The Fallacy of Year-Round Breeding in Polyphagous Tropical Fruit Flies (Diptera: Tephritidae): Evidence for a Seasonal Reproductive Arrestment in Bactrocera Species
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Phenology of Queensland Fruit Fly
1.1.1. Background I: Queensland Fruit Fly and Its Temperate ‘Overwintering’
1.1.2. Background II: Queensland Fruit Fly and Its Tropical Phenology
1.2. So If Its Not Temperature, What Is It? Evidence for Reproductive Diapause in B. tryoni
1.2.1. Native Habitat Conditions
1.2.2. Demography of the Queensland Fruit Fly
1.2.3. So What Do We Think Is Happening?
1.2.4. What Don’t We Know?
1.3. Is There a Reproductive Arrest in Other Dacine Fruit Fly Species?
2. Why Is All This Important?
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drew, R.A.I. Biogeography and speciation in the Dacini (Diptera: Tephritidae: Dacinae). Bishop Mus. Bull. Entomol. 2004, 12, 165–178. [Google Scholar]
- Papadopoulos, N. Fruit fly invasion: Historical, biological, economic aspects and management. In Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies; Shelly, T., Epsky, N., Jang, E.B., Reyes-Flores, J., Vargas, R., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 219–252. [Google Scholar]
- Ekesi, S.; Mohamed, S.A.; De Meyer, M. (Eds.) Fruit Fly Research and Development in Africa—Towards a Sustainable Management Strategy to Improve Horticulture; Springer: Basel, Switzerland, 2016. [Google Scholar]
- Ekesi, S.; De Meyer, M.; Mohamed, S.A.; Virgilio, M.; Borgemeister, C. Taxonomy, ecology, and management of native and exotic fruit fly species in Africa. Annu. Rev. Entomol. 2016, 61, 219–238. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.; Gilioli, G.; Behring, C.; Candiani, D.; Gogin, A.; Kaluski, T.; Kinkar, M.; Mosbach-Schulz, O.; Neri, F.M.; Preti, S.; et al. Bactrocera dorsalis Pest Report to Support Ranking of EU Candidate Priority Pests; EN-1641; European Food Safety Authority: Palma, Italy, 2019. [Google Scholar]
- Zhao, Z.H.; Hui, C.; Plant, R.E.; Su, M.; Papadopoulos, N.T.; Carpenter, T.E.; Li, Z.H.; Carey, J.R. The failure of success: Cyclic recurrences of a globally invasive pest. Ecol. Appl. 2019, 30, e01991. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, M.; Benedetta, F.d.; Gargiulo, S.; Griffo, R.; Nugnes, F.; Bernardo, U. Bactrocera dorsalis in Campania: Insediamento o incurione? Entomata 2020, 13, 83–92. [Google Scholar]
- De Villiers, M.; Hattingh, V.; Kriticos, D.J.; Brunel, S.; Vayssières, J.F.; Sinzogan, A.; Billah, M.; Mohamed, S.A.; Mwatawala, M.; Abdelgader, H.; et al. The potential distribution of Bactrocera dorsalis: Considering phenology and irrigation patterns. Bull. Entomol. Res. 2016, 106, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Wang, C.; Zhao, Z.; Pan, X.; Li, Z. Climate change impacts on the global potential geographical distribution of the agricultural invasive pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Climatic Chang. 2019, 155, 145–156. [Google Scholar] [CrossRef]
- Dominiak, B.C.; Mapson, R. Revised distribution of Bactrocera tryoni in eastern Australia and effect on possible incursions of Mediterranean fruit fly: Development of Australia’s eastern trading block. J. Econ. Entomol. 2017, 110, 2459–2465. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, D.-J.; Xu, Y.-J.; Wang, L.; Cheng, D.-F.; Qi, Y.-X.; Zeng, L.; Lu, Y. Invasion, expansion, and control of Bactrocera dorsalis (Hendel) in China. J. Integr.Agric. 2019, 18, 771–787. [Google Scholar] [CrossRef]
- Ni, W.L.; Li, Z.H.; Chen, H.J.; Wan, F.H.; Qu, W.W.; Zhang, Z.; Kriticos, D.J. Including climate change in pest risk assessment: The peach fruit fly, Bactrocera zonata (Diptera: Tephritidae). Bull. Entomol. Res. 2012, 102, 173–183. [Google Scholar] [CrossRef]
- Zingore, K.M.; Sithole, G.; Abdel-Rahman, E.M.; Mohamed, S.A.; Ekesi, S.; Tanga, C.M.; Mahmoud, M.E.E. Global risk of invasion by Bactrocera zonata: Implications on horticultural crop production under changing climatic conditions. PLoS ONE 2020, 15, e0243047. [Google Scholar] [CrossRef]
- Castrignanὸ, A.; Boccaccio, L.; Cohen, Y.; Nestel, D.; Kounatidis, I.; Papadopoulos, N.T.; De Benedetto, D.; Mavragani-Tsipidou, P. Spatio-temporal population dynamics and area-wide delineation of Bactrocera oleae monitoring zones using multi-variate geostatistics. Precision Agric. 2012, 13, 421–441. [Google Scholar] [CrossRef]
