Multiple Data Demonstrate That Bacteria Regulating Reproduction Could Be Not the Cause for the Thelytoky of Diglyphus wani (Hymenoptera: Eulophidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Laboratory Population
2.2. Field Population
2.3. DNA Extraction
2.4. General Polymerase Chain Reaction (PCR) Detection
2.5. Bacterial Community Diversity
2.6. Antibiotic and High-Temperature Treatments
2.7. Fluorescence Microscopy
3. Results
3.1. General PCR Screening
3.2. Bacterial Community Composition
3.3. Effects of Antibiotic and High-Temperature Treatments
3.4. Fluorescence Microscopy
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, C.D.; LaSalle, J.; Huang, D.W. A review of the Chinese Diglyphus Walker (Hymenoptera: Eulophidae). Orient. Insects 2000, 34, 263–288. [Google Scholar] [CrossRef]
- Liu, T.X.; Kang, L.; Heinz, K.M.; Trumble, J. Biological control of Liriomyza leafminers: Progress and perspective. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2009, 4, 1–16. [Google Scholar] [CrossRef]
- Liu, W.X.; Wang, W.X.; Wang, W.; Zhang, Y.B.; Wan, F.H. Characteristics and application of Diglyphus parasitoids (Hymenoptera: Eulophidae) in controlling the agromyzid leafminers. Acta Entomol. Sin. 2013, 56, 427–437. (In Chinese) [Google Scholar]
- Hansson, C.; Navone, P. Review of the European species of Diglyphus Walker (Hymenoptera: Eulophidae) including the description of a new species. Zootaxa 2017, 4269, 197–229. [Google Scholar] [CrossRef] [Green Version]
- Ridland, P.M.; Umina, P.A.; Pirtle, E.I.; Hoffmann, A.A. Potential for biological control of the vegetable leafminer, Liriomyza sativae (Diptera: Agromyzidae), in Australia with parasitoid wasps. Aust. Entomol. 2020, 59, 16–36. [Google Scholar] [CrossRef] [Green Version]
- Heimpel, G.E.; de Boer, J.G. Sex determination in the Hymenoptera. Annu. Rev. Entomol. 2008, 53, 209–230. [Google Scholar] [CrossRef]
- Stouthamer, R.; Luck, R.F. Influence of microbe-associated parthenogenesis on the fecundity of Trichogramma deion and T pretiosum. Entomol. Exp. Appl. 1993, 67, 183–192. [Google Scholar] [CrossRef]
- Giorgini, M.; Bernardo, U.; Monti, M.M.; Nappo, A.G.; Gebiola, M. Rickettsia symbionts cause parthenogenetic reproduction in the parasitoid wasp Pnigalio soemius (Hymenoptera: Eulophidae). Appl. Environ. Microbiol. 2010, 76, 2589–2599. [Google Scholar] [CrossRef] [Green Version]
- Ye, F.Y.; Zhu, C.D.; Yefremova, Z.; Liu, W.X.; Guo, J.Y.; Wan, F.H. Life history and biocontrol potential of the first female-producing parthenogenetic species of Diglyphus (Hymenoptera: Eulophidae) against agromyzid leafminers. Sci. Rep. 2018, 8, 3222. [Google Scholar] [CrossRef]
- Rokas, A.; Atkinson, R.J.; Nieves-Aldrey, J.L.; West, S.A.; Stone, G.N. The incidence and diversity of Wolbachia in gallwasps (Hymenoptera; Cynipidae) on oak. Mol. Ecol. 2002, 11, 1815–1829. [Google Scholar] [CrossRef] [Green Version]
- Stouthamer, R.; Luck, R.F.; Hamilton, W.D. Antibiotics cause parthenogenetic Trichogramma (Hymenoptera: Trichogrammatidae) to revert to sex. Proc. Natl. Acad. Sci. USA 1990, 87, 2424–2427. [Google Scholar] [CrossRef] [Green Version]
