Comparing the Appetitive Learning Performance of Six European Honeybee Subspecies in a Common Apiary
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bees and Hive Management
2.2. Harnessing of Bees
2.3. Sucrose Responsiveness
2.4. Appetitive Olfactory Learning and Memory Tests
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.; Liu, Z.; Pan, Q.; Chen, X.; Wang, H.; Guo, H.; Liu, S.; Lu, H.; Tian, S.; Li, R.; et al. Genomic analyses reveal demographic history and temperate adaptation of the newly discovered honey bee subspecies Apis mellifera sinisxinyuan n. ssp. Mol. Biol. Evol. 2016, 33, 1337–1348. [Google Scholar] [CrossRef] [Green Version]
- Uzunov, A.; Meixner, M.D.; Kiprijanovska, H.; Andonov, S.; Gregorc, A.; Ivanova, E.; Bouga, M.; Dobi, P.; Büchler, R.; Francis, R.; et al. Genetic structure of Apis mellifera macedonica in the Balkan Peninsula based on microsatellite DNA polymorphism. J. Apicult. Res. 2014, 53, 288–295. [Google Scholar] [CrossRef]
- Uzunov, A.; Costa, C.; Panasiuk, B.; Meixner, M.; Kryger, P.; Hatjina, F.; Bouga, M.; Andonov, S.; Bienkowska, M.; Le Conte, Y.; et al. Swarming, defensive and hygienic behaviour in honey bee colonies of different genetic origin in a pan-European experiment. J. Apicult. Res. 2014, 53, 248–260. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, W.S.; Meixner, M.D. Apis mellifera pomonella, a new honey bee subspecies from Central Asia. Apidologie 2003, 34, 367–375. [Google Scholar] [CrossRef] [Green Version]
- Meixner, M.D.; Costa, C.; Kryger, P.; Hatjina, F.; Bouga, M.; Ivanova, E.; Büchler, R. Conserving diversity and vitality for honey bee breeding. J. Apicult. Res. 2010, 49, 85–92. [Google Scholar] [CrossRef]
- Ruttner, F.; Tassencourt, L.; Louveaux, J. Biometrical-statistical analysis of the geographic variability of Apis mellifera L. I. Material and Methods. Apidologie 1978, 9, 363–381. [Google Scholar] [CrossRef]
- Ruttner, F. Biogeography and Taxonomy of Honeybees; Springer: Berlin/Heidelberg, Germany, 1988; ISBN 3540177817. [Google Scholar]
- Han, F.; Wallberg, A.; Webster, M.T. From where did the Western honeybee (Apis mellifera) originate? Ecol. Evol. 2012, 2, 1949–1957. [Google Scholar] [CrossRef] [PubMed]
- Bouga, M.; Alaux, C.; Bienkowska, M.; Büchler, R.; Carreck, N.L.; Cauia, E.; Chlebo, R.; Dahle, B.; Dall’Olio, R.; de La Rúa, P.; et al. A review of methods for discrimination of honey bee populations as applied to European beekeeping. J. Apicult. Res. 2011, 50, 51–84. [Google Scholar] [CrossRef] [Green Version]
- Cakmak, I.; Song, D.S.; Mixson, T.A.; Serrano, E.; Clement, M.L.; Savitski, A.; Johnson, G.A.; Giray, T.; Abramson, C.I.; Barthell, J.F.; et al. Foraging response of Turkish honey bee subspecies to flower color choices and reward consistency. J. Insect Behav. 2010, 23, 100–116. [Google Scholar] [CrossRef]
- Moritz, R.F.A.; Kraus, F.B.; Kryger, P.; Crewe, R.M. The size of wild honeybee populations (Apis mellifera) and its implications for the conservation of honeybees. J. Insect Conserv. 2007, 11, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Meixner, M.D.; Worobik, M.; Wilde, J.; Fuchs, S.; Koeniger, N. Apis mellifera mellifera in eastern Europe—Morphometric variation and determination of its range limits. Apidologie 2007, 38, 191. [Google Scholar] [CrossRef]
- De La Rúa, P.; Jaffé, R.; Dall’Olio, R.; Muñoz, I.; Serrano, J. Biodiversity, conservation and current threats to European honeybees. Apidologie 2009, 40, 263–284. [Google Scholar] [CrossRef] [Green Version]