- Kean, J.M.; Stringer, L.D. Optimising the seasonal deployment of surveillance traps for detection of incipient pest invasions. Crop Prot. 2019, 123, 36–44. [Google Scholar] [CrossRef]
- Garcia Adeva, J.J.; Botha, J.H.; Reynolds, M. A simulation modelling approach to forecast establishment and spread of Bactrocera fruit flies. Ecol. Model. 2012, 227, 93–108. [Google Scholar] [CrossRef]
- van Klinken, R.; Murray, J.V.; Garcia, J.N.; Clarke, A.R. Scale-appropriate spatial modelling to support area-wide management of a polyphagous fruit fly (Diptera: Tephritidae). Ann. Appl. Biol. 2019, 175, 350–362. [Google Scholar] [CrossRef]
- Grechi, I.; Preterre, A.-L.; Caillat, A.; Chiroleu, F.; Ratnadass, A. Linking mango infestation by fruit flies to fruit maturity and fly pressure: A prerequisite to improve fruit fly damage management via harvest timing optimization. Crop Prot. 2021, 146, 105663. [Google Scholar] [CrossRef]
- Vargas, R.I.; Piñero, J.C.; Leblanc, L. An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the Pacific region. Insects 2015, 6, 97–318. [Google Scholar] [CrossRef]
- Vargas, R.I.; Piñero, J.C.; Leblanc, L.; Manoukis, N.C.; Mau, R.F.L. Area-wide management of fruit flies (Diptera: Tephritidae) in Hawaii. In Fruit Fly Research and Development in Africa—Towards a Sustainable Management Strategy to Improve Horticulture; Ekesi, S., Mohamed, S.A., Meyer, M.D., Eds.; Springer International Publishing: Basel, Switzerland, 2016; pp. 673–693. [Google Scholar]
- Meats, A. The bioclimatic potential of the Queensland fruit fly, Dacus tryoni, in Australia. Proc. Ecol. Soc. Aust. 1981, 11, 151–161. [Google Scholar]
- Yonow, T.; Zalucki, M.P.; Sutherst, R.W.; Dominiak, B.C.; Maywald, G.F.; Maelzer, D.A.; Kriticos, D.J. Modelling the population dynamics of the Queensland fruit fly, Bactrocera (Dacus) tryoni: A cohort-based approach incorporating the effects of weather. Ecol. Model. 2004, 173, 9–30. [Google Scholar] [CrossRef]
- Peng, C.; Hui, Y.; Jianhong, L. Population dynamics of Bactrocera dorsalis (Diptera: Tephritidae) and analysis of the factors influencing the population in Ruili, Yunnan Province, China. Acta Ecol. Sinica 2006, 26, 1809–2801. [Google Scholar]
- Fiaboe, K.K.M.; Kekeunou, S.; Nanga, S.N.; Kuate, A.F.; Tonnang, H.E.Z.; Gnanvossou, D.; Hanna, R. Temperature-based phenology model to predict the development, survival, and reproduction of the oriental fruit fly Bactrocera dorsalis. J. Therm. Biol. 2021, 97, 102877. [Google Scholar]
- Ibrahim, E.A.; Salifu, D.; Mwalili, S.; Dubois, T.; Collins, R.; Tonnang, H.E.Z. An expert system for insect pest population dynamics prediction. Comp. Electron. Agric. 2022, 198, 107124. [Google Scholar] [CrossRef]
- Jiang, J.A.; Syue, C.H.; Wang, C.H.; Liao, M.S.; Shieh, J.S.; Wang, J.C. Precisely forecasting population dynamics of agricultural pests based on an interval type-2 fuzzy logic system: Case study for oriental fruit flies and the tobacco cutworms. Precision Agric. 2022, 1–31. [Google Scholar] [CrossRef]
- Susanto, A.; Permana, A.D.; Subahar, T.S.; Soesilohadi, R.C.H.; Leksono, A.S.; Fernandes, A.A.R. Population dynamics and projections of fruit flies Bactrocera dorsalis and B. carambolae in Indonesian mango plantation. Agric. Nat. Res. 2022, 56, 169–179. [Google Scholar]
- Wolda, H. “Long-term” stability of tropical insect populations. Res. Pop. Ecol. 1983, 25 (Suppl. 3), 112–126. [Google Scholar] [CrossRef]
- Wolda, H. Insect Seasonality: Why? Annu. Rev. Ecol. Syst. 1988, 19, 1–18. [Google Scholar] [CrossRef]
- Braby, M. Seasonal-changes in relative abundance and spatial-distribution of Australian lowland tropical Satyrine butterflies. Aust. J. Zool. 1995, 43, 209–229. [Google Scholar] [CrossRef]
- Murphy, P.G.; Lugo, A.E. Ecology of tropical dry forest. Annu. Rev. Ecol. Syst. 1986, 17, 67–88. [Google Scholar] [CrossRef]
- Boulter, S.L.; Kitching, R.L.; Howlett, B.G. Family, visitors and the weather: Patterns of flowering in tropical rain forests of northern Aust. J. Ecol. 2006, 94, 369–382. [Google Scholar] [CrossRef]
- Wolda, H. Seasonal fluctuations in rainfall, food and abundance of tropical insects. J. Anim. Ecol. 1978, 47, 369–381. [Google Scholar] [CrossRef]
- Frith, C.B.; Frith, D.W. Seasonality of insect abundance in an Australian upland tropical rainforest. Aust. J. Ecol. 1985, 10, 237–248. [Google Scholar] [CrossRef]
