Lethal, Sub-Lethal and Trans-Generational Effects of Chlorantraniliprole on Biological Parameters, Demographic Traits, and Fitness Costs of Spodoptera frugiperda (Lepidoptera: Noctuidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Insect Collection
2.2. Bioassay for Larvae
2.3. Lethal and Sub-Lethal Effects of Chlorantraniliprole on F0, F1 and F2 Generations
2.4. Transgenerational Effects of Chlorantraniliprole on F1 and F2 Generations
2.5. Statistical Analysis
3. Results
3.1. Toxicity of Chlorantraniliprole to F0, F1, and F2 Generations
3.2. Sub-Lethal and Transgenerational Effects of Chlorantraniliprole on Biological and Reproductive Parameters and of F0, F1 and F2 Generations
3.3. Effect of Chlorantraniliprole on Demographic Traits of F0, F1, and F2 Generations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, X.-P.; Liang, Y.-J.; Zhang, X.-Q.; Qin, Z.-Q.; Wei, J.-J.; Li, Y.-R.; Wu, J.-M. Intrusion of Fall Armyworm (Spodoptera frugiperda) in Sugarcane and Its Control by Drone in China. Sugar Tech 2020, 22, 734–737. [Google Scholar] [CrossRef]
- Sparks, A.N. A Review of the Biology of the Fall Armyworm. Fla. Entomol. 1979, 62, 82. [Google Scholar] [CrossRef]
- Goergen, G.; Kumar, P.L.; Sankung, S.B.; Togola, A.; Tamò, M. First Report of Outbreaks of the Fall Armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae), a New Alien Invasive Pest in West and Central Africa. PLoS ONE 2016, 11, e0165632. [Google Scholar]
- Silva, A.A.; Alvarenga, R.; Moraes, J.C.; Alcantra, E. Biologia de Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) Em Algodoeiro de Fibra Colorida Tratado Com Silício. EntomoBrasilis 2014, 7, 65–68. [Google Scholar] [CrossRef]
- Ali, S.; Li, Y.; Haq, I.U.; Abbas, W.; Shabbir, M.Z.; Khan, M.M.; Mamay, M.; Niaz, Y.; Farooq, T.; Skalicky, M.; et al. The Impact of Different Plant Extracts on Population Suppression of Helicoverpa armigera (Hub.) and Tomato (Lycopersicon Esculentum Mill) Yield under Field Conditions. PLoS ONE 2021, 16, e0260470. [Google Scholar] [CrossRef]
- Zaimi, S.; Saranum, M.; Hudin, L.; Ali, W. First Incidence of the Invasive Fall Armyworm, Spodoptera frugiperda (J.E. Smith, 1797) Attacking Maize in Malaysia. BioInvasions Rec. 2021, 10, 81–90. [Google Scholar] [CrossRef]
- Boregas, K.G.B.; Mendes, S.M.; Waquil, J.M.; Fernandes, G.W. Estádio de Adaptação de Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) Em Hospedeiros Alternativos. Bragantia 2013, 72, 61–70. [Google Scholar] [CrossRef]
- Sisay, B.; Tefera, T.; Wakgari, M.; Ayalew, G.; Mendesil, E. The Efficacy of Selected Synthetic Insecticides and Botanicals against Fall Armyworm, Spodoptera frugiperda, in Maize. Insects 2019, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Idrees, A.; Qadir, Z.A.; Afzal, A.; Ranran, Q.; Li, J. Laboratory Efficacy of Selected Synthetic Insecticides against Second Instar Invasive Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) Larvae. PLoS ONE 2022, 17, e0265265. [Google Scholar] [CrossRef] [PubMed]
- Casida, J.E.; Durkin, K.A. Neuroactive Insecticides: Targets, Selectivity, Resistance, and Secondary Effects. Annu Rev Entomol 2013, 58, 99–117. [Google Scholar] [CrossRef] [PubMed]
- Casida, J.E. Pest Toxicology: The Primary Mechanisms of Pesticide Action. Chem. Res. Toxicol. 2009, 22, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-M.; Feng, H.-L.; Wang, G.-D.; Zhang, L.-L.; Zulu, L.; Liu, Y.-H.; Zheng, Y.-L.; Rao, Q. Sublethal Effects of Three Insecticides on Development and Reproduction of Spodoptera frugiperda (Lepidoptera: Noctuidae). Agronomy 2022, 12, 1334. [Google Scholar] [CrossRef]
- Tulashie, S.K.; Adjei, F.; Abraham, J.; Addo, E. Potential of Neem Extracts as Natural Insecticide against Fall Armyworm (Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Case Stud. Chem. Environ. Eng. 2021, 4, 100130. [Google Scholar] [CrossRef]
