Aedes albopictus Sterile Male Production: Influence of Strains, Larval Diet and Mechanical Sexing Tools
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. MosquitoStrains and Colonization
2.2. Diet Preparation
2.3. Mechanical Sex Sorting Tools and Procedures
2.4. Evaluated Parameters and Statistical Analysis
3. Results
3.1. Sexing Tool Comparison with Different Strains
3.2. Larval Diet and Strain Influence with the Fay-Morlan Separator
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reiter, P.; Sprenger, D. The used tire trade: A mechanism for the worldwide dispersal of container breeding mosquitoes. J. Am. Mosq. Control Assoc. 1987, 3, 494–501. [Google Scholar] [PubMed]
- Benedict, M.Q.; Levine, R.S.; Hawley, W.A.; Lounibos, L.P. Spread of The Tiger: Global Risk of Invasion by The Mosquito Aedes albopictus. Vector-Borne Zoonotic Dis. 2007, 7, 76–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battaglia, V.; Gabrieli, P.; Brandini, S.; Capodiferro, M.R.; Javier, P.A.; Chen, X.-G.; Achilli, A.; Semino, O.; Gomulski, L.M.; Malacrida, A.R.; et al. The Worldwide Spread of the Tiger Mosquito as Revealed by Mitogenome Haplogroup Diversity. Front. Genet. 2016, 7, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraemer, M.U.G.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.N.; Shearer, F.M.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; Coelho, G.E.; Van Bortel, W.; et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. ELife 2015, 4, e08347. [Google Scholar] [CrossRef] [PubMed]
- Romi, R. Aedes albopictus in Italia: Un problema sanitario sottovalutato. Ann. Dell’istituto Super. Di Sanità 2001, 37, 241–247. [Google Scholar]
- Larramendy, M.; Soloneski, S. Integrated Pest Management and Pest Control–Current and Future Tactics. In Preface; InTech: Rijeka, Croatia, 2012; pp. 11–13. [Google Scholar]
- Achee, N.L.; Grieco, J.P.; Vatandoost, H.; Seixas, G.; Pinto, J.; Ling, N.; Martins, A.; Juntarajumnong, W.; Corbel, V.; Gouagna, C.; et al. Alternative strategies for mosquito-borne arbovirus control. PLoS Negl. Trop. Dis. 2019, 13, e0006822. [Google Scholar] [CrossRef] [Green Version]
- Poopathi, S.; Abidha, S. Mosquitocidal bacterial toxins (Bacillus sphaericus and B. thuringiensis serovar israelensis): Mode of action, cytopathological effects and mechanism of resistance. JPAP 2010, 1, 22–38. [Google Scholar] [CrossRef]
- Romeo, B.; Alessandro, A.; Marco, C.; Roberta, C.; Luciano, D.; Maurizio, M.; Nazario, L. Efficacy and lasting activity of four IGRs formulations against mosquitoes in catch basins of northern Italy. Eur. Mosq. Bull. 2009, 27, 33–46. [Google Scholar]
- Bonizzoni, M.; Gasperi, G.; Chen, X.; James, A.A. The invasive mosquito species Aedes albopictus: Current knowledge and future perspectives. Trends Parasitol. 2013, 29, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Moyes, C.L.; Vontas, J.; Martins, A.; Ng, L.C.; Koou, S.Y.; Dusfour, I.; Raghavendra, K.; Pinto, J.; Corbel, V.; David, J.-P.; et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl. Trop. Dis. 2017, 11, e0005625. [Google Scholar] [CrossRef]
- McGraw, E.A.; O’Neill, S.L. Beyond insecticides: New thinking on an ancient problem. Nat. Rev. Microbiol. 2013, 11, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-J.S.; Higgs, S.; Vanlandingham, D.L. Biological Control Strategies for Mosquito Vectors of Arboviruses. Insects 2017, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Papathanos, P.A.; Bourtzis, K.; Tripet, F.; Bossin, H.; Virginio, J.F.; Capurro, M.L.; Pedrosa, M.C.; Guindo, A.; Sylla, L.; Coulibaly, M.B.; et al. A perspective on the need and current status of efficient sex separation methods for mosquito genetic control. Parasites Vectors 2018, 11, 654. [Google Scholar] [CrossRef] [PubMed]