- Vavre, F.; de Jong, J.H.; Stouthamer, R. Cytogenetic mechanism and genetic consequences of thelytoky in the wasp Trichogramma cacoeciae. Heredity 2004, 93, 592–596. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.J.; Schwander, T. Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis. J. Evol. Biol. 2017, 30, 868–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Kooi, C.J.; Matthey-Doret, C.; Schwander, T. Evolution and comparative ecology of parthenogenesis in haplodiploid arthropods. Evol. Lett. 2017, 1, 304–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zchori-Fein, E.; Gottlieb, Y.; Kelly, S.E.; Brown, J.K.; Wilson, J.M.; Karr, T.L.; Hunter, M.S. A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoid wasps. Proc. Natl. Acad. Sci. USA 2001, 98, 12555–12560. [Google Scholar] [CrossRef] [Green Version]
- Hagimori, T.; Abe, Y.; Date, S.; Miura, K. The first finding of a Rickettsia bacterium associated with parthenogenesis induction among insects. Curr. Microbiol. 2006, 52, 97–101. [Google Scholar] [CrossRef]
- Giorgini, M. Induction of males in thelytokous populations of Encarsia meritoria and Encarsia protransvena: A systematic tool. BioControl 2001, 46, 427–438. [Google Scholar] [CrossRef]
- Giorgini, M.; Hunter, M.S.; Mancini, D.; Pedata, P.A. Cytological evidence for two different mechanisms of thelytokous parthenogenesis in Encarsia parasitoids harbouring Wolbachia or Cardinium bacteria. Poster. In Abstracts X European Workshop on Insect Parasitoids, Erice (Sicily); Università degli studi di Napoli "Federico II": Erice, Italy, 2007; pp. 17–21. [Google Scholar] [CrossRef]
- Giorgini, M.; Monti, M.M.; Caprio, E.; Stouthamer, R.; Hunter, M.S. Feminization and the collapse of haplodiploidy in an asexual parasitoid wasp harboring the bacterial symbiont Cardinium. Heredity 2009, 102, 365–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monti, M.M.; Nugnes, F.; Gualtieri, L.; Gebiola, M.; Bernardo, U. No evidence of parthenogenesis-inducing bacteria involved in Thripoctenus javae thelytoky: An unusual finding in Chalcidoidea. Entomol. Exp. Appl. 2016, 160, 292–301. [Google Scholar] [CrossRef] [Green Version]
- Beukeboom, L.W.; Pijnacker, L.P. Automictic parthenogenesis in the parasitoid Venturia canescens (Hymenoptera: Ichneumonidae) revisited. Genome 2000, 43, 939–944. [Google Scholar] [CrossRef] [Green Version]
- Tsutsui, Y.; Maeto, K.; Hamaguchi, K.; Isaki, Y.; Takami, Y.; Naito, T.; Miura, K. Apomictic parthenogenesis in a parasitoid wasp Meteorus pulchricornis, uncommon in the haplodiploid order Hymenoptera. Bull. Entomol. Res. 2014, 104, 307–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zchori-Fein, E.; Perlman, S.J.; Kelly, S.E.; Katzir, N.; Hunter, M.S. Characterization of a ‘Bacteroidetes’ symbiont in Encarsia wasps (Hymenoptera: Aphelinidae): Proposal of ‘Candidatus Cardinium hertigii’. Int. J. Syst. Evol. Microbiol. 2004, 54, 961–968. [Google Scholar] [CrossRef]
- Matalon, Y.; Katzir, N.; Gottlieb, Y.; Portnoy, V.; Zchori-Fein, E. Cardinium in Plagiomerus diaspidis (Hymenoptera: Encyrtidae). J. Invertebr. Pathol. 2007, 96, 106–108. [Google Scholar] [CrossRef] [PubMed]
- Du, S.J.; Yefremova, Z.; Ye, F.Y.; Zhu, C.D.; Guo, J.Y.; Liu, W.X. Morphological and molecular identification of arrhenotokous strain of Diglyphus wani (Hymenoptera: Eulophidae) found in China as a control agent against agromyzid leafminers. Zookeys 2021, 1071, 109–126. [Google Scholar] [CrossRef]
- Guo, C.H.; Peng, X.; Zheng, X.L.; Wang, X.Y.; Wang, R.R.; Huang, Z.Y.; Yang, Z.D. Comparison of bacterial diversity and abundance between sexes of Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae) from China. PeerJ 2020, 8, e8411. [Google Scholar] [CrossRef] [Green Version]