- Kulye, M.; Mehlhorn, S.; Boaventura, D.; Godley, N.; Venkatesh, S.; Rudrappa, T.; Charan, T.; Rathi, D.; Nauen, R. Baseline Susceptibility of Spodoptera frugiperda Populations Collected in India towards Different Chemical Classes of Insecticides. Insects 2021, 12, 758. [Google Scholar] [CrossRef]
- Ahissou, B.R.; Sawadogo, W.M.; Bokonon-Ganta, A.H.; Somda, I.; Kestemont, M.-P.; Verheggen, F.J. Baseline Toxicity Data of Different Insecticides against the Fall Armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and Control Failure Likelihood Estimation in Burkina Faso. Afr. Entomol. 2021, 29, 435–444. [Google Scholar] [CrossRef]
- Rajula, J.; Pittarate, S.; Suwannarach, N.; Kumla, J.; Ptaszynska, A.A.; Thungrabeab, M.; Mekchay, S.; Krutmuang, P. Evaluation of Native Entomopathogenic Fungi for the Control of Fall Armyworm (Spodoptera frugiperda) in Thailand: A Sustainable Way for Eco-Friendly Agriculture. J. Fungi 2021, 7, 1073. [Google Scholar] [CrossRef]
- Osae, M.Y.; Frimpong, J.O.; Sintim, J.O.; Offei, B.K.; Marri, D.; Ofori, S.E.K. Evaluation of Different Rates of Ampligo Insecticide against Fall Armyworm (Spodoptera frugiperda (J.E. Smith); Lepidoptera: Noctuidae) in the Coastal Savannah Agroecological Zone of Ghana. Adv. Agric. 2022, 2022, 5059865. [Google Scholar] [CrossRef]
- Deshmukh, S.; Pavithra, H.B.; Kalleshwaraswamy, C.M.; Shivanna, B.K.; Maruthi, M.S.; Mota-Sanchez, D. Field Efficacy of Insecticides for Management of Invasive Fall Armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) on Maize in India. Fla. Entomol. 2020, 103, 221. [Google Scholar] [CrossRef]
- Hardke, J.T.; Temple, J.H.; Leonard, B.R.; Jackson, R.E. Laboratory Toxicity and Field Efficacy of Selected Insecticides Against Fall Armyworm (Lepidoptera: Noctuidae) 1. Fla. Entomol. 2011, 94, 272–278. [Google Scholar] [CrossRef]
- Adamczyk, J.J.; Leonard, B.R.; Graves, J.B. Toxicity of Selected Insecticides to Fall Armyworms (Lepidoptera: Noctuidae) in Laboratory Bioassay Studies. Fla. Entomol. 1999, 82, 230. [Google Scholar] [CrossRef]
- Lai, T.; Su, J. Effects of Chlorantraniliprole on Development and Reproduction of Beet Armyworm, Spodoptera Exigua (Hübner). J. Pest Sci. 2011, 84, 381–386. [Google Scholar] [CrossRef]
- Cao, G.; Lu, Q.; Zhang, L.; Guo, F.; Liang, G.; Wu, K.; Wyckhuys, K.A.G.; Guo, Y. Toxicity of Chlorantraniliprole to Cry1Ac-Susceptible and Resistant Strains of Helicoverpa Armigera. Pestic. Biochem. Physiol. 2010, 98, 99–103. [Google Scholar] [CrossRef]
- Liu, Z.-K.; Li, X.-L.; Tan, X.-F.; Yang, M.-F.; Idrees, A.; Liu, J.-F.; Song, S.-J.; Shen, J. Sublethal Effects of Emamectin Benzoate on Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Agriculture 2022, 12, 959. [Google Scholar] [CrossRef]
- Singh, J.P.; Marwaha, K.K. Effect of Sublethal Concentrations of Some Insecticides on Growth and Development of Maize Stalk Borer, Chilo Partellus (Swinhoe) Larvae. Shashpa 2000, 7, 181–186. [Google Scholar]
- Smagghe, G.; Tirry, L. Insect Midgut as a Site for Insecticide Detoxification and Resistance. In Biochemical Sites of Insecticide Action and Resistance; Springer: Berlin/Heidelberg, Germany, 2001; pp. 293–321. [Google Scholar]
- Cutler, G.C. Insects, Insecticides and Hormesis: Evidence and Considerations for Study. Dose-Response 2013, 11, 154–177. [Google Scholar] [CrossRef]
- Haynes, K.F. Sublethal Effects of Neurotoxic Insecticides on Insect Behavior. Annu. Rev. Entomol. 1988, 33, 149–168. [Google Scholar] [CrossRef]
- Toscano, L.C.; Fernandes, M.A.; Rota, M.; Maruyama, W.I.; Andrade, J.V. híBridos de Milho Frente Ao Ataque De Spodoptera frugiperda em Associação Com Adubação Silicatada E O Efeito Sobre O Predador Doru Luteipes. Rev. Agric. Neotrop. 2016, 3, 51–55. [Google Scholar] [CrossRef]