- Zammit-Mangion, M.; Meixner, M.; Mifsud, D.; Sammut, S.; Camilleri, L. Thorough morphological and genetic evidence confirm the existence of the endemic honey bee of the Maltese Islands Apis mellifera ruttneri: Recommendations for conservation. J. Apicult. Res. 2017, 56, 514–522. [Google Scholar] [CrossRef]
- Adam, B. In Search of the Best Strains of Bees and the Results of the Evaluations of the Crosses and Races; Peacock Press: Garland, TX, USA, 1983; ISBN 0907908063. [Google Scholar]
- Scheiner, R.; Abramson, C.I.; Brodschneider, R.; Crailsheim, K.; Farina, W.M.; Fuchs, S.; Grünewald, B.; Hahshold, S.; Karrer, M.; Koeniger, G.; et al. Standard methods for behavioural studies of Apis mellifera. J. Apicult. Res. 2013, 52, 1–58. [Google Scholar] [CrossRef]
- Scheiner, R.; Erber, J. Sensory thresholds, learning and the division of foraging labor in the honey bee. In Organization of Insect Societies: From Genomes to Socio-Complexity; Gadau, J., Fewell, J., Eds.; Harvard University Press: Cambridge, MA, USA, 2009; pp. 335–356. [Google Scholar]
- Scheiner, R.; Page, R.E.; Erber, J. Sucrose responsiveness and behavioral plasticity in honey bees (Apis mellifera). Apidologie 2004, 35, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Scheiner, R.; Page, R.E.; Erber, J. The effects of genotype, foraging role, and sucrose responsiveness on the tactile learning performance of honey bees (Apis mellifera L.). Neurobiol. Learn. Mem. 2001, 76, 138–150. [Google Scholar] [CrossRef] [Green Version]
- Reim, T.; Scheiner, R. Division of labour in honey bees: Age- and task-related changes in the expression of octopamine receptor genes. Insect Mol. Biol. 2014, 23, 833–841. [Google Scholar] [CrossRef]
- Scheiner, R.; Reim, T.; Søvik, E.; Entler, B.V.; Barron, A.B.; Thamm, M. Learning, gustatory responsiveness and tyramine differences across nurse and forager honeybees. J. Exp. Biol. 2017, 220, 1443–1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheiner, R.; Entler, B.V.; Barron, A.B.; Scholl, C.; Thamm, M. The effects of fat body tyramine level on gustatory responsiveness of honeybees (Apis mellifera) differ between behavioral castes. Front. Syst. Neurosci. 2017, 11, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheiner, R.; Page, R.E.; Erber, J. Responsiveness to sucrose affects tactile and olfactory learning in preforaging honey bees of two genetic strains. Beh. Brain Res. 2001, 120, 67–73. [Google Scholar] [CrossRef]
- Scheiner, R.; Erber, J.; Page, R.E. Tactile learning and the individual evaluation of the reward in honey bees (Apis mellifera L.). J. Comp. Physiol. A 1999, 185, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, R.; Barnert, M.; Erber, J. Variation in water and sucrose responsiveness during the foraging season affects proboscis extension learning in honey bees. Apidologie 2003, 34, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Behrends, A.; Scheiner, R. Evidence for associative learning in newly emerged honey bees (Apis mellifera). Anim. Cogn. 2009, 12, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, R.; Kuritz-Kaiser, A.; Menzel, R.; Erber, J. Sensory responsiveness and the effects of equal subjective rewards on tactile learning and memory of honeybees. Learn. Mem. 2005, 12, 626–635. [Google Scholar] [CrossRef] [Green Version]
- Radloff, S.E.; Hepburn, H.R.; Hepburn, C.; de La Rúa, P. Morphometric affinities and population structure of honey bees of the Balearic Islands (Spain). J. Apicult. Res. 2001, 40, 97–103. [Google Scholar] [CrossRef]