- Bellini, R.; Calvitti, M.; Medici, A.; Carrieri, M.; Celli, G.; Maini, S. Use of the Sterile Insect Technique Against Aedes albopictus in Italy: First Results of a Pilot Trial. In Area-Wide Control of Insect Pests; Vreysen, M.J.B., Robinson, A.S., Hendrichs, J., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 505–515. [Google Scholar] [CrossRef]
- Dyck, V.A.; Hendrichs, J.; Robinson, A.S. (Eds.) Sterile Insect Technique: Principles And Practice In Area-Wide Integrated Pest Management; Taylor & Francis: Abingdon, UK, 2021. [Google Scholar] [CrossRef]
- Aldridge, R.L.; Kline, J.; Coburn, J.M.; Britch, S.C.; Boardman, L.; Hahn, D.A.; Chen, C.; Linthicum, K.J. Gamma-Irradiation Reduces Survivorship, Feeding Behavior, and Oviposition of Female Aedes aegypti. J. Am. Mosq. Control Assoc. 2020, 36, 152–160. [Google Scholar] [CrossRef]
- Cunningham, C.A.; Aldridge, R.L.; Kline, J.; Bibbs, C.S.; Linthicum, K.J.; Xue, R.-D. Effects of radiation on blood-feeding activity of Aedes aegypti (Diptera: Culicidae). J. Vector Ecol. 2020, 45, 140–141. [Google Scholar] [CrossRef]
- Bellini, R.; Puggioli, A.; Balestrino, F.; Carrieri, M.; Urbanelli, S. Exploring protandry and pupal size selection for Aedes albopictus sex separation. Parasites Vectors 2018, 11, 650. [Google Scholar] [CrossRef]
- Fay, R.W.; Morlan, H.B. A Mechanical Device for separating the Developmental Stages, Sexes and Species of Mosquitoes. Mosq. News 1959, 19, 144–147. [Google Scholar]
- Sharma, V.P.; Patterson, R.S.; Ford, H.R. A device for the rapid separation of male and female mosquito pupae. Bull. World Health Organ 1972, 47, 429–432. [Google Scholar]
- Focks, D.A. An Improved Separator for the Developmental Stages, Sexes, and Species of Mosquitoes (Diptera: Culicidae). J. Med. Entomol. 1980, 17, 567–568. [Google Scholar] [CrossRef]
- Sakai, R.K.; Baker, R.H. Induction of heat-sensitive lethals in Culex tritaeniorhynchus by ethyl methanesulfonate. Mosq. News 1974, 34, 420–424. [Google Scholar]
- Gilles, J.R.; Schetelig, M.F.; Scolari, F.; Marec, F.; Capurro, M.L.; Franz, G.; Bourtzis, K. Towards mosquito sterile insect technique programmes: Exploring genetic, molecular, mechanical and behavioural methods of sex separation in mosquitoes. Acta Trop. 2014, 132, S178–S187. [Google Scholar] [CrossRef] [PubMed]
- Lutrat, C.; Giesbrecht, D.; Marois, E.; Whyard, S.; Baldet, T.; Bouyer, J. Sex Sorting for Pest Control: It’s Raining Men! Trends Parasitol. 2019, 35, 649–662. [Google Scholar] [CrossRef] [Green Version]
- McInnis, D.O.; Tam, S.; Lim, R.; Komatsu, J.; Kurashima, R.; Albrecht, C. Development of a Pupal Color-Based Genetic Sexing Strain of the Melon Fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 2004, 97, 1026–1033. [Google Scholar] [CrossRef]
- Yamada, H.; Benedict, M.Q.; Malcolm, C.A.; Oliva, C.F.; Soliban, S.M.; Gilles, J.R.L. Genetic sex separation of the malaria vector, Anopheles arabiensis, by exposing eggs to dieldrin. Malar. J. 2012, 11, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndo, C.; Poumachu, Y.; Metitsi, D.; Awono-Ambene, H.P.; Tchuinkam, T.; Gilles, J.L.R.; Bourtzis, K. Isolation and characterization of a temperature-sensitive lethal strain of Anopheles arabiensis for SIT-based application. Parasites Vectors 2018, 11, 659. [Google Scholar] [CrossRef] [Green Version]