- Teke, M.A.; Mutlu, Ç. Insecticidal and Behavioral Effects of Some Plant Essential Oils against Sitophilus Granarius L. and Tribolium Castaneum (Herbst). J. Plant Dis. Prot. 2021, 128, 109–119. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, Q.; Tan, Y.; Zheng, Q.; Yan, W.; Yang, S.; Xu, H.; Zhang, Z. The Toxicity and Field Efficacy of Chlorantraniliprole against Spodoptera frugiperda. J. Environ. Entomol. 2019, 41, 782–788. [Google Scholar]
- Li, X.; Jiang, H.; Wu, J.; Zheng, F.; Xu, K.; Lin, Y.; Zhang, Z.; Xu, H. Drip Application of Chlorantraniliprole Effectively Controls Invasive Spodoptera frugiperda (Lepidoptera: Noctuidae) and Its Distribution in Maize in China. Crop Prot. 2021, 143, 105474. [Google Scholar] [CrossRef]
- Pes, M.P.; Melo, A.A.; Stacke, R.S.; Zanella, R.; Perini, C.R.; Silva, F.M.A.; Carús Guedes, J.V. Translocation of Chlorantraniliprole and Cyantraniliprole Applied to Corn as Seed Treatment and Foliar Spraying to Control Spodoptera frugiperda (Lepidoptera: Noctuidae). PLoS ONE 2020, 15, e0229151. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Rui, C.; Wang, L.; Huang, W.; Zhu, J.; Ji, X.; Yang, Q.; Liang, P.; Yuan, H.; Cui, L. Comparative Toxicity and Joint Effects of Chlorantraniliprole and Carbaryl Against the Invasive Spodioptera Frugiperda (Lepidoptera: Noctuidae). J. Econ. Entomol. 2022, 115, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Altaf, N.; Arshad, M.; Majeed, M.Z.; Ullah, M.I.; Latif, H.; Zeeshan, M.; Yousuf, G.; Afzal, M. Comparative Effectiveness of Chlorantraniliprole and Neem Leaf Extract against Fall Armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Sarhad J. Agric. 2022, 38, 833–840. [Google Scholar]
- Ahn, J.J.; Choi, K.S. Population Parameters and Growth of Riptortus Pedestris (Fabricius) (Hemiptera: Alydidae) under Fluctuating temperature. Insects 2022, 13, 113. [Google Scholar] [CrossRef] [PubMed]
- Berber, G.; Birgücü, A.K. Effects of Two Different Isolates of Entomopathogen Fungus, Beauveria Bassiana (Balsamo) Vuillemin on Myzus Persicae Sulzer (Hemiptera: Aphididae). Tarım Bilim. Derg. 2022, 28, 121–132. [Google Scholar] [CrossRef]
- Idrees, A.; Qadir, Z.A.; Akutse, K.S.; Afzal, A.; Hussain, M.; Islam, W.; Waqas, M.S.; Bamisile, B.S.; Li, J. Effectiveness of Entomopathogenic Fungi on Immature Stages and Feeding Performance of Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) Larvae. Insects 2021, 12, 1044. [Google Scholar] [CrossRef]
- Idrees, A.; Afzal, A.; Qadir, Z.A.; Li, J. Bioassays of Beauveria Bassiana Isolates against the Fall Armyworm, Spodoptera frugiperda. J. Fungi 2022, 8, 717. [Google Scholar] [CrossRef]
- Younas, H.; Razaq, M.; Farooq, M.O.; Saeed, R. Host Plants of Phenacoccus Solenopsis (Tinsley) Affect Parasitism of Aenasius Bambawalei (Hayat). Phytoparasitica 2022, 50, 669–681. [Google Scholar] [CrossRef]
- Abdel-Khalek, A.A.; Momen, F.M. Biology and Life Table Parameters of Proprioseiopsis Lindquisti on Three Eriophyid Mites (Acari: Phytoseiidae: Eriophyidae). Persian J. Acarol. 2022, 11, 59–69. [Google Scholar] [CrossRef]
- Huang, Y.-B.; Chi, H. The Age-Stage, Two-Sex Life Table with an Offspring Sex Ratio Dependent on Female Age. J. Agric. 2011, 60, 337–345. [Google Scholar]
- Chi, H. Life-Table Analysis Incorporating Both Sexes and Variable Development Rates among Individuals. Environ. Entomol. 1988, 17, 26–34. [Google Scholar] [CrossRef]
- Zheng, X.-M.; Tao, Y.-L.; Chi, H.; Wan, F.-H.; Chu, D. Adaptability of Small Brown Planthopper to Four Rice Cultivars Using Life Table and Population Projection Method. Sci. Rep. 2017, 7, 42399. [Google Scholar] [CrossRef]
- Planes, L.; Catalán, J.; Tena, A.; Porcuna, J.L.; Jacas, J.A.; Izquierdo, J.; Urbaneja, A. Lethal and Sublethal Effects of Spirotetramat on the Mealybug Destroyer, Cryptolaemus Montrouzieri. J. Pest Sci. 2013, 86, 321–327. [Google Scholar] [CrossRef]
- Sunarto, D.A. Peran Insektisida Botani Ekstrak Biji Mimba Untuk Konservasi Musuh Alami Dalam Pengelolaan Serangga Hama Kapas. J. Entomol. Indones. 2009, 6, 42. [Google Scholar] [CrossRef]
