Translocation of Tebuconazole between Bee Matrices and Its Potential Threat on Honey Bee (Apis mellifera Linnaeus) Queens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Honey Bees Used
2.2. Exposure to Tebuconazole
2.3. Pesticide Residues in Bee Matrices
2.4. Pesticide Residue Analyses from Bee Matrices
2.5. Chemicals and Materials Used in Pesticide Residue Analyses
2.5.1. Sample Preparation
2.5.2. UHPLC-MS/MS Analysis
2.6. Statistical Analysis
3. Results
3.1. The Residues Detected
3.2. Hazard Quotient
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- vanEngelsdorp, D.; Meixner, M.D. A Historical Review of Managed Honey Bee Populations in Europe and the United States and the Factors That May Affect Them. J. Invertebr. Pathol. 2010, 103, S80–S95. [Google Scholar] [CrossRef] [PubMed]
- Chauzat, M.-P.; Martel, A.-C.; Cougoule, N.; Porta, P.; Lachaize, J.; Zeggane, S.; Aubert, M.; Carpentier, P.; Faucon, J.-P. An Assessment of Honeybee Colony Matrices, Apis mellifera (Hymenoptera: Apidae) to Monitor Pesticide Presence in Continental France. Environ. Toxicol. Chem. 2011, 30, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Mullin, C.A.; Frazier, M.; Frazier, J.L.; Ashcraft, S.; Simonds, R.; vanEngelsdorp, D.; Pettis, J.S. High Levels of Miticides and Agrochemicals in North American Apiaries: Implications for Honey Bee Health. PLoS ONE 2010, 5, e9754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Agrebi, N.; Traynor, K.; Wilmart, O.; Tosi, S.; Leinartz, L.; Danneels, E.; de Graaf, D.C.; Saegerman, C. Pesticide and Veterinary Drug Residues in Belgian Beeswax: Occurrence, Toxicity, and Risk to Honey Bees. Sci. Total Environ. 2020, 745, 141036. [Google Scholar] [CrossRef] [PubMed]
- Ravoet, J.; Reybroeck, W.; de Graaf, D.C. Pesticides for Apicultural and/or Agricultural Application Found in Belgian Honey Bee Wax Combs. Bull. Environ. Contam. Toxicol. 2015, 94, 543–548. [Google Scholar] [CrossRef] [Green Version]
- Raimets, R.; Karise, R.; Mand, M.; Kaart, T.; Ponting, S.; Song, J.; Cresswell, J.E. Synergistic Interactions between a Variety of Insecticides and an Ergosterol Biosynthesis Inhibitor Fungicide in Dietary Exposures of Bumble Bees (Bombus terrestris L.). Pest Manag. Sci. 2018, 74, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Pilling, E.D.; Jepson, P.C. Synergism between EBI Fungicides and a Pyrethroid Insecticide in the Honeybee (Apis mellifera). Pestic. Sci. 1993, 39, 293–297. [Google Scholar] [CrossRef]
- Johnson, R.M.; Dahlgren, L.; Siegfried, B.D.; Ellis, M.D. Acaricide, Fungicide and Drug Interactions in Honey Bees (Apis mellifera). PLoS ONE 2013, 8, e54092. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Bayo, F.; Goka, K. Pesticide Residues and Bees—A Risk Assessment. PLoS ONE 2014, 9, e94482. [Google Scholar] [CrossRef] [Green Version]
- Schmuck, R.; Stadler, T.; Schmidt, H.-W. Field Relevance of a Synergistic Effect Observed in the Laboratory between an EBI Fungicide and a Chloronicotinyl Insecticide in the Honeybee (Apis mellifera L, Hymenoptera). Pest Manag. Sci. 2003, 59, 279–286. [Google Scholar] [CrossRef]
- Muñoz-Leoz, B.; Ruiz-Romera, E.; Antigüedad, I.; Garbisu, C. Tebuconazole Application Decreases Soil Microbial Biomass and Activity. Soil Biol. Biochem. 2011, 43, 2176–2183. [Google Scholar] [CrossRef]
- Song, Y.; Shi, J.; Xiong, Z.; Shentu, X.; Yu, X. Three Antimicrobials Alter Gut Microbial Communities and Causing Different Mortality of Brown Planthopper, Nilaparvata Lugens Stål. Pestic. Biochem. Physiol. 2021, 174, 104806. [Google Scholar] [CrossRef]
