular characterisation of indigenous Apis mellifera carnica in Slovenia. Apidologie 2004, 35, 623–636. [Google Scholar] [CrossRef] [Green Version]
- Georgijev, A. Morphological, Productive and Genetic DNK Analyses of Selected Lineages of Honeybee (Apis mellifera carnica Poll.) in Eastern Serbia. Ph.D. Thesis, Faculty of Agriculture, University of Belgrade. Belgrade, Serbia, 2014. [Google Scholar]
- Nielsen, D.I.; Ebert, P.R.; Hunt, G.J.; Guzmán-Novoa, E.; Kinnee, S.A.; Page, R.E., Jr. Identification of Africanized honey bees (Hymenoptera: Apidae) incorporating morphometrics and an improved polymerase chain reaction mitotyping procedure. Ann. Entomol. Soc. Am. 1999, 92, 167–174. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 1989. [Google Scholar]
- Evans, J.D.; Schwarz, R.S.; Chen, Y.P.; Budge, G.; Cornman, R.S.; De la Rua, P.; de Miranda, J.R.; Foret, S.; Foster, L.; Gauthier, L.; et al. Standard methods for molecular research in Apis mellifera. J. Apic. Res. 2013, 52, 1–54. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Stoneking, M.; Hedgecock, D.; Higuchi, R.G.; Vigilant, L.; Erlich, H.A. Population variation of human mtDNA control region sequences detected by enzymatic amplification and sequence-specific oligonucleotide probes. Am. J. Hum. Genet. 1991, 48, 370–382. [Google Scholar]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Crozier, R.; Crozier, Y. The mitochondrial genome of the honeybee Apis mellifera: Complete sequence and genome organization. Genetics 1993, 133, 97–117. [Google Scholar] [CrossRef] [PubMed]
- Meixner, M.D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 2010, 103, S80–S95. [Google Scholar] [CrossRef]
- Soland-Reckeweg, G.; Heckel, G.; Neumann, P.; Fluri, P.; Excoffier, L. Gene flow in admixed populations and implications for the conservation of the Western honeybee, Apis mellifera. J. Insect Conserv. 2009, 13, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, I.; Dall′ Olio, R.; Lodesani, M.; De la Rúa, P. Estimating introgression in Apis mellifera siciliana populations: Are the conservation islands really effective? Insect Conserv. Divers. 2014, 7, 563–571. [Google Scholar] [CrossRef]
- Techer, M.A.; Clémencet, J.; Simiand, C.; Turpin, P.; Garnery, L.; Reynaud, B.; Delatte, H. Genetic diversity and differentiation among insular honey bee populations in the southwest Indian Ocean likely reflect old geographical isolation and modern introductions. PLoS ONE 2017, 12, e0189234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De La Rúa, P.; Serrano, J.; Galián, J. Biodiversity of Apis mellifera populations from Tenerife (Canary Islands) and hybridisation with East European races. Biodivers. Conserv. 2002, 11, 59–67. [Google Scholar] [CrossRef]
- Uzunov, A.; Meixner, M.D.; Kiprijanovska, H.; Andonov, S.; Gregorc, A.; Ivanova, E.; Bouga, M.; Dobi, P.; Büchler, R.; Francis, R.; et al. Genetic structure of Apis mellifera macedonica in the Balkan Peninsula based on microsatellite DNA polymorphism. J. Apic. Res. 2014, 53, 288–295. [Google Scholar] [CrossRef]
- Ferreira, H.M.; Henriques, D.; Neves, C.J.; Machado, C.A.S.; Azevedo, J.C.; Francoy, T.M.; Pinto, M.A. Historical and contemporaneous human-mediated processes left a strong genetic signature on honey bee populations from the Macaronesian archipelago of the Azores. Apidologie 2020, 51, 316–328. [Google Scholar] [CrossRef] [Green Version]
- Parejo, M.; Wragg, D.; Henriques, D.; Charrière, J.-D.; Estonba, A. Digging into the Genomic Past of Swiss Honey Bees by Whole-Genome Sequencing Museum Specimens. Genome Biol. Evol. 2020, 12, 2535–2551. [Google Scholar] [CrossRef]
- Tofilski, A.; Căuia, E.; Siceanu, A.; Vișan, G.O.; Căuia, D. Historical Changes in Honey Bee Wing Venation in Romania. Insects 2021, 12, 542. [Google Scholar] [CrossRef]
Source of Variation | df | SS | Variance Components | Percentage of Variation |
---|---|---|---|---|
Among localities | 7 | 12.223 | 0.04091 | 6.88 (p = 0.00010) |
Within localities | 233 | 129.038 | 0.554 | 93.12 (p = 0.00000) |
Total | 240 | 141.261 | 0.59472 | - |
Source of Variation | df | SS | Variance Components | Percentage of Variation |
---|---|---|---|---|
Among regions | 1 | 1.727 | −0.003 | −0.56 (p = 0.475) |
Among localities | 6 | 10.469 | 0.043 | 7.22 (p = 0.0002) |
Within localities | 233 | 129.038 | 0.554 | 93.34 (p = 0.0002) |
Total | 240 | 141.261 | 0.593 | - |
Source of Variation | df | SS | Variance Components | Percentage of Variation |
---|---|---|---|---|
Among countries | 15 | 437.273 | 0.26342 | 37.83 (p = 0.00000) |
Within countries | 1921 | 831.479 | 0.43284 | 62.17 (p = 0.00000) |
Total | 1936 | 1268.752 | 0.69626 | - |
Source of Variation | df | SS | Variance Components | Percentage of Variation |
---|---|---|---|---|
Among datasets | 1 | 9.986 | 0.01912 | 5.58 (p = 0.33307) |
Among localities in datasets | 1 | 1.727 | 0.011189 | 3.47 (p = 0.04584) |
Within localities | 842 | 262.587 | 0.31186 | 98.95 (p = 0.00000) |
Total | 844 | 274.301 | 0.34288 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanasković, M.; Erić, P.; Patenković, A.; Erić, K.; Mihajlović, M.; Tanasić, V.; Stanisavljević, L.; Davidović, S. MtDNA Analysis Indicates Human-Induced Temporal Changes of Serbian Honey Bees Diversity. Insects 2021, 12, 767. https://doi.org/10.3390/insects12090767
Tanasković M, Erić P, Patenković A, Erić K, Mihajlović M, Tanasić V, Stanisavljević L, Davidović S. MtDNA Analysis Indicates Human-Induced Temporal Changes of Serbian Honey Bees Diversity. Insects. 2021; 12(9):767. https://doi.org/10.3390/insects12090767
Chicago/Turabian StyleTanasković, Marija, Pavle Erić, Aleksandra Patenković, Katarina Erić, Milica Mihajlović, Vanja Tanasić, Ljubiša Stanisavljević, and Slobodan Davidović. 2021. "MtDNA Analysis Indicates Human-Induced Temporal Changes of Serbian Honey Bees Diversity" Insects 12, no. 9: 767. https://doi.org/10.3390/insects12090767
APA StyleTanasković, M., Erić, P., Patenković, A., Erić, K., Mihajlović, M., Tanasić, V., Stanisavljević, L., & Davidović, S. (2021). MtDNA Analysis Indicates Human-Induced Temporal Changes of Serbian Honey Bees Diversity. Insects, 12(9), 767. https://doi.org/10.3390/insects12090767