- Xie, W.; Zhi, J.; Ye, J.; Zhou, Y.; Li, C.; Liang, Y.; Yue, W.; Li, D.; Zeng, G.; Hu, C. Age-Stage, Two-Sex Life Table Analysis of Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) Reared on Maize and Kidney Bean. Chem. Biol. Technol. Agric. 2021, 8, 44. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, M.; Gao, Z.; Wang, D.; He, K.; Wang, Z. Comparison of Larval Performance and Oviposition Preference of Spodoptera frugiperda among Three Host Plants: Potential Risks to Potato and Tobacco Crops. Insect Sci. 2021, 28, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhou, C.; Long, G.; Yang, X.; Wei, Z.; Liao, Y.; Yang, H.; Hu, C. Fitness of Fall Armyworm, Spodoptera frugiperda to Three Solanaceous Vegetables. J. Integr. Agric. 2021, 20, 755–763. [Google Scholar] [CrossRef]
- He, L.; Wu, Q.; Gao, X.; Wu, K. Population Life Tables for the Invasive Fall Armyworm, Spodoptera frugiperda Fed on Major Oil Crops Planted in China. J. Integr. Agric. 2021, 20, 745–754. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, Y.; He, K.; Guo, J.; Wang, Z. Sublethal Effects of the Microbial-Derived Insecticide Spinetoram on the Growth and Fecundity of the Fall Armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 2021, 114, 1582–1587. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, H.; Fatima, A.; Khan, H.A.A. ZnO nanoparticles produced in the culture supernatant of Bacillus thuringiensis ser. israelensis affect the demographic parameters of Musca domestica using the age-stage, two-sex life table. Pest Manag. Sci. 2022, 78, 1640–1648. [Google Scholar] [CrossRef]
- Rehman, S.U.; Zhou, X.; Ali, S.; Rasheed, M.A.; Islam, Y.; Hafeez, M.; Sohail, M.A.; Khurram, H. Predatory Functional Response and Fitness Parameters of Orius Strigicollis Poppius When Fed Bemisia Tabaci and Trialeurodes Vaporariorum as Determined by Age-Stage, Two-Sex Life Table. PeerJ 2020, 8, e9540. [Google Scholar] [CrossRef] [PubMed]
- Alinejad, M.; Kheradmand, K.; Fathipour, Y. Demographic Analysis of Sublethal Effects of Propargite on Amblyseius Swirskii (Acari: Phytoseiidae): Advantages of Using Age-Stage, Two Sex Life Table in Ecotoxicological Studies. Syst. Appl. Acarol. 2020, 25, 906–917. [Google Scholar]
- Shahzad, M.F.; Idrees, A.; Afzal, A.; Iqbal, J.; Qadir, Z.A.; Khan, A.A.; Ullah, A.; Li, J. RNAi-Mediated Silencing of Putative Halloween Gene Phantom Affects the Performance of Rice Striped Stem Borer, Chilo Suppressalis. Insects 2022, 13, 731. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.S.; Idrees, A.; Majeed, M.Z.; Majeed, M.I.; Shehzad, M.Z.; Ullah, M.I.; Afzal, A.; Li, J. Synergized Toxicity of Promising Plant Extracts and Synthetic Chemicals against Fall Armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) in Pakistan. Agronomy 2022, 12, 1289. [Google Scholar] [CrossRef]
- Qadir, Z.A.; Idrees, A.; Mahmood, R.; Sarwar, G.; Bakar, M.A.; Ahmad, S.; Raza, M.M.; Li, J. Effectiveness of Different Soft Acaricides against Honey Bee Ectoparasitic Mite Varroa destructor (Acari: Varroidae). Insects 2021, 12, 1032. [Google Scholar] [CrossRef] [PubMed]
- Idrees, A. Protein Baits, Volatile Compounds And Irradiation Influence The Expression Profiles Of Odorantbinding Protein Genes in Bactrocera dorsalis (Diptera: Tephritidae). Appl. Ecol. Environ. Res. 2017, 15, 1883–1899. [Google Scholar] [CrossRef]
- Idrees, A.; Qasim, M.; Ali, H.; Qadir, Z.A.; Idrees, A.; Bashir, M.H.; Qing, J.E. Acaricidal Potential of Some Botanicals against the Stored Grain Mites, Rhizoglyphus tritici. J. Entomol. Zool. Stud. 2016, 4, 611–617. [Google Scholar]
- Robertson, J.L.; Jones, M.M.; Olguin, E.; Alberts, B. Bioassays with Arthropods; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- SAS Institute Inc. SAS Software 9.4. TWOSEX-MSChart. SAS Inst. Inc.: Cary, NC, USA, 2014.