- Xavier, V.M.; Message, D.; Picanco, M.C.; Chediak, M.; Santana Junior, P.A.; Ramos, R.S.; Martins, J.C. Acute Toxicity and Sublethal Effects of Botanical Insecticides to Honey Bees. J. Insect Sci. 2015, 15, 137. [Google Scholar] [CrossRef] [Green Version]
- Doublet, V.; Labarussias, M.; de Miranda, J.R.; Moritz, R.F.A.; Paxton, R.J. Bees under Stress: Sublethal Doses of a Neonicotinoid Pesticide and Pathogens Interact to Elevate Honey Bee Mortality across the Life Cycle. Environ. Microbiol. 2015, 17, 969–983. [Google Scholar] [CrossRef] [PubMed]
- Oruc, H.H.; Hranitz, J.M.; Sorucu, A.; Duell, M.; Cakmak, I.; Aydin, L.; Orman, A. Determination of Acute Oral Toxicity of Flumethrin in Honey Bees. J. Econ. Entomol. 2012, 105, 1890–1894. [Google Scholar] [CrossRef] [PubMed]
- Milchreit, K.; Ruhnke, H.; Wegener, J.; Bienefeld, K. Effects of an Insect Growth Regulator and a Solvent on Honeybee (Apis mellifera L.) Brood Development and Queen Viability. Ecotoxicology 2016, 25, 530–537. [Google Scholar] [CrossRef]
- Haydak, M.H. Honey Bee Nutrition. Annu. Rev. Entomol. 1970, 15, 143–156. [Google Scholar] [CrossRef]
- Škerl, M.I.S.; Bolta, Š.V.; Česnik, H.B.; Gregorc, A. Residues of Pesticides in Honeybee (Apis mellifera Carnica) Bee Bread and in Pollen Loads from Treated Apple Orchards. Bull. Environ. Contam. Toxicol. 2009, 83, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Chauzat, M.-P.; Faucon, J.-P.; Martel, A.-C.; Lachaize, J.; Cougoule, N.; Aubert, M. A Survey of Pesticide Residues in Pollen Loads Collected by Honey Bees in France. J. Econ. Entomol. 2006, 99, 253–262. [Google Scholar] [CrossRef]
- Karise, R.; Raimets, R.; Bartkevics, V.; Pugajeva, I.; Pihlik, P.; Keres, I.; Williams, I.H.; Viinalass, H.; Mand, M. Are Pesticide Residues in Honey Related to Oilseed Rape Treatments? Chemosphere 2017, 188, 389–396. [Google Scholar] [CrossRef]
- Bee Tox Wax: Outil de Calcul de Toxicité Des Cires (FMV ULiège). Available online: https://www.beetools.uliege.be/beetoxwax/?langue=en (accessed on 12 October 2021).
- Tremolada, P.; Bernardinelli, I.; Colombo, M.; Spreafico, M.; Vighi, M. Coumaphos Distribution in the Hive Ecosystem: Case Study for Modeling Applications. Ecotoxicology 2004, 13, 589–601. [Google Scholar] [CrossRef]
- Atkins, E.L.; Kellum, D. Comparative Morphogenic and Toxicity Studies on the Effect of Pesticides on Honeybee Brood. J. Apic. Res. 1986, 25, 242–255. [Google Scholar] [CrossRef]
- Böhme, F.; Bischoff, G.; Zebitz, C.P.W.; Rosenkranz, P.; Wallner, K. From Field to Food—Will Pesticide-Contaminated Pollen Diet Lead to a Contamination of Royal Jelly? Apidologie 2018, 49, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.M.; Percel, E.G. Effect of a Fungicide and Spray Adjuvant on Queen-Rearing Success in Honey Bees (Hymenoptera: Apidae). J. Econ. Entomol. 2013, 106, 1952–1957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raimets, R.; Bontsutsnaja, A.; Bartkevics, V.; Pugajeva, I.; Kaart, T.; Puusepp, L.; Pihlik, P.; Keres, I.; Viinalass, H.; Mand, M.; et al. Pesticide Residues in Beehive Matrices Are Dependent on Collection Time and Matrix Type but Independent of Proportion of Foraged Oilseed Rape and Agricultural Land in Foraging Territory. Chemosphere 2020, 238, 124555. [Google Scholar] [CrossRef]
- García, M.D.G.; Duque, S.U.; Fernández, A.B.L.; Sosa, A.; Fernández-Alba, A.R. Multiresidue Method for Trace Pesticide Analysis in Honeybee Wax Comb by GC-QqQ-MS. Talanta 2017, 163, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Vandame, R.; Belzunces, L.P. Joint Actions of Deltamethrin and Azole Fungicides on Honey Bee Thermoregulation. Neurosci. Lett. 1998, 251, 57–60. [Google Scholar] [CrossRef]
- PubChem Tebuconazole. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/86102 (accessed on 7 October 2021).