- Williams, S.E.; Middleton, J. Climatic seasonality, resource bottlenecks, and abundance of rainforest birds: Implications for global climate change. Divers. Distrib. 2007, 14, 69–77. [Google Scholar] [CrossRef]
- Hodek, I.; Hodková, M. Multiple role of temperature during insect diapause: A review. Entomol. Exp. Appl. 1988, 49, 153–165. [Google Scholar] [CrossRef]
- Koštál, V. Eco-physiological phases of insect diapause. J. Insect Physiol. 2006, 52, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Hahn, D.A.; Denlinger, D.L. Energetics of insect diapause. Annu. Rev. Entomol. 2011, 56, 103–121. [Google Scholar] [CrossRef]
- Wolda, H.; Denlinger, D.L. Diapause in a large aggregation of a tropical beetle. Ecol. Entomol. 1984, 9, 217–230. [Google Scholar] [CrossRef]
- Denlinger, D.L. Dormancy in tropical insects. Annu. Rev. Entomol. 1986, 31, 239–264. [Google Scholar] [CrossRef]
- Jones, R.E. Reproductive strategies for the seasonal tropics. Internat. J. Trop. Insect Sci. 1987, 8, 515–521. [Google Scholar] [CrossRef]
- Singtripop, T.; Wanichacheewa, S.; Tsuzuki, S.; Sakurai, S. Larval growth and diapause in a tropical moth, Omphisa fuscidentalis Hampson. Zool. Sci. 1999, 16, 725–733. [Google Scholar] [CrossRef]
- Claret, J.; Carton, Y. Diapause in a tropical species, Cothonaspis boulardi (Parasitic Hymenoptera). Oecologia 1980, 45, 32–34. [Google Scholar] [CrossRef]
- Denlinger, D.L. Pupal diapause in tropical flesh flies: Environmental and endocrine regulation, metabolic rate and genetic selection. Biol. Bull. 1979, 156, 31–46. [Google Scholar] [CrossRef]
- Zonato, V.; Collins, L.; Pegoraro, M.; Tauber, E.; Kyriacou, C.P. Is diapause an ancient adaptation in Drosophila? J. Insect Physiol. 2017, 98, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Halali, S.; Brakefield, P.M.; Collins, S.C.; Brattström, O. To mate, or not to mate: The evolution of reproductive diapause facilitates insect radiation into African savannahs in the Late Miocene. J. Anim. Ecol. 2019, 89, 1230–1241. [Google Scholar] [CrossRef] [PubMed]
- Drew, R.A.I. The tropical fruit flies (Diptera: Tephritidae: Dacinae) of the Australasian and Oceanian regions. Mem. Qld. Mus. 1989, 26, 1–521. [Google Scholar]
- Sultana, S.; Baumgartner, J.B.; Dominiak, B.C.; Royer, J.E.; Beaumont, L.J. Potential impacts of climate change on habitat suitability for the Queensland fruit fly. Sci. Rep. 2017, 7, 13025. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.R.; Merkel, K.; Hulthen, A.D.; Schwarzmueller, F. Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) overwintering: An overview. Austral Entomol. 2019, 58, 3–8. [Google Scholar] [CrossRef]
- Fletcher, B.S. Temperature-regulated changes in the ovaries of overwintering females of the Queensland fruit fly, Dacus tryoni. Aust. J. Zool. 1975, 23, 91–102. [Google Scholar] [CrossRef]
- Fletcher, B.S. The overwintering survival of adults of the Queensland fruit fly, Dacus tryoni, under natural conditions. Aust. J. Zool. 1979, 27, 403–411. [Google Scholar] [CrossRef]
- Fletcher, B.S. The overwintering strategy of the Queensland fruit fly, Dacus tryoni. In Fruit Flies: Proceedings of the Second International Symposium; Elsevier Science Publications: Colymbari, Crete, Greece, 1986; pp. 375–382. [Google Scholar]
- Meats, A. The abolition by low ambient temperature of tarsal inhibition of flight in certain Diptera. Search 1973, 4, 496–497. [Google Scholar]
- Meats, A. Rapid acclimatization to low temperature in the Queensland fruit fly, Dacus tryoni. J. Insect Physiol. 1973, 19, 1903–1911. [Google Scholar] [CrossRef]
- Meats, A. Developmental and long term acclimation to cold by the Queensland fruit fly (Dacus tryoni) at constant and fluctuating temperatures. J. Insect Physiol. 1976, 22, 1013–1019. [Google Scholar] [CrossRef]
- Meats, A. Seasonal trends in acclimatization to cold in the Queensland fruit fly (Dacus tryoni, Diptera) and their prediction by means of a physiological model fed with climatological data. Oecologia 1976, 26, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Meats, A. Thresholds for cold-torpor and cold-survival in the Queensland fruit fly, and predictability of rates of change in survival threshold. J. Insect Physiol. 1976, 22, 1505–1509. [Google Scholar] [CrossRef]
- Meats, A.; Khoo, K.C. The dynamics of ovarian maturation and oocyte resorption in the Queensland fruit fly, Dacus tryoni, in daily rhythmic and constant temperature regimes. Physiol. Entomol. 1976, 1, 213–221. [Google Scholar] [CrossRef]