- Chi, H. TWOSEX-MSChart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis. Version 2022.07.25. Available online: http://140.120.197.173/Ecology/prod02.htm (accessed on 1 September 2022).
- Huang, Y.; Chi, H. Age-stage, Two-sex Life Tables of Bactrocera Cucurbitae (Coquillett) (Diptera: Tephritidae) with a Discussion on the Problem of Applying Female Age-specific Life Tables to Insect Populations. Insect Sci. 2012, 19, 263–273. [Google Scholar] [CrossRef]
- Akkopru, E.P.; Atl han, R.; Okut, H.; Chi, H. Demographic Assessment of Plant Cultivar Resistance to Insect Pests: A Case Study of the Dusky-Veined Walnut Aphid (Hemiptera: Callaphididae) on Five Walnut Cultivars. J. Econ. Entomol. 2015, 108, 378–387. [Google Scholar] [CrossRef]
- Goodman, D. Optimal Life Histories, Optimal Notation, and the Value of Reproductive Value. Am. Nat. 1982, 119, 803–823. [Google Scholar] [CrossRef]
- Chi, H.; Getz, W.M. Mass Rearing and Harvesting Based on an Age-Stage, Two-Sex Life Table: A Potato Tuberworm (Lepidoptera: Gelechiidae) Case Study. Environ. Entomol. 1988, 17, 18–25. [Google Scholar] [CrossRef]
- Yang, Y.; Li, W.; Xie, W.; Wu, Q.; Xu, B.; Wang, S.; Li, C.; Zhang, Y. Development of Bradysia Odoriphaga (Diptera: Sciaridae) as Affected by Humidity: An Age–Stage, Two-Sex, Life-Table Study. Appl. Entomol. Zool. 2015, 50, 3–10. [Google Scholar] [CrossRef]
- Harcourt, D.G. The Development and Use of Life Tables in the Study of Natural Insect Populations. Annu. Rev. Entomol. 1969, 14, 175–196. [Google Scholar] [CrossRef]
- Rozilawati, H.; Mohd Masri, S.; Tanaselvi, K.; Mohd Zahari, T.H.; Zairi, J.; Nazni, W.A.; Lee, H.L. Life Table Characteristics of Malaysian Strain Aedes Albopictus (Skuse). Serangga 2018, 22, 85–127. [Google Scholar]
- Teixeira, L.A.F.; Gut, L.J.; Wise, J.C.; Isaacs, R. Lethal and Sublethal Effects of Chlorantraniliprole on Three Species of Rhagoletis Fruit Flies (Diptera: Tephritidae). Pest Manag. Sci. 2009, 65, 137–143. [Google Scholar] [CrossRef]
- Knight, A.L.; Flexner, L. Disruption of Mating in Codling Moth (Lepidoptera: Tortricidae) by Chlorantranilipole, an Anthranilic Diamide Insecticide. Pest Manag. Sci. 2007, 63, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Zhang, S.; Shen, F.; Liu, M.; Ren, C.; Gao, X. Residual Toxicity and Sublethal Effects of Chlorantraniliprole on Plutella Xylostella (Lepidoptera: Plutellidae). Pest Manag. Sci. 2012, 68, 1184–1190. [Google Scholar] [CrossRef]
- Lutz, A.L.; Bertolaccini, I.; Scotta, R.R.; Curis, M.C.; Favaro, M.A.; Fernandez, L.N.; Sánchez, D.E. Lethal and Sublethal Effects of Chlorantraniliprole on Spodoptera Cosmioides (Lepidoptera: Noctuidae). Pest Manag. Sci. 2018, 74, 2817–2821. [Google Scholar] [CrossRef]