- De la Rúa, P.; Galián, J.; Serrano, J.; Moritz, R.F. Genetic structure and distinctness of Apis mellifera L. populations from the Canary Islands. Mol. Ecol. 2001, 10, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Ruottinen, L.; Berg, P.; Kantanen, J.; Kristensen, T.N.; Praebel, A. Status and Conservation of the Nordic Brown Bee: Final Report; Nordic Genetic Resource Center: Alnarp, Sweden, 2014. [Google Scholar]
- VanEngelsdorp, D.; Meixner, M.D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 2010, 103 (Suppl. 1), S80–S95. [Google Scholar] [CrossRef]
- Jensen, A.B.; Palmer, K.A.; Boomsma, J.J.; Pedersen, B.V. Varying degrees of Apis mellifera ligustica introgression in protected populations of the black honeybee, Apis mellifera mellifera, in northwest Europe. Mol. Ecol. 2005, 14, 93–106. [Google Scholar] [CrossRef]
- Sheppard, W.S.; Arias, M.C.; Grech, A.; Meixner, M.D. Apis mellifera ruttneri, a new honey bee subspecies from Malta. Apidologie 1997, 28, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Human, H.; Brodschneider, R.; Dietemann, V.; Dively, G.; Ellis, J.D.; Forsgren, E.; Fries, I.; Hatjina, F.; Hu, F.-L.; Jaffé, R.; et al. Miscellaneous standard methods for Apis mellifera research. J. Apicult. Res. 2013, 52, 1–53. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, Y.; Menzel, R.; Sandoz, J.-C.; Giurfa, M. Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: A step toward standardized procedures. J. Neurosci. Methods 2012, 211, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, R.; Müller, U.; Heimburger, S.; Erber, J. Activity of protein kinase A and gustatory responsiveness in the honey bee (Apis mellifera L.). J. Comp. Physiol. A 2003, 189, 427–434. [Google Scholar] [CrossRef]
- Hesselbach, H.; Scheiner, R. Effects of the novel pesticide flupyradifurone (Sivanto) on honeybee taste and cognition. Sci. Rep. 2018, 8, 4954. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, R. Birth weight and sucrose responsiveness predict cognitive skills of honeybee foragers. Anim. Behav. 2012, 84, 305–308. [Google Scholar] [CrossRef]
- Page, R.E.; Fondrk, M.K. The effects of colony-level selection on the social organization of honey bee (Apis mellifera L.) colonies: Colony-level components of pollen hoarding. Behav. Ecol. Sociobiol. 1995, 36, 135–144. [Google Scholar] [CrossRef]
- Iqbal, J.; Ali, H.; Owayss, A.A.; Raweh, H.S.A.; Engel, M.S.; Alqarni, A.S.; Smith, B.H. Olfactory associative behavioral differences in three honey bee Apis mellifera L. races under the arid zone ecosystem of central Saudi Arabia. Saudi J. Biol. Sci. 2019, 26, 563–568. [Google Scholar] [CrossRef]
- Margotta, J.W.; Roberts, S.P.; Elekonich, M.M. Effects of flight activity and age on oxidative damage in the honey bee, Apis mellifera. J. Exp. Biol. 2018, 221, jeb183228. [Google Scholar] [CrossRef] [Green Version]
- Scheiner, R.; Amdam, G.V. Impaired tactile learning is related to social role in honeybees. J. Exp. Biol. 2009, 212, 994–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behrends, A.; Scheiner, R.; Baker, N.; Amdam, G.V. Cognitive aging is linked to social role in honey bees (Apis mellifera). Exp. Gerontol. 2007, 42, 1146–1153. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, H.J.; Cobey, S.; Smith, B.H. Sensitivity to a change in reward is heritable in the honeybee, Apis mellifera. Anim. Behav. 2001, 61, 527–534. [Google Scholar] [CrossRef]
- Pérez Claudio, E.; Rodriguez-Cruz, Y.; Arslan, O.C.; Giray, T.; Agosto Rivera, J.L.; Kence, M.; Wells, H.; Abramson, C.I. Appetitive reversal learning differences of two honey bee subspecies with different foraging behaviors. PeerJ 2018, 6, e5918. [Google Scholar] [CrossRef] [PubMed]
- Couvillon, M.J.; DeGrandi-Hoffman, G.; Gronenberg, W. Africanized honeybees are slower learners than their European counterparts. Naturwissenschaften 2010, 97, 153–160. [Google Scholar] [CrossRef] [PubMed]