- Meats, A. Acclimation, activity levels and survival. In Fruit Flies: Biology, Natural Enemies and Control; Robinson, A.S., Hooper, G.H.S., Eds.; Elsevier: Amsterdam, The Netherlands, 1989; pp. 231–237. [Google Scholar]
- Meats, A.; Fitt, G.P. Survival of repeated frosts by the Queensland fruit fly, Dacus tryoni: Experiments in laboratory simulated climates with either step or ramp fluctuations in temperature. Entomol. Exp. Appl. 1987, 45, 9–16. [Google Scholar] [CrossRef]
- Muthuthantri, S.; Maelzer, D.; Zalucki, M.P.; Clarke, A.R. The seasonal phenology of Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) in Queensland. Aust. J. Entomol. 2010, 49, 221–233. [Google Scholar] [CrossRef]
- Lloyd, A.C.; Hamacek, E.L.; Kopittke, R.A.; Peek, T.; Wyatt, P.M.; Neale, C.J.; Eelkema, M.; Gu, H.N. Area-wide management of fruit flies (Diptera: Tephritidae) in the Central Burnett district of Queensland, Australia. Crop Prot. 2010, 29, 462–469. [Google Scholar] [CrossRef]
- Subramaniam, S.; Jackson, K.; Lloyd, A.; Rosemary, K.; Hamacek, E.; Kreymborg, D. Alternative Fruit Fly Control and Market Access for Capsicums and Tomatoes: A System Approach for Tomato and Capsicum Production in Bowen; Final Report HAL Project VG06028; Agri-Science Queensland; Department of Employment, Economic Development and Innovation: Brisbane, Australia, 2011. [Google Scholar]
- Drew, R.A.I.; Zalucki, M.P.; Hooper, G. Ecological studies of eastern Australian fruit flies (Diptera: Tephritidae) in their endemic habitat. I. Temporal variation in abundance. Oecologia 1984, 64, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Yonow, T.; Sutherst, R.W. The geographical distribution of the Queensland fruit fly, Bactrocera (Dacus) tryoni, in relation to climate. Aust. J. Agric. Res. 1998, 49, 935–953. [Google Scholar]
- Streatfield, C. Demography and population genetic structure of Uromys caudimaculatus. Unpublished. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia, 2009. [Google Scholar]
- Gallego, D.; García-Herrera, R.; Peña-Ortiz, C.; Ribera, P. The steady enhancement of the Australian Summer Monsoon in the last 200 years. Sci. Rep. 2017, 7, 16166. [Google Scholar] [CrossRef] [Green Version]
- Cooper, W.; Cooper, W.T. Australian Rainforest Fruits: A Field Guide; CSIRO Publishing: Collingwood, Victoria, 2013. [Google Scholar]
- Innis, G.J. Feeding ecology of fruit pigeons in subtropical rainforests of South-Eastern Queensland. Aust. Wildlife Res. 1989, 16, 365–394. [Google Scholar] [CrossRef]
- Drew, R.A.I.; Courtice, A.C.; Teakle, D.S. Bacteria as a natural source of food for adult fruit flies (Diptera: Tephritidae). Oecologia 1983, 60, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Deutscher, A.T.; Reynolds, O.L.; Chapman, T.A. Yeast: An overlooked component of Bactrocera tryoni (Diptera: Tephritidae) larval gut microbiota. J. Econ. Entomol. 2017, 110, 298–300. [Google Scholar] [CrossRef] [PubMed]
- Akami, M.; Andongma, A.A.; Zhengzhong, C.; Nan, J.; Khaeso, K.; Jurkevitch, E.; Niu, C.-Y.; Yuval, B. Intestinal bacteria modulate the foraging behavior of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae). PLoS ONE 2019, 14, e0210109. [Google Scholar] [CrossRef] [PubMed]
- de Jager, E.S.; Wehner, F.C.; Korsten, L. Microbial ecology of the mango phylloplane. Micro. Ecol. 2001, 42, 201–207. [Google Scholar] [CrossRef]
- Jumpponen, A.; Jones, K.L. Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol. 2010, 186, 496–513. [Google Scholar] [CrossRef]
- Izuno, A.; Tanabe, A.S.; Toju, H.; Yamasaki, M.; Indrioko, S.; Isagi, Y. Structure of phyllosphere fungal communities in a tropical dipterocarp plantation: A massively parallel next-generation sequencing analysis. Mycoscience 2016, 57, 171–180. [Google Scholar] [CrossRef]
- O’Loughlin, G.T.; East, R.A.; Meats, A. Survival, development rates and generation times of the Queensland fruit fly, Dacus tryoni, in a marginally favourable climate: Experiments in Victoria. Aust. J. Zool. 1984, 32, 353–361. [Google Scholar] [CrossRef]
- Tasnin, S.M.; Bode, M.; Merkel, K.; Clarke, A.R. A polyphagous, tropical insect herbivore shows strong seasonality in age-structure and longevity despite temperature and hosts not being limiting. Sci. Rep. 2021, 11, 11410. [Google Scholar] [CrossRef]