- Lutrat, C.; Olmo, R.; Baldet, T.; Bouyer, J.; Marois, E. Transgenic expression of Nix converts genetic females into males and allows automated sex sorting in Aedes albopictus. Commun. Biol. 2022, 5, 210. [Google Scholar] [CrossRef]
- Aryan, A.; Anderson, M.A.E.; Biedler, J.K.; Qi, Y.; Overcash, J.M.; Naumenko, A.N.; Sharakhova, M.V.; Mao, C.; Adelman, Z.N.; Tu, Z. Nix alone is sufficient to convert female Aedes aegypti into fertile males and myo-sex is needed for male flight. Proc. Natl. Acad. Sci. USA 2020, 117, 17702–17709. [Google Scholar] [CrossRef]
- Kaiser, P.E.; Seawright, J.A.; Dame, D.A.; Joslyn, D.J. Development of a Genetic Sexing System for Anopheles albimanus12. J. Econ. Entomol. 1978, 71, 766–771. [Google Scholar] [CrossRef]
- Yamada, H.; Vreysen, M.J.B.; Bourtzis, K.; Tschirk, W.; Chadee, D.D.; Gilles, J.R.L. The Anopheles arabiensis genetic sexing strain ANO IPCL1 and its application potential for the sterile insect technique in integrated vector management programmes. Acta Trop. 2015, 142, 138–144. [Google Scholar] [CrossRef]
- Aryan, A.; Anderson, M.; Biedler, J.K.; Qi, Y.; Overcash, J.M.; Naumenko, A.N.; Tu, Z. Nix confers heritable sex-conversion in Aedes aegypti and myo-sex is needed for male flight. bioRxiv 2019, 595371. [Google Scholar] [CrossRef] [Green Version]
- Hall, A.B.; Basu, S.; Jiang, X.; Qi, Y.; Timoshevskiy, V.A.; Biedler, J.K.; Sharakhova, M.V.; Elahi, R.; Anderson, M.A.E.; Chen, X.-G.; et al. A male-determining factor in the mosquito Aedes aegypti. Science 2015, 348, 1268–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panjwani, A.; Wilson, A. What Is Stopping the Use of Genetically Modified Insects for Disease Control? PLoS Pathog 2016, 12, e1005830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamady, D.; Ruslan, N.B.; Ahmad, A.H.; Rawi, C.S.; Ahmad, H.; Satho, T.; Miake, F.; Zuharah, W.F.; FuKumitsu, Y.; Saad, A.R.; et al. Colonized Aedes albopictus and its sexual performance in the wild: Implications for SIT technology and containment. Parasites Vectors 2013, 6, 206. [Google Scholar] [CrossRef] [PubMed]
- Mikery-Pacheco, O.; Serrano Domínguez, K.; Marcelín-Chong, P.; Sánchez-Guillén, D. Efficiency of the separation of Aedes (Stegomyia) albopictus (Diptera: Culicidae) male and female pupae using a sieving device. AZM 2015, 31, 113–115. [Google Scholar] [CrossRef] [Green Version]
- Gouagna, L.C.; Damiens, D.; Oliva, C.F.; Boyer, S.; Le Goff, G.; Brengues, C.; Dehecq, J.-S.; Raude, J.; Simard, F.; Fontenille, D. Strategic Approach, Advances, and Challenges in the Development and Application of the SIT for Area-Wide Control of Aedes albopictus Mosquitoes in Reunion Island. Insects 2020, 11, 770. [Google Scholar] [CrossRef] [PubMed]
- Iyaloo, D.P.; Bouyer, J.; Facknath, S.; Bheecarry, A. Pilot Suppression trial of Aedes albopictus mosquitoes through an Integrated Vector Management strategy including the Sterile Insect Technique in Mauritius. bioRxiv 2020. [Google Scholar] [CrossRef]
- Kavran, M.; Puggioli, A.; Šiljegović, S.; Čanadžić, D.; Laćarac, N.; Rakita, M.; Ćupina, A.I.; Balestrino, F.; Petrić, D.; Bellini, R. Optimization of Aedes albopictus (Diptera: Culicidae) Mass Rearing through Cost-Effective Larval Feeding. Insects 2022, 13, 504. [Google Scholar] [CrossRef]
- Baton, L.A.; Zhang, D.; Li, Y.; Xi, Z. Combining the Incompatible and Sterile Insect Techniques for Pest and Vector Control. Area-Wide Integrated Pest Management; CRC Press: Boca Raton, FL, USA, 2021; pp. 367–404. [Google Scholar]