- Tulloch, A.P. Beeswax—Composition and Analysis. Bee World 1980, 61, 47–62. [Google Scholar] [CrossRef]
- Medici, S.K.; Castro, A.; Sarlo, E.G.; Marioli, J.M.; Eguaras, M.J. The Concentration Effect of Selected Acaricides Present in Beeswax Foundation on the Survival of Apis mellifera Colonies. J. Apic. Res. 2012, 51, 164–168. [Google Scholar] [CrossRef]
- Tsigouri, A.D.; Menkissoglu-Spiroudi, U.; Thrasyvoulou, A.; Diamantidis, G. Fluvalinate Residues in Honey and Beeswax after Different Colony Treatments. Bull. Environ. Contam. Toxicol. 2004, 72, 975–982. [Google Scholar] [CrossRef]
- Chauzat, M.-P.; Faucon, J.-P. Pesticide Residues in Beeswax Samples Collected from Honey Bee Colonies (Apis mellifera L.) in France. Pest Manag. Sci. 2007, 63, 1100–1106. [Google Scholar] [CrossRef]
- Milone, J.P.; Tarpy, D.R. Effects of Developmental Exposure to Pesticides in Wax and Pollen on Honey Bee (Apis mellifera) Queen Reproductive Phenotypes. Sci. Rep. 2021, 11, 1020. [Google Scholar] [CrossRef]
- Brouwers, E.V.M.; Ebert, R.; Beetsma, J. Behavioural and Physiological Aspects of Nurse Bees in Relation to the Composition of Larval Food During Caste Differentiation in the Honeybee. J. Apic. Res. 1987, 26, 11–23. [Google Scholar] [CrossRef]
- Dietz, A.; Lambremont, E.N. Caste Determination in Honey Bees.1 II. Food Consumption of Individual Honey Bee Larvae, Determined with 32P-Labeled Royal Jelly2. Ann. Entomol. Soc. Am. 1970, 63, 1342–1345. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Available online: https://archive.epa.gov/pesticides/chemicalsearch/chemical/foia/web/pdf/128997/128997-2006-12-05a.pdf (accessed on 10 December 2021).