- Fanson, B.G.; Sundaralingam, S.; Jiang, L.; Dominiak, B.C.; D’Arcy, G. A review of 16 years of quality control parameters at a mass-rearing facility producing Queensland fruit fly, Bactrocera tryoni. Entomol. Exp. Appl. 2014, 151, 152–159. [Google Scholar] [CrossRef]
- Dominiak, B.C.; Sundaralingam, S.; Jiang, L.; Nicol, H.I. Longevity of mass-produced Bactrocera tryoni (Diptera: Tephritidae) held without food or water. J. Econ. Entomol. 2014, 107, 2103–2106. [Google Scholar] [CrossRef]
- Dominiak, B.C.; Gillespie, P.S.; Loecker, H.; Reid, N.; Sharma, N. Seasonal weight fluctuations in wild Queensland fruit fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) may be a survival mechanism. Crop Prot. 2021, 145, 105637. [Google Scholar] [CrossRef]
- Pritchard, G. The ecology of a natural population of Queensland fruit fly, Dacus tryoni III. The maturation of female flies in relation to temperature. Aust. J. Zool. 1970, 18, 77–89. [Google Scholar] [CrossRef]
- Bateman, M.A.; Sonleitner, F.J. The ecology of a natural population of the Queensland fruit fly, Dacus tryoni I. The parameters of the pupal and adult populations during a single season. Aust. J. Zool. 1967, 15, 303–335. [Google Scholar] [CrossRef]
- Merkel, K.; Schwarzmueller, F.; Hulthen, A.D.; Schellhorn, N.; Williams, D.; Clarke, A.R. Temperature effects on “overwintering” phenology of a polyphagous, tropical fruit fly (Tephritidae) at the subtropical/temperate interface. J. Appl. Entomol. 2019, 143, 754–765. [Google Scholar] [CrossRef]
- Tasnin, S.M.; Kay, B.J.; Peek, T.; Merkel, K.; Clarke, A.R. Age-related changes in reproductive potential of Queensland fruit fly. J. Insect Physiol. 2021, 131, 104245. [Google Scholar] [CrossRef]
- Jarvis, H. Fruit fly investigations [First progress report]. Qld Agric. J. 1922, 17, 246–247. [Google Scholar]
- Jarvis, H. Fruit fly investigations [Second progress report]. Qld Agric. J. 1922, 17, 309–312. [Google Scholar]
- Flatt, T.; Amdam, G.V.; Kirkwood, T.B.; Omholt, S.W. Life-history evolution and the polyphenic regulation of somatic maintenance and survival. Quart. Rev. Biol. 2013, 88, 185–218. [Google Scholar] [CrossRef]
- Pener, M.P. Environmental cues, endocrine factors, and reproductive diapause in male insects. Chronobiol. Intern. 1992, 9, 102–113. [Google Scholar] [CrossRef]
- Tatar, M.; Yin, C.M. Slow aging during insect reproductive diapause: Why butterflies, grasshoppers and flies are like worms. Exper. Gerontol. 2001, 36, 723–738. [Google Scholar] [CrossRef]
- Wallingford, A.K.; Loeb, G.M. Developmental acclimation of Drosophila suzukii (Diptera: Drosophilidae) and its effect on diapause and winter stress tolerance. Environ. Entomol. 2016, 45, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Hodek, I. Controversial aspects of diapause development. Europ. J. Entomol. 2002, 2, 163–173. [Google Scholar] [CrossRef]
- Rossi-Stacconi, M.V.; Kaur, R.; Mazzoni, V.; Ometto, L.; Grassi, A.; Gottardello, A.; Rota-Stabelli, O.; Anfora, G. Multiple lines of evidence for reproductive winter diapause in the invasive pest Drosophila suzukii: Useful clues for control strategies. J. Pest Sci. 2016, 89, 689–700. [Google Scholar] [CrossRef]
- Pieloor, M.J.; Seymour, J.E. Factors affecting adult diapause initiation in the tropical butterfly Hypolimnas bolina L.(Lepidoptera: Nymphalidae). Aust. J. Entomol. 2001, 40, 376–379. [Google Scholar] [CrossRef]
- Yap, S.; Fanson, B.G.; Taylor, P.W. Mating reverses actuarial aging in female Queensland fruit flies. PLoS ONE 2015, 10, e0132486. [Google Scholar] [CrossRef] [PubMed]
- Nylin, S. Induction of diapause and seasonal morphs in butterflies and other insects: Knowns, unknowns and the challenge of integration. Physiol. Entomol. 2013, 38, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Fitt, G.P. The ecology of Northern Australian Dacinae (Diptera: Tephritidae) I. Host phenology and utilization of Opilia amentacea Roxb. (Opiliaceae) by Dacus (Bactrocera) opiliae Drew & Hardy, with notes on some other species. Aust. J. Zool. 1981, 29, 691–705. [Google Scholar]
- Fitt, G.P. The influence of seasonal climatic factors on the development of the methyl eugenol response in male Dacus opiliae. Entomol. Exp. Et Appl. 1983, 33, 171–178. [Google Scholar] [CrossRef]
- Fletcher, B.S. The biology of Dacinae fruit flies. Annu. Rev. Entomol. 1987, 32, 115–134. [Google Scholar] [CrossRef]