- McGuire, T.R.; Hirsch, J. Behavior-genetic analysis of Phormia regina: Conditioning, reliable individual differences, and selection. Proc. Natl. Acad. Sci. USA 1977, 74, 5193–5197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laughlin, S. Energy as a constraint on the coding and processing of sensory information. Curr. Opin. Neurobiol. 2001, 11, 475–480. [Google Scholar] [CrossRef]
- Dukas, R. Costs of memory: Ideas and predictions. J. Theor. Biol. 1999, 197, 41–50. [Google Scholar] [CrossRef]
- Johnston, T.D. Selective costs and benefits in the evolution of learning. Adv. Study Behav. 1996, 12, 65–106. [Google Scholar]
- Mery, F.; Kawecki, T.J. A fitness cost of learning ability in Drosophila melanogaster. Proc. Biol. Sci. 2003, 270, 2465–2469. [Google Scholar] [CrossRef] [Green Version]
- Worden, B.D.; Skemp, A.K.; Papaj, D.R. Learning in two contexts: The effects of interference and body size in bumblebees. J. Exp. Biol. 2005, 208, 2045–2053. [Google Scholar] [CrossRef] [Green Version]
- Kotrschal, A.; Rogell, B.; Bundsen, A.; Svensson, B.; Zajitschek, S.; Brännström, I.; Immler, S.; Maklakov, A.A.; Kolm, N. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr. Biol. 2013, 23, 168–171. [Google Scholar] [CrossRef] [Green Version]
- Chittka, L.; Skorupski, P. Information processing in miniature brains. Proc. Biol. Sci. 2011, 278, 885–888. [Google Scholar] [CrossRef] [Green Version]
- Hammer, M.; Menzel, R. Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn. Mem. 1998, 5, 146–156. [Google Scholar]
- Behrends, A.; Scheiner, R. Octopamine improves learning in newly emerged bees but not in old foragers. J. Exp. Biol. 2012, 215, 1076–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohwedder, A.; Selcho, M.; Chassot, B.; Thum, A.S. Neuropeptide F neurons modulate sugar reward during associative olfactory learning of Drosophila larvae. J. Comp. Neurol. 2015, 523, 2637–2664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köppler, K.; Vorwohl, G.; Koeniger, N. Comparison of pollen spectra collected by four different subspecies of the honey bee Apis mellifera. Apidologie 2007, 38, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Kamel, S.M.; Strange, J.P.; Sheppard, W.S. A scientific note on hygienic behavior in Apis mellifera lamarckii and A. m. carnica in Egypt. Apidologie 2003, 34, 189–190. [Google Scholar] [CrossRef] [Green Version]
- Brillet, C.; Robinson, G.E.; Bues, R.; Le Conte, Y. Racial differences in division of labor in colonies of the honey bee (Apis mellifera). Ethology 2002, 108, 115–126. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scheiner, R.; Lim, K.; Meixner, M.D.; Gabel, M.S. Comparing the Appetitive Learning Performance of Six European Honeybee Subspecies in a Common Apiary. Insects 2021, 12, 768. https://doi.org/10.3390/insects12090768
Scheiner R, Lim K, Meixner MD, Gabel MS. Comparing the Appetitive Learning Performance of Six European Honeybee Subspecies in a Common Apiary. Insects. 2021; 12(9):768. https://doi.org/10.3390/insects12090768
Chicago/Turabian StyleScheiner, Ricarda, Kayun Lim, Marina D. Meixner, and Martin S. Gabel. 2021. "Comparing the Appetitive Learning Performance of Six European Honeybee Subspecies in a Common Apiary" Insects 12, no. 9: 768. https://doi.org/10.3390/insects12090768
APA StyleScheiner, R., Lim, K., Meixner, M. D., & Gabel, M. S. (2021). Comparing the Appetitive Learning Performance of Six European Honeybee Subspecies in a Common Apiary. Insects, 12(9), 768. https://doi.org/10.3390/insects12090768