- Nawaz, M.; Cai, W.; Jing, Z.; Zhou, X.; Mabubu, J.I.; Hua, H. Toxicity and Sublethal Effects of Chlorantraniliprole on the Development and Fecundity of a Non-Specific Predator, the Multicolored Asian Lady Beetle, Harmonia Axyridis (Pallas). Chemosphere 2017, 178, 496–503. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Shen, A.; Wu, Y. Baseline Susceptibility of the Diamondback Moth (Lepidoptera: Plutellidae) to Chlorantraniliprole in China. J. Econ. Entomol. 2010, 103, 843–848. [Google Scholar] [CrossRef]
- Sial, A.A.; Brunner, J.F. Toxicity and Residual Efficacy of Chlorantraniliprole, Spinetoram, and Emamectin Benzoate to Obliquebanded Leafroller (Lepidoptera: Tortricidae). J. Econ. Entomol. 2010, 103, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.O.; de Souza, T.D.; Sanches, A.C.; Dias, N.P.; Desiderio, J.A.; Polanczyk, R.A. Sub-Lethal Effects of a Bt-Based Bioinsecticide on the Biological Conditioning of Anticarsia Gemmatalis. Ecotoxicology 2021, 30, 2071–2082. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.H.; Wu, Q.J.; Li, X.F.; Zhang, Y.J.; Xu, B.Y. Sublethal Effects of Spinosad on Plutella Xylostella (Lepidoptera: Yponomeutidae). Crop Prot. 2008, 27, 1385–1391. [Google Scholar] [CrossRef]
Generation | LC10 (mg/L) | LC25 (mg/L) | LC50 (mg/L) | LC90 (mg/L) | Slope ± SE | X2 | p-Value | df |
---|---|---|---|---|---|---|---|---|
First instar | ||||||||
F0 | 1.04 (0.86–1.16) | 1.21 (1.06–1.31) | 1.43 (1.32–1.51) | 1.96 (1.84–2.17) | 9.27 ± 1.05 | 33.16 | 2.07 | 16 |
F1 | 0.33 (0.26–0.42) | 0.51 (0.41–0.61) | 0.81 (0.69–0.92) | 1.90 (1.68–2.19) | 3.44 ± 0.16 | 53.50 | 3.34 | 16 |
F2 | 0.34 (0.26–0.41) | 0.52 (0.43–0.60) | 0.82 (0.72–0.93) | 1.99 (1.76–2.30) | 3.36 ± 0.14 | 58.60 | 3.66 | 16 |
Second instar | ||||||||
F0 | 1.10 (0.89–1.22) | 1.25 (1.08–1.34) | 1.44 (1.33–1.51) | 1.88 (1.76–2.15) | 11.02 ± 1.57 | 36.36 | 2.27 | 16 |
F1 | 0.37 (0.27.46) | 0.54 (0.43–0.65) | 0.84 (0.71–0.96) | 1.92 (1.69–2.22) | 3.58 ± 0.17 | 59.27 | 3.70 | 16 |
F2 | 0.36 (0.26–0.45) | 0.54 (0.42–0.64) | 0.83 (0.70–0.96) | 1.92 (1.69–2.23) | 3.54 ± 0.17 | 61.57 | 3.84 | 16 |
Third instar | ||||||||
F0 | 1.08 (0.85–1.30) | 1.55 (1.30–1.76) | 2.29 (2.06–2.50) | 4.83 (4.41–5.43) | 3.95 ± 0.25 | 40.88 | 2.55 | 16 |
F1 | 0.99 (0.76–1.19) | 1.42 (1.18–1.63) | 2.13 (1.90–2.33) | 4.58 (4.20–5.12) | 3.86 ± 0.26 | 36.34 | 2.27 | 16 |
F2 | 0.65 (0.51–0.78) | 1.06 (0.90–1.21) | 1.85 (1.66–2.03) | 5.23 (4.60–6.13) | 2.83 ± 0.12 | 54.21 | 3.38 | 16 |
Fourth instar | ||||||||
F0 | 0.88 (0.69–1.06) | 1.44 (1.22–1.63) | 2.47 (2.23–2.73) | 6.95 (5.94–8.53) | 2.86 ± 0.13 | 65.39 | 4.08 | 16 |
F1 | 0.80 (0.62–0.96) | 1.33 (1.12–1.51) | 2.32 (2.08–2.56) | 6.73 (5.76–8.25) | 2.77 ± 0.12 | 63.76 | 3.98 | 16 |
F2 | 0.81 (0.63–0.97) | 1.34 (1.14–1.52) | 2.35 (2.12–2.59) | 6.83 (5.85–8.35) | 2.76 ± 0.13 | 61.22 | 3.82 | 16 |
Fifth instar | ||||||||
F0 | 1.39 (1.23–1.53) | 1.97 (1.81–2.11) | 2.89 (2.75–3.03) | 6.02 (5.66–6.48) | 4.03 ± 0.25 | 14.38 | 0.89 | 16 |
F1 | 1.49 (1.31–1.65) | 2.05 (1.88–2.21) | 2.93 (2.77–3.07) | 5.74 (5.40–6.18) | 4.38 ± 0.30 | 16.86 | 1.05 | 16 |