- Syed, R.A. Studies on the Ecology of Some Important Species of Fruit Flies and Their Natural Enemies in West Pakistan; Pakistan Commonwealth Institute of Biological Control Station Report; Rawalpindi. Commonwealth Agricultural Bureau: Farnham Royal, Slough, UK, 1968. [Google Scholar]
- Hancock, D.L. New species and records of African Dacinae (Diptera: Tephritidae). Arnoldia Zimbabwe 1985, 9, 299–314. [Google Scholar]
- Kishimoto-Yamada, K.; Itioka, T. How much have we learned about seasonality in tropical insect abundance since Wolda (1988)? Entomol. Sci. 2015, 18, 407–419. [Google Scholar] [CrossRef]
- Theron, C.; Manrakhan, A.; Weldon, C.W. Host use of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), in South Africa. J. Appl. Entomol. 2017, 141, 810–816. [Google Scholar] [CrossRef]
- Denlinger, D.L. The developmental response of flesh flies (Diptera: Sarcophagidae) to tropical seasons. Oecologia 1978, 35, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Madder, M.; Speybroech, N.; Brandt, J.; Tirry, L.; Hodek, I.; Berkvens, D. Geographic variation in diapause response of adult Rhipicephalus appendiculatus ticks. Exp. Appl. Acarol. 2002, 27, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Denlinger, D.L.; Hahn, D.A.; Merlin, C.; Holzapfel, C.M.; Bradshaw, W. Keeping time without a spine: What can the insect clock teach us about seasonal adaptation? Phil. Trans. Royal Soc. (B) 2017, 372, 20160257. [Google Scholar] [CrossRef] [PubMed]
- Abro, Z.-U.-A.; Baloch, N.; Memon, R.M.; Khuhro, N.H. Population fluctuation of Bactrocera zonata and Bactrocera dorsalis in guava orchard agro-ecosystem in Sindh Region. Pakistan J. Zool. 2021, 53, 1969–1972. [Google Scholar] [CrossRef]
- Boinahadji, A.K.; Coly, E.V.; Dieng, E.O.; Diome, T.; Sembene, P.M. Interactions between the oriental fruit fly Bactrocera dorsalis (Diptera, Tephritidae) and its host plants range in the Niayes area in Senegal. J. Entomol. Zool. Studies 2019, 7, 855–864. [Google Scholar]
- Chen, P.; Ye, H. Population dynamics of Bactrocera dorsalis (Diptera: Tephritidae) and analysis of factors influencing populations in Baoshanba, Yunnan, China. Entomol. Sci. 2007, 10, 141–147. [Google Scholar] [CrossRef]
- Danjuma, S.; Boonrotpong, S.; Thaochan, N.; Permkam, S.; Satasook, C. Seasonality of the Asian papaya fruit fly Bactrocera papayae Drew and Hancock (Diptera: Tephritidae) on guava Psidium guajava in peninsular Thailand. J. Entomol. Zool. Studies 2014, 2, 276–284. [Google Scholar]
- Gnanvossou, D.; Hanna, R.; Goergen, G.; Salifu, D.; Tanga, C.M.; Mohamed, S.A.; Ekesi, S. Diversity and seasonal abundance of tephritid fruit flies in three agro-ecosystems in Benin, West Africa. J. Appl. Entomol. 2017, 141, 798–809. [Google Scholar] [CrossRef]
- Orankanok, W.; Chinvinikjul, S.; Thanaphum, S.; Sitilob, P.; Enkerlin, W.R. Area-wide integrated control of Oriental fruit fly Bactrocera dorsalis and guava fruit fly Bactrocera correcta in Thailand. In Area-Wide Control of Insect Pests: From Research to Field Implementation; Vreysen, M.J.B., Robinson, A.S., Hendrichs, J., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 517–526. [Google Scholar]
- Umeh, V.; Onukwu, D. Integrated management of fruit flies—Case studies from Nigeria. In Fruit Fly Research and Development in Africa—Towards a Sustainable Management Strategy to Improve Horticulture; Ekesi, S., Mohamed, S.A., Meyer, M.D., Eds.; Springer International Publishing: Basel, Switzerland, 2016; pp. 553–574. [Google Scholar]
- Vayssieres, J.F.; De Meyer, M.; Ouagoussounon, I.; Sinzogan, A.; Adandonon, A.; Korie, S.; Wargui, R.; Anato, F.; Houngbo, H.; Didier, C.; et al. Seasonal abundance of mango fruit flies (Diptera: Tephritidae) and ecological implications for their management in mango and cashew orchards in Benin (Centre & North). J. Econ. Entomol. 2015, 108, 2213–2230. [Google Scholar] [PubMed]
- Bess, H.A.; Haramoto, F.H. Contributions to the Biology and Ecology of the Oriental fruit FLY, Dacus dorsalis Hendel (Diptera: Tephritidae), in Hawaii; Hawaii Agricultural Experiment Station Technical Bulletin No. 44; University of Hawaii: Honolulu, HI, USA, 1961. [Google Scholar]
- Haramoto, F.H.; Bess, H.A. Recent studies on the abundance of the Oriental and Mediterranean fruit flies and the status of their parasites. Proc. Hawaiin Entomol. Soc. 1970, 20, 551–566. [Google Scholar]
- Newell, I.M.; Haramoto, F.H. Biotic factors influencing populations of Dacus dorsalis in Hawaii. Proc. Hawaiin Entomol. Soc. 1968, 20, 81–139. [Google Scholar]