- Foray, V.; Henri, H.; Martinez, S.; Gibert, P.; Desouhant, E. Occurrence of arrhenotoky and thelytoky in a parasitic wasp Venturia canescens (Hymenoptera: Ichneumonidae): Effect of endosymbionts or existence of two distinct reproductive modes? Eur. J. Entomol. 2013, 110, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Braig, H.R.; Zhou, W.G.; Dobson, S.L.; O’Neill, S.L. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J. Bacteriol. 1998, 180, 2373–2378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, S.L.; Giordano, R.; Colbert, A.M.; Karr, T.L.; Robertson, H.M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc. Natl. Acad. Sci. USA 1992, 89, 2699–2702. [Google Scholar] [CrossRef] [Green Version]
- Weeks, A.R.; Velten, R.; Stouthamer, R. Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. Proc. R. Soc. B Biol. Sci. 2003, 270, 1857–1865. [Google Scholar] [CrossRef] [Green Version]
- Sha, Z.L.; Zhu, C.D.; Murphy, R.W.; La Salle, J.; Huang, D.W. Mitochondrial phylogeography of a leafminer parasitoid, Diglyphus isaea (Hymenoptera: Eulophidae) in China. Biol. Control. 2006, 38, 380–389. [Google Scholar] [CrossRef]
- Chen, Y.; Hui, X.A.; Fu, J.Z.; Huang, D.W. A molecular phylogeny of eurytomid wasps inferred from DNA sequence data of 28S, 18S, 16S, and COI genes. Mol. Phylogenet. Evol. 2004, 31, 300–307. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Thao, M.L.L.; Baumann, P. Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Curr. Microbiol. 2004, 48, 140–144. [Google Scholar] [CrossRef]
- Gottlieb, Y.; Ghanim, M.; Chiel, E.; Gerling, D.; Portnoy, V.; Steinberg, S.; Tzuri, G.; Horowitz, A.R.; Belausov, E.; Mozes-Daube, N.; et al. Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Appl. Environ. Microbiol. 2006, 72, 3646–3652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duron, O.; Bouchon, D.; Boutin, S.; Bellamy, L.; Zhou, L.Q.; Engelstädter, J.; Hurst, G.D. The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol. 2008, 6, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, L.M.; Zhu, X.; Cali, A.; Tanowitz, H.B.; Wittner, M. Utility of microsporidian rRNA in diagnosis and phylogeny: A review. Folia Parasitol. 1994, 41, 81–90. [Google Scholar]
- Weiss, L.M.; Vossbrinck, C.R. Microsporidiosis: Molecular and diagnostic aspects. In Advances in Parasitology—Opportunistic Protozoa in Humans; Academic Press Inc Elsevier Science: San Diego, CA, USA, 1998; pp. 351–395. [Google Scholar]
- Baker, M.D.; Vossbrinck, C.R.; Didier, E.S.; Maddox, J.V.; Shadduck, J.A. Small-subunit ribosomal DNA phylogeny of various Microsporidia with emphasis on Aids-related forms. J. Eukaryot. Microbiol. 1995, 42, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Mori, H.; Maruyama, F.; Kato, H.; Toyoda, A.; Dozono, A.; Ohtsubo, Y.; Nagata, Y.; Fujiyama, A.; Tsuda, M.; Kurokawa, K. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res. 2014, 21, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Boutros, P.C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 2011, 12, 35. [Google Scholar] [CrossRef] [Green Version]
- Amann, R.I.; Binder, B.J.; Olson, R.J.; Chisholm, S.W.; Devereux, R.; Stahl, D.A. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 1990, 56, 1919–1925. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.X.; Qi, L.D.; Jiang, R.; Du, Y.Z.; Li, Y.X. Incomplete removal of Wolbachia with tetracycline has two-edged reproductive effects in the thelytokous wasp Encarsia formosa (Hymenoptera: Aphelinidae). Sci. Rep. 2017, 7, 44014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, S.; Takahashi, K.H. Artificial transfer of a thelytoky-inducing Wolbachia endosymbiont between strains of the endoparasitoid wasp Asobara japonica (Hymenoptera: Braconidae). Appl. Entomol. Zool. 2018, 53, 403–409. [Google Scholar] [CrossRef]