- Lees, R.S.; Carvalho, D.O.; Bouyer, J. Potential Impact of Integrating the Sterile Insect Technique into the Fight against Disease-Transmitting Mosquitoes. In Sterile Insect Technique, 2nd ed.; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 1081–1118. [Google Scholar] [CrossRef]
- Parker, A.G. Mass-Rearing for Sterile Insect Release. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 209–232. [Google Scholar] [CrossRef]
- Vreysen, M.J.B.; Hendrichs, J.; Enkerlin, W.R. The Sterile Insect Technique as a Component of Sustainable Area-Wide Integrated Pest Management of Selected Horticultural Insect Pests. J. Fruit Ornam. Plant Res. 2006, 14, 107. [Google Scholar]
- Ross, P.A.; Endersby-Harshman, N.M.; Hoffmann, A.A. A comprehensive assessment of inbreeding and laboratory adaptation in Aedes aegypti mosquitoes. Evol. Appl. 2019, 12, 572–586. [Google Scholar] [CrossRef] [Green Version]
- Drouin, A.; Chevalier, V.; Durand, B.; Balenghien, T. Vector Competence of Mediterranean Mosquitoes for Rift Valley Fever Virus: A Meta-Analysis. Pathogens 2022, 11, 503. [Google Scholar] [CrossRef]
- Gargan, T.P.; Bailey, C.L.; Higbee, G.A.; Gad, A.; El Said, S. The effect of laboratory colonization on the vector-pathogen interactions of Egyptian Culex pipiens and Rift Valley fever virus. Am. J. Trop. Med. Hyg. 1983, 32, 1154–1163. [Google Scholar] [CrossRef] [PubMed]
- Benedict, M.Q.; Knols, B.G.; Bossin, H.C.; I Howell, P.; Mialhe, E.; Cáceres, C.; Robinson, A.S. Colonisation and mass rearing: Learning from others. Malar. J. 2009, 8, S4. [Google Scholar] [CrossRef] [PubMed]
- Balestrino, F.; Puggioli, A.; Gilles, J.R.L.; Bellini, R. Validation of a New Larval Rearing Unit for Aedes albopictus (Diptera: Culicidae) Mass Rearing. PLoS ONE 2014, 9, e91914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puggioli, A.; Balestrino, F.; Damiens, D.; Lees, R.S.; Soliban, S.M.; Madakacherry, O.; Dindo, M.L.; Bellini, R.; Gilles, J. Efficiency of Three Diets for Larval Development in Mass Rearing Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 2013, 50, 819–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellini, R.; Medici, A.; Puggioli, A.; Balestrino, F.; Carrieri, M. Pilot Field Trials With Aedes albopictus Irradiated Sterile Males in Italian Urban Areas. J. Med. Entomol. 2013, 50, 317–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balestrino, F.; Medici, A.; Candini, G.; Carrieri, M.; Maccagnani, B.; Calvitti, M.; Bellini, R. γ Ray Dosimetry and Mating Capacity Studies in the Laboratory on Aedes albopictus Males. J. Med. Entomol. 2010, 47, 581–591. [Google Scholar] [CrossRef]
- Puggioli, A.; Carrieri, M.; Dindo, M.L.; Medici, A.; Lees, R.S.; Gilles, J.; Bellini, R. Development of Aedes albopictus (Diptera: Culicidae) Larvae Under Different Laboratory Conditions. J. Med. Entomol. 2017, 54, 142–149. [Google Scholar] [CrossRef]
- Damiens, D.; Benedict, M.Q.; Wille, M.; Gilles, J.R.L. An Inexpensive and Effective Larval Diet for Anopheles arabiensis (Diptera: Culicidae): Eat Like a Horse, a Bird, or a Fish? J. Med. Entomol. 2012, 49, 1001–1011. [Google Scholar] [CrossRef] [Green Version]
- Gunathilaka, N.; Ranathunge, T.; Udayanga, L.; Wijegunawardena, A.; Gilles, J.R.L.; Abeyewickreme, W. Use of mechanical and behavioural methods to eliminate female Aedes aegypti and Aedes albopictus for sterile insect technique and incompatible insect technique applications. Parasites Vectors 2019, 12, 148. [Google Scholar] [CrossRef]
- Medici, A.; Carrieri, M.; Scholte, E.-J.; Maccagnani, B.; Luisa Dindo, M.; Bellini, R. Studies on Aedes albopictus