- Samayoa, A.C.; Choi, K.S.; Wang, Y.-S.; Hwang, S.-Y.; Huang, Y.-B.; Ahn, J.J. Thermal effects on the development of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) and model validation in Taiwan. Phytoparasitica 2018, 46, 365–376. [Google Scholar] [CrossRef]
- Choi, K.S.; Samayoa, A.C.; Hwang, S.-Y.; Huang, Y.-B.; Ahn, J.J. Thermal effect on the fecundity and longevity of Bactrocera dorsalis adults and their improved oviposition model. PLoS ONE 2020, 15, e0235910. [Google Scholar] [CrossRef] [PubMed]
- Vargas, R.I.; Stark, J.D.; Nishida, T. Population dynamics, habitat preference, and seasonal distribution patterns of Oriental fruit fly and Melon fly (Diptera: Tephritidae) in an agricultural area. Environ. Entomol. 1990, 19, 1820–1828. [Google Scholar] [CrossRef]
- Kamala Jayanthi, P.D.; Verghese, A. Host-plant phenology and weather based forecasting models for population prediction of the oriental fruit fly, Bactrocera dorsalis Hendel. Crop Prot. 2011, 30, 1557–1562. [Google Scholar] [CrossRef]
- Kamala Jayanthi, P.D.; Verghese, A.; Sreekanth, P.D. Predicting the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae) trap catch using artificial neural networks: A case study. Inter. J. Trop. Insect Sci. 2011, 31, 205–211. [Google Scholar] [CrossRef]
- Kamal Jayanthi, K.P.; Verghes, A.; Sreekanth, P.D.; Arthikirubha, R.; Jayasimha, G.T. Temperature dependent phenological synchrony between host-fruit availability and occurrence of Oreintal fruit fly, Bactrocera dorsalis, a crucial link to study climate change. Indian J. Plant Prot. 2014, 42, 195–198. [Google Scholar]
- Chuang, C.-L.; Yang, E.-C.; Tseng, C.-L.; Chen, C.-P.; Lien, G.-S.; Jiang, J.-A. Toward anticipating pest responses to fruit farms: Revealing factors influencing the population dynamics of the Oriental fruit fly via automatic field monitoring. Comp. Electron. Agric. 2014, 109, 148–161. [Google Scholar] [CrossRef]
- Hong, S.C.; Magarey, R.D.; Borchert, D.M.; Vargas, R.I.; Souder, S.K. Site-specific temporal and spatial validation of a generic plant pest forecast system with observations of Bactrocera dorsalis (Oriental fruit fly). Neobiota 2015, 27, 37–67. [Google Scholar]
- Hussain, D.; Saleem, M.; Abbas, M.; Ali, Q.; Qasim, M.; Hafeez, F.; Ashrif, M.; Zubair, M.; Saleem, M.J.; Ghouse, G. Monitoring and management of fruit fly population using the male annihilation technique with different types of cost-effective traps in guava orchards of Punjab, Pakistan. Inter. J.Pest Manag. 2022, 1–9. [Google Scholar] [CrossRef]
- Diouf, E.G.; Brévault, T.; Ndiaye, S.; Faye, E.; Chailleux, A.; Diatta, P.; Piou, C. An agent-based model to simulate the boosted Sterile Insect Technique for fruit fly management. Biol. Model. 2022, 468, 109951. [Google Scholar] [CrossRef]
- Balagawi, S.; Jackson, K.; Haq, I.U.; Hood-Nowotny, R.; Resch, C.; Clarke, A.R. Nutritional status and the foraging behaviour of Bactrocera tryoni with particular reference to protein bait spray. Physiol. Entomol. 2014, 39, 33–43. [Google Scholar] [CrossRef]
- Biosecurity Queensland. ICA-34. Pre-Harvest Field Control and Inspection of Strawberries Vs. 4. Plant Biosecurity & Product Integrity, Queensland Government: Brisbane, Australia, 2021. [Google Scholar]
- Gu, H. Alternative fruit fly treatment for interstate market access for strawberries. Final report for project BS06002; Horticulture Australia Limited: Sydney, Australia, 2010. [Google Scholar]
- Kean, J.M. Modelling winter survival, mating and trapping of Queensland fruit fly in Auckland, New Zealand. New Zealand Plant Prot. 2016, 69, 153–159. [Google Scholar] [CrossRef]
- Schwarzmueller, F.; Schellhorn, N.A.; Parry, H. Resource landscapes and movement strategy shape Queensland Fruit Fly population dynamics. Landsc. Ecol. 2019, 34, 2807–2822. [Google Scholar] [CrossRef]
- Dong, Z.; He, Y.; Ren, Y.; Wang, G.; Chu, D. Seasonal and year-round distributions of Bactrocera dorsalis (Hendel) and its risk to temperate fruits under climate change. Insects 2022, 13, 550. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. Effect of climate change on introduced and native agricultural invasive insect pests in Europe. Insects 2021, 12, 985. [Google Scholar] [CrossRef]
- Gutierrez, A.P.; Ponti, L.; Neteler, M.; Suckling, D.M.; Cure, J.R. Invasive potential of tropical fruit flies in temperate regions under climate change. Commun. Biol. 2021, 4, 1141. [Google Scholar] [CrossRef]