- Murcia Morales, M.; Gómez Ramos, M.J.; Parrilla Vázquez, P.; Díaz Galiano, F.J.; García Valverde, M.; Gámiz López, V.; Manuel Flores, J.; Fernández-Alba, A.R. Distribution of Chemical Residues in the Beehive Compartments and Their Transfer to the Honeybee Brood. Sci. Total Environ. 2020, 710, 136288. [Google Scholar] [CrossRef]
- Ardalani, H.; Vidkjær, N.H.; Kryger, P.; Fiehn, O.; Fomsgaard, I.S. Metabolomics Unveils the Influence of Dietary Phytochemicals on Residual Pesticide Concentrations in Honey Bees. Environ. Int. 2021, 152, 106503. [Google Scholar] [CrossRef]
- Berenbaum, M.R.; Johnson, R.M. Xenobiotic Detoxification Pathways in Honey Bees. Curr. Opin. Insect Sci. 2015, 10, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moncharmont, F.-X.D.; Decourtye, A.; Hennequet-Hantier, C.; Pons, O.; Pham-Delègue, M.-H. Statistical Analysis of Honeybee Survival after Chronic Exposure to Insecticides. Environ. Toxicol. Chem. 2003, 22, 3088–3094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aliouane, Y.; el Hassani, A.K.; Gary, V.; Armengaud, C.; Lambin, M.; Gauthier, M. Subchronic Exposure of Honeybees to Sublethal Doses of Pesticides: Effects on Behavior. Environ. Toxicol. Chem. 2009, 28, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Mänd, M.; Karise, R. Recent Insights into Sublethal Effects of Pesticides on Insect Respiratory Physiology. Open Access Insect Physiol. 2015, 5, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Harriet, J.; Campá, J.P.; Grajales, M.; Lhéritier, C.; Gómez Pajuelo, A.; Mendoza-Spina, Y.; Carrasco-Letelier, L. Agricultural Pesticides and Veterinary Substances in Uruguayan Beeswax. Chemosphere 2017, 177, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Motta, E.V.S.; Raymann, K.; Moran, N.A. Glyphosate Perturbs the Gut Microbiota of Honey Bees. Proc. Natl. Acad. Sci. USA 2018, 115, 10305–10310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, J.E.; Martinson, V.G.; Urban-Mead, K.; Moran, N.A. Routes of Acquisition of the Gut Microbiota of the Honey Bee Apis mellifera. Appl. Environ. Microbiol. 2014, 80, 7378–7387. [Google Scholar] [CrossRef] [Green Version]
- Koch, H.; Schmid-Hempel, P. Socially Transmitted Gut Microbiota Protect Bumble Bees against an Intestinal Parasite. Proc. Natl. Acad. Sci. USA 2011, 108, 19288–19292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pesticide | Molecular Ion, Da | Daughter Ion, Da | Collision Energy, eV |
---|---|---|---|
Tebuconazole | 308 | 70 | 21 |
308 | 125 | 34 |
Bee Matrix. | Control (Tebuco-Nazole Found (mg kg−1) | Tebuco-Nazole Found (mg kg−1) | % Left from Spiking Concentra-Tion | Tebucona-Zole Contact LD50 to Honey Bees 48 h (mg kg−1) | Dose (µg) per Bee Found | HQ Value |
---|---|---|---|---|---|---|
Queen cells | <0.01 | 0.19 ± 0.09 | 46.1 | 0.2 | 0.19 | 1 |
Royal jelly | <0.01 | 0.08 ± 0.04 | 19.4 | 0.2 | 0.08 | |
Larvae | <0.01 | <0.01 | 0 | 0.2 | 0 | |
Queens | <0.01 | <0.01 | 0 | 0.2 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raimets, R.; Naudi, S.; Mänd, M.; Bartkevičs, V.; Smagghe, G.; Karise, R. Translocation of Tebuconazole between Bee Matrices and Its Potential Threat on Honey Bee (Apis mellifera Linnaeus) Queens. Insects 2022, 13, 45. https://doi.org/10.3390/insects13010045
Raimets R, Naudi S, Mänd M, Bartkevičs V, Smagghe G, Karise R. Translocation of Tebuconazole between Bee Matrices and Its Potential Threat on Honey Bee (Apis mellifera Linnaeus) Queens. Insects. 2022; 13(1):45. https://doi.org/10.3390/insects13010045
Chicago/Turabian StyleRaimets, Risto, Sigmar Naudi, Marika Mänd, Vadims Bartkevičs, Guy Smagghe, and Reet Karise. 2022. "Translocation of Tebuconazole between Bee Matrices and Its Potential Threat on Honey Bee (Apis mellifera Linnaeus) Queens" Insects 13, no. 1: 45. https://doi.org/10.3390/insects13010045
APA StyleRaimets, R., Naudi, S., Mänd, M., Bartkevičs, V., Smagghe, G., & Karise, R. (2022). Translocation of Tebuconazole between Bee Matrices and Its Potential Threat on Honey Bee (Apis mellifera Linnaeus) Queens. Insects, 13(1), 45. https://doi.org/10.3390/insects13010045