- Alonso-Pernas, P.; Bartram, S.; Arias-Cordero, E.M.; Novoselov, A.L.; Halty-deLeon, L.; Shao, Y.; Boland, W. In vivo isotopic labeling of symbiotic bacteria involved in Cellulose Degradation and Nitrogen Recycling within the Gut of the Forest Cockchafer (Melolontha hippocastani). Front. Microbiol. 2018, 8, 1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Liu, L.; Zhao, J.; Zhang, J.; Cai, Z. The families Ruminococcaceae, Lachnospiraceae, and Clostridiaceae are the dominant bacterial groups during reductive soil disinfestation with incorporated plant residues. Appl. Soil Ecol. 2019, 135, 65–72. [Google Scholar] [CrossRef]
- Xia, X.F.; Zheng, D.D.; Zhong, H.Z.; Qin, B.C.; Gurr, G.M.; Vasseur, L.; Lin, H.L.; Bai, J.L.; He, W.Y.; You, M.S. DNA Sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS ONE 2013, 8, e68852. [Google Scholar] [CrossRef]
- Vasquez, A.; Forsgren, E.; Fries, I.; Paxton, R.J.; Flaberg, E.; Szekely, L.; Olofsson, T.C. Symbionts as major modulators of insect health: Lactic acid bacteria and honeybees. PLoS ONE 2012, 7, e33188. [Google Scholar] [CrossRef]
- Werren, J.H.; Bartos, J.D. Recombination in Wolbachia. Curr. Biol. 2001, 11, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Hou, H.Q.; Zhao, G.Z.; Su, C.Y.; Zhu, D.H. Wolbachia prevalence patterns: Horizontal transmission, recombination, and multiple infections in chestnut gall wasp-parasitoid communities. Entomol. Exp. Appl. 2020, 168, 752–765. [Google Scholar] [CrossRef]
- Tagami, Y.; Doi, M.; Sugiyama, K.; Tatara, A.; Saito, T. Survey of leafminers and their parasitoids to find endosymbionts for improvement of biological control. Biol. Control 2006, 38, 210–216. [Google Scholar] [CrossRef]
- Lattorff, H.M.G.; Moritz, R.F.A.; Fuchs, S. A single locus determines thelytokous parthenogenesis of laying honeybee workers (Apis mellifera capensis). Heredity 2005, 94, 533–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandrock, C.; Schirrmeister, B.E.; Vorburger, C. Evolution of reproductive mode variation and host associations in a sexual-asexual complex of aphid parasitoids. BMC. Evol. Biol. 2011, 11, 433–437. [Google Scholar] [CrossRef] [Green Version]
- Yagound, B.; Dogantzis, K.A.; Zayed, A.; Lim, J.; Broekhuyse, P.; Remnant, E.J.; Beekman, M.; Allsopp, M.H.; Aamidor, S.E.; Dim, O.; et al. A single gene causes thelytokous parthenogenesis, the defining feature of the cape honeybee Apis mellifera capensis. Curr. Biol. 2020, 30, 2248–2259. [Google Scholar] [CrossRef] [PubMed]
- Rabeling, C.; Kronauer, D.J.C. Thelytokous parthenogenesis in eusocial Hymenoptera. Annu. Rev. Entomol. 2013, 58, 273–292. [Google Scholar] [CrossRef]
- Goudie, F.; Oldroyd, B.P. The distribution of thelytoky, arrhenotoky and androgenesis among castes in the eusocial Hymenoptera. Insectes Soc. 2018, 65, 5–16. [Google Scholar] [CrossRef]
- Belshaw, R.; Quicke, D.L.J. The cytogenetics of thelytoky in a predominantly asexual parasitoid wasp with covert sex. Genome 2003, 46, 170–173. [Google Scholar] [CrossRef]
- Pinto, J.H.; Stouthamer, R. Systematics of the Trichogrammatidae with emphasis on Trichogramma. In Biological Control with Egg Parasitoids; Wajnberg, E., Hassan, S.A., Eds.; CAB International; IOBC: Wallingford, CT, USA, 1994; pp. 1–36. [Google Scholar]