- Meats, A. Critical periods for developmental acclimation in the Queensland fruit fly, Dacus tryoni. J. Insect Physiol. 1983, 29, 943–946. [Google Scholar] [CrossRef]
- Denlinger, D.L. Relationship between cold hardiness and diapause. In Insects at Low Temperature; Lee, R.E., Denlinger, D.L., Eds.; Springer: Boston, MA, USA, 1991; pp. 174–198. [Google Scholar]
- Stephens, A.E.A.; Kriticos, D.J.; Leriche, A. The current and future potential geographical distribution of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Bull. Entomol. Res. 2007, 97, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Ortiz, V.; Perez-Alonso, R. The natural host plants of Anastrepha (Diptera: Tephritidae) in a tropical rain forest of Mexico. Florida Entomol. 1993, 76, 447–460. [Google Scholar] [CrossRef]
- Aluja, M.; Celedonio-Hurtado, H.; Liedo, P.; Cabrera, M.; Castillo, F.; Guillén, J.; Rios, E. Seasonal population fluctuations and ecological implications for management of Anastrepha fruit flies (Diptera: Tephritidae) in commercial mango orchards in Southern Mexico. J. Econ. Entomol. 1996, 89, 654–667. [Google Scholar] [CrossRef]
- Ovruski, S.M.; Norrbom, A.L.; Schliserman, P.; Aluja, M. Biology and taxonomy of Rhagoletotrypeta (Diptera: Tephritidae): A new species from Cuba and new host plant, parasitoid, and distribution records from Northwestern Argentina. Ann. Entomol. Soc. Am. 2005, 98, 252–258. [Google Scholar] [CrossRef]
- Aluja, M.; Lopez, M.; Sivinski, J. Ecological evidence for diapause in four native and one exotic species of larval-pupal fruit fly (Diptera: Tephritidae) parasitoids in tropical environments. Ann. Entomol. Soc. Am. 1998, 91, 821–833. [Google Scholar] [CrossRef]
- Rungrojwanich, K.; Walter, G.H. The Australian fruit fly parasitoid Diachasmimorpha kraussii (Fullaway): Life history, ovipositional patterns, distribution and hosts (Hymenoptera: Braconidae: Opiinae). Pan-Pac. Entomol. 2000, 76, 1–11. [Google Scholar]
- Ovruski, S.M.; Schliserman, P.; Aluja, M. Occurrence of diapause in neotropical parasitoids attacking Anastrepha fraterculus (Diptera: Tephritidae) in a subtropical rainforest from Argentina. Austral Entomol. 2016, 55, 274–283. [Google Scholar] [CrossRef]
- Danks, H.V. Insect Dormancy: An Ecological Perspective; Biological Survey of Canada (Terrestrial Arthropods) Monograph Series: Ottawa, ON, Canada, 1987. [Google Scholar]
- Godfray, H.C.J. Parasitoids: Behavioral and Evolutionary Ecology; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
Drosophila melanogaster | Bactrocera tryoni | |||
---|---|---|---|---|
Normal Reproductive Function | Reproductive Dormancy | Normal Reproductive Function | Reproductive Dormancy | References |
Normal mature ovary | Non-vitellogenic, immature ovary | Normal mature ovary | Non-vitellogenic, immature ovary | [50,81] |
Normal fecundity | Ovarian arrest | Normal fecundity | Ovarian arrest | [58] |
Relatively low stress resistance | Stress-resistant | Relatively low stress resistance | Stress-resistant | [78,79] |
Normal metabolism | Reduced metabolism | Normal metabolism | Reduced metabolism | [59] |
Quite short lifespan | Long lifespan | Shorter lifespan | Long lifespan | [77,79] |
Able to overwinter | Able to overwinter | [51,76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clarke, A.R.; Leach, P.; Measham, P.F. The Fallacy of Year-Round Breeding in Polyphagous Tropical Fruit Flies (Diptera: Tephritidae): Evidence for a Seasonal Reproductive Arrestment in Bactrocera Species. Insects 2022, 13, 882. https://doi.org/10.3390/insects13100882
Clarke AR, Leach P, Measham PF. The Fallacy of Year-Round Breeding in Polyphagous Tropical Fruit Flies (Diptera: Tephritidae): Evidence for a Seasonal Reproductive Arrestment in Bactrocera Species. Insects. 2022; 13(10):882. https://doi.org/10.3390/insects13100882
Chicago/Turabian StyleClarke, Anthony R., Peter Leach, and Penelope F. Measham. 2022. "The Fallacy of Year-Round Breeding in Polyphagous Tropical Fruit Flies (Diptera: Tephritidae): Evidence for a Seasonal Reproductive Arrestment in Bactrocera Species" Insects 13, no. 10: 882. https://doi.org/10.3390/insects13100882
APA StyleClarke, A. R., Leach, P., & Measham, P. F. (2022). The Fallacy of Year-Round Breeding in Polyphagous Tropical Fruit Flies (Diptera: Tephritidae): Evidence for a Seasonal Reproductive Arrestment in Bactrocera Species. Insects, 13(10), 882. https://doi.org/10.3390/insects13100882