F2 | 1.48 (1.27–1.66) | 2.05 (1.85–2.23) | 2.96 (2.79–3.12) | 5.94 (5.53–6.48) | 4.24 ± 0.30 | 20.33 | 1.27 | 16 |
Sixth instar | ||||||||
F0 | 1.41 (1.07–1.69) | 2.34 (2.02–2.60) | 4.11 (3.97–4.54) | 12.01 (9.49–17.26) | 2.75 ± 0.22 | 38.21 | 2.38 | 16 |
F1 | 1.05 (0.82–1.27) | 2.00 (1.73–2.25) | 4.08 (3.65–4.64) | 15.77 (12.09–22.86) | 2.18 ± 0.12 | 47.73 | 2.98 | 16 |
F2 | 1.31 (0.93–1.62) | 2.25 (1.885–2.54) | 4.10 (3.73–4.62) | 12.82 (9.75–20.07) | 2.59 ± 0.21 | 48.36 | 3.02 | 16 |
Conc. | Duration (Egg- Larva) (Days) | 1st Instar | 2nd Instar | 3rd Instar | 4th Instar | 5th Instar | 6th Instar | Pupa |
---|---|---|---|---|---|---|---|---|
F0 | ||||||||
Control | 2.80 ± 0.04 | 3.18 ± 0.04 | 1.26 ± 0.04 | 1.32 ± 0.04 | 1.26 ± 0.04 | 2.19 ± 0.04 | 3.12 ± 0.03 | 8.68 ± 0.06 |
LC10 | 3.28 ± 0.04 | 3.42 ± 0.05 | 1.40 ± 0.05 | 1.51 ± 0.05 | 1.56 ± 0.05 | 2.53 ± 0.05 | 3.69 ± 0.04 | 9.57 ± 0.07 |
LC25 | 3.65 ± 0.04 | 3.93 ± 0.02 | 1.92 ± 0.02 | 1.80 ± 0.04 | 1.82 ± 0.03 | 2.81 ± 0.04 | 3.93 ± 0.02 | 10.17 ± 0.07 |
p-value | 0.21 | 0.000124 | 0.0152 | 0.088 | 0.0037 | 0.013 | 0.0009 | 0.243 |
F | 6.40 | 8.92 | 4.43 | 9.75 | 2.78 | 1.85 | 4.42 | 1.39 |
df | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 |
F1 | ||||||||
Control | 2.68 ± 0.05 | 3.12 ± 0.03 | 1.23 ± 0.04 | 1.31 ± 0.04 | 1.28 ± 0.04 | 2.27 ± 0.04 | 3.10 ± 0.03 | 8.65 ± 0.07 |
LC10 | 3.45 ± 0.05 | 3.48 ± 0.05 | 1.38 ± 0.05 | 1.52 ± 0.05 | 1.40 ± 0.05 | 2.62 ± 0.05 | 3.70 ± 0.04 | 9.77 ± 0.08 |
LC25 | 3.87 ± 0.03 | 3.95 ± 0.02 | 1.89 ± 0.03 | 1.86 ± 0.03 | 1.93 ± 0.02 | 2.86 ± 0.03 | 3.95 ± 0.02 | 9.94 ± 0.09 |
p-value | 0.205 | 0.066 | 0.010 | 0.024 | 0.384 | 0.011 | 0.26 | 0.646 |
F | 5.45 | 2.79 | 4.21 | 9.56 | 3.83 | 1.89 | 1.23 | 0.51 |
df | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 |
F2 | ||||||||
Control | 2.54 ± 0.05 | 3.07 ± 0.02 | 1.07 ± 0.02 | 1.36 ± 0.05 | 1.25 ± 0.04 | 2.19 ± 0.04 | 3.07 ± 0.02 | 8.79 ± 0.06 |
LC10 | 3.39 ± 0.05 | 3.22 ± 0.04 | 1.45 ± 0.05 | 1.50 ± 0.50 | 1.54 ± 0.05 | 2.62 ± 0.05 | 3.55 ± 0.05 | 9.65 ± 0.07 |
LC25 | 3.76 ± 0.04 | 3.92 ± 0.02 | 1.93 ± 0.02 | 1.88 ± 0.03 | 1.90 ± 0.03 | 2.87 ± 0.03 | 3.93 ± 0.02 | 9.88 ± 0.08 |
p-value | 0.65 | 0.123 | 0.989 | 0.94 | 0.007 | 0.068 | 0.20 | 0.130 |
F | 0.63 | 0.28 | 4.25 | 10.70 | 2.48 | 3.14 | 1.93 | 0.36 |
df | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 |
Concentration | Pre-Oviposition Period (Days) | Fecundity | Female Adult Longevity (Days) |
---|---|---|---|
F0 | |||
Control | 3.36 ± 0.065 | 394.53 ± 5.74 | 4.519 ± 0.067 |
LC10 | 3.53 ± 0.068 | 341.73 ± 6.17 | 4.538 ± 0.068 |
LC25 | 3.65 ± 0.065 | 337.15 ± 6.19 | 4.576 ± 0.067 |
p-value | 0.523 | 0.991 | 0.368 |
F | 0.955 | 1.738 | 0.412 |
F1 | |||
Control | 3.30 ± 0.063 | 368.71 ± 6.16 | 4.480 ± 0.067 |
LC10 | 3.42 ± 0.067 | 343.38 ± 5.013 | 4.384 ± 0.066 |
LC25 | 3.59 ± 0.067 | 346.76 ± 5.92 | 4.461 ± 0.068 |
p-value | 0.0032 | 0.172 | 0.468 |