- Nakanishi, K.; Hoshino, M.; Nakai, M.; Kunimi, Y. Novel RNA sequences associated with late male killing in Homona magnanima. Proc. R. Soc. B Biol. Sci. 2008, 275, 1249–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsugeno, Y.; Koyama, H.; Takamatsu, T.; Nakai, M.; Kunimi, Y.; Inoue, M.N. Identification of an Early Male-Killing Agent in the Oriental Tea Tortrix, Homona magnanima. J. Hered. 2017, 108, 553–560. [Google Scholar] [CrossRef]
- Fujita, R.; Inoue, M.N.; Takamatsu, T.; Arai, H.; Nishino, M.; Abe, N.; Itokawa, K.; Nakai, M.; Urayama, S.; Chiba, Y.; et al. Late male-killing viruses in Homona magnanima identified as Osugoroshi viruses, novel members of Partitiviridae. Front. Microbiol. 2021, 11, 620623. [Google Scholar] [CrossRef] [PubMed]
- Kondo, N.; Nikoh, N.; Ijichi, N.; Shimada, M.; Fukatsu, T. Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. Proc. Natl. Acad. Sci. USA 2002, 99, 14280–14285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunning Hotopp, J.C. Horizontal gene transfer between bacteria and animals. Trends. Genet. 2011, 27, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Dunning Hotopp, J.C.; Clark, M.E.; Oliveira, D.C.S.G.; Foster, J.M.; Fischer, P.; Torres, M.C.M.; Giebel, J.D.; Kumar, N.; Ishmael, N.; Wang, S. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 2007, 317, 1753–1756. [Google Scholar] [CrossRef] [Green Version]
- Doudoumis, V.; Tsiamis, G.; Wamwiri, F.; Brelsfoard, C.; Alam, U.; Aksoy, E.; Dalaperas, S.; Abd-Alla, A.; Ouma, J.; Takac, P.; et al. Detection and characterization of Wolbachia infections in laboratory and natural populations of different species of tsetse flies (genus Glossina). BMC Microbiol. 2012, 12, S3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Q.; He, J.; Yu, J.; Ye, Y.T.; Zhou, D.; Sun, Y.; Zhang, D.H.; Ma, L.; Shen, B.; Zhu, C.L. A case of horizontal gene transfer from Wolbachia to Aedes albopictus C6/36 cell line. Mob. Genet. Elements 2014, 4, e28914. [Google Scholar] [CrossRef] [Green Version]
- de Miguel, T.; Zhu, O.; Villa, T.G. Horizontal gene transfer between Wolbachia and animals. In Horizontal Gene Transfer; Villa, T.G., Viñas, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 227–234. [Google Scholar]
- Suomalainen, E.; Saura, A.; Lokki, J. Cytology and Evolution in Parthenogenesis; CRC Press: Boca Raton, FL, USA, 1987. [Google Scholar]
- Pearcy, M.; Hardy, O.; Aron, S. Thelytokous parthenogenesis and its consequences on inbreeding in an ant. Heredity 2006, 96, 377–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Reproductive Regulators (Microorganism) | Individuals | Province/Autonomous Region/Municipality | City | Sex | Individuals | Year | Host | Sampled Plant |
---|---|---|---|---|---|---|---|---|---|
Diglyphus wani | None | Laboratory | Beijing | Beijing | Female | 45 | 2020 | Liriomyza sativae | Phaseolus vulgaris |
Diglyphus wani | None | Field | Qinghai | Xining | Female | 19 | 2018 | Chromatomyia horticola | Pisum sativum |
Diglyphus wani | None | Field | Tibet | Lhasa | Female | 14 | 2018 | Liriomyza huidobrensis | Sonchus oleraceus |
Diglyphus wani | None | Field | Hebei | Shijiazhuang | Female | 13 | 2018 | Chromatomyia horticola | Brassica napus |
Diglyphus wani | None | Field | Beijing | Beijing | Female | 20 | 2017 | Chromatomyia horticola | Brassica pekinensis |
Encarsia formosa | Wolbachia | Field | Hebei | Langfang | Female | 5 | 2017 | Bemisia tabaci | Solanum lycopersicum |
Bemisia tabaci | Cardinium | Field | Xinjiang | Hami | Female | 8 | 2017 | - | Solanum lycopersicum |