F | 3.27 | 1.390 | 0.095 |
F2 | |||
Control | 3.28 ± 0.062 | 368.38 ± 5.535 | 4.384 ± 0.066 |
LC10 | 3.44 ± 0.068 | 361.80 ± 5.799 | 4.423 ± 0.067 |
LC25 | 3.69 ± 0.063 | 329.07 ± 5.177 | 4.403 ± 0.067 |
p-value | 0.00040 | 0.284 | 0.943 |
F | 3.61 | 0.295 | 1.894 |
F0 | |||
---|---|---|---|
LC10 | Control | LC25 | |
r | 0.172 ± 0.0036 ab | 0.194 ± 0.0040 a | 0.160 ± 0.0034 b |
λ | 1.188 ± 0.0043 ab | 1.215 ± 0.0048 a | 1.174 ± 0.0039 b |
R0 | 185.544 ± 18.16 b | 206.19 ± 21.006 a | 196.02 ± 18.074 b |
T | 30.259 ± 0.26 a | 27.347 ± 0.184 b | 32.903 ± 0.375 a |
GRR | 196.990 ± 18.24 b | 214.849 ± 21.13 a | 211.319 ± 18.43 b |
F1 | |||
r | 0.170 ± 0.0036 ab | 0.199 ± 0.0036 a | 0.157 ± 0.0029 ab |
λ | 1.186 ± 0.0042 ab | 1.220 ± 0.0044 a | 1.170 ± 0.0034 ab |
R0 | 182.322 ± 18.26 b | 213.33 ± 19.597 a | 196.122 ± 18.34 b |
T | 30.472 ± 0.232 a | 26.866 ± 0.173 b | 33.564 ± 0.153 a |
GRR | 198.209 ± 18.702 b | 220.959 ± 19.69 a | 215.759 ± 18.82 ab |
F2 | |||
r | 0.183 ± 0.0049 b | 0.211 ± 0.0062 a | 0.158 ± 0.0029 b |
λ | 1.201 ± 0.0059 a | 1.235 ± 0.0077 a | 1.171 ± 0.0034 b |
R0 | 213.77 ± 19.11 ab | 217.34 ± 19.35 a | 193.83 ± 17.30 b |
T | 29.26 ± 0.599 a | 25.42 ± 0.601 b | 33.266 ± 0.265 a |
GRR | 226.73 ± 19.48 ab | 229.19 ± 19.65 a | 201.04 ± 17.47 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhtar, Z.R.; Afzal, A.; Idrees, A.; Zia, K.; Qadir, Z.A.; Ali, S.; Haq, I.U.; Ghramh, H.A.; Niaz, Y.; Tahir, M.B.; et al. Lethal, Sub-Lethal and Trans-Generational Effects of Chlorantraniliprole on Biological Parameters, Demographic Traits, and Fitness Costs of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2022, 13, 881. https://doi.org/10.3390/insects13100881
Akhtar ZR, Afzal A, Idrees A, Zia K, Qadir ZA, Ali S, Haq IU, Ghramh HA, Niaz Y, Tahir MB, et al. Lethal, Sub-Lethal and Trans-Generational Effects of Chlorantraniliprole on Biological Parameters, Demographic Traits, and Fitness Costs of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects. 2022; 13(10):881. https://doi.org/10.3390/insects13100881
Chicago/Turabian StyleAkhtar, Zunnu Raen, Ayesha Afzal, Atif Idrees, Khuram Zia, Ziyad Abdul Qadir, Shahbaz Ali, Inzamam Ul Haq, Hamed A. Ghramh, Yasir Niaz, Muhammad Bilal Tahir, and et al. 2022. "Lethal, Sub-Lethal and Trans-Generational Effects of Chlorantraniliprole on Biological Parameters, Demographic Traits, and Fitness Costs of Spodoptera frugiperda (Lepidoptera: Noctuidae)" Insects 13, no. 10: 881. https://doi.org/10.3390/insects13100881
APA StyleAkhtar, Z. R., Afzal, A., Idrees, A., Zia, K., Qadir, Z. A., Ali, S., Haq, I. U., Ghramh, H. A., Niaz, Y., Tahir, M. B., Arshad, M., & Li, J. (2022). Lethal, Sub-Lethal and Trans-Generational Effects of Chlorantraniliprole on Biological Parameters, Demographic Traits, and Fitness Costs of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects, 13(10), 881. https://doi.org/10.3390/insects13100881