Bemisia tabaci | Arsenophonus | Field | Gansu | Tianshui | Female | 10 | 2019 | - | Cucumis sativus |
Neochrysocharis formosa | Rickettsia | Field | Beijing | Beijing | Female | 5 | 2017 | Liriomyza sativae | Vigna unguiculata |
Sitobion avenae | Spiroplasma | Field | Hebei | Langfang | Female | 6 | 2021 | - | Triticum aestivuml |
Plutella xylostella | Microsporidia | Field | Guangdong | Guangzhou | Female | 2 | 2017 | - | Brassica napus |
Organism | Gene | Primers | Sequence (5′–3′) | Annealing (°C)/Product Size (bp) | Positive Controls | References |
---|---|---|---|---|---|---|
Diglyphus wani | COI | COISF | TAAGATTTTGATTATT(AG)CC(TA)CC | 48/~850 | - | [31] |
COI2613 | ATTGCAAATACTGCACCTAT | [32] | ||||
Encarsia formosa | LCO1490 HCO2198 | TCAACAAATCATAAAGATATTGG TAAACTTCAGGGTGACCAAAAAATCA | 52/~800 | - | [33] | |
Bemisia tabaci | ||||||
Neochrysocharis formosa | ||||||
Sitobion avenae | ||||||
Plutella xylostella | ||||||
Wolbachia | WSP | 81F | TGGTCCAATAAGTGATGAAGAAAC | 52/~610 | Encarsia formosa | [28] |
691R | AAAAATTAAACGCTACTCCA | |||||
Wolbachia | 16S | 99F | TTGTAGCCTGCTATGGTATAACT | 52/~936 | [29] | |
994R | GAATAGGTATGATTTTCATGT | |||||
Cardinium | 16S | CLOf | GCGGTGTAAAATGAGCGTG | 52/~600 | Bemisia tabaci | [30] |
CLOr1 | ACCTMTTCTTAACTCAAGCCT | |||||
Arsenophonus | 23S | Ars23s-F | CGTTTGATGAATTCATAGTCAAA | 52/~650 | [34] | |
Ars23s-R | GGTCCTCCAGTTAGTGTTACCCAAC | |||||
Rickettsia | 16S | Rb-F | GCTCAGAACGAACGCTATC | 56/~900 | Neochrysocharis formosa | [35] |
Rb-R | GAAGGAAAGCATCTCTGC | |||||
Spiroplasma | 16S | Spixo-F | TTAGGGGCTCAACCCCTAACC | 52/~810 | Sitobion avenae | [36] |
Spixo-R | TCTGGCATTGCCAACTCTC | |||||
Microsporidia | 16S | V1F | CACCAGGTTGATTCT | 57/~1300 | Plutella xylostella | [37,38] |
1492R | GGTTACCTTGTTACGACTT | |||||
Microsporidia | V1F | CACCAGGTTGATTCT | 63/~450 | [39] | ||
530R | CCGCGGCTGCTGGCAC |
Generations | Tetracycline (20 mg·mL−1, n = 10) | Rifampicin (20 mg·mL−1, n = 10) | High-Temperature (34 °C, n = 20) |
---|---|---|---|
P1 | 139 Females | 260 Females | 190 Females |
P2 | 177 Females | 235 Females | 184 Females |
P3 | 192 Females | 302 Females | 299 Females |
P4 | 132 Females | 229 Females | 184 Females |
P5 | 149 Females | 207 Females | 214 Females |
Total | 789 Females | 1233 Females | 1071 Females |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, S.; Ye, F.; Wang, Q.; Liang, Y.; Wan, W.; Guo, J.; Liu, W. Multiple Data Demonstrate That Bacteria Regulating Reproduction Could Be Not the Cause for the Thelytoky of Diglyphus wani (Hymenoptera: Eulophidae). Insects 2022, 13, 9. https://doi.org/10.3390/insects13010009
Du S, Ye F, Wang Q, Liang Y, Wan W, Guo J, Liu W. Multiple Data Demonstrate That Bacteria Regulating Reproduction Could Be Not the Cause for the Thelytoky of Diglyphus wani (Hymenoptera: Eulophidae). Insects. 2022; 13(1):9. https://doi.org/10.3390/insects13010009
Chicago/Turabian StyleDu, Sujie, Fuyu Ye, Qijing Wang, Yongxuan Liang, Weijie Wan, Jianyang Guo, and Wanxue Liu. 2022. "Multiple Data Demonstrate That Bacteria Regulating Reproduction Could Be Not the Cause for the Thelytoky of Diglyphus wani (Hymenoptera: Eulophidae)" Insects 13, no. 1: 9. https://doi.org/10.3390/insects13010009
APA StyleDu, S., Ye, F., Wang, Q., Liang, Y., Wan, W., Guo, J., & Liu, W. (2022). Multiple Data Demonstrate That Bacteria Regulating Reproduction Could Be Not the Cause for the Thelytoky of Diglyphus wani (Hymenoptera: Eulophidae). Insects, 13(1), 9. https://doi.org/10.3390/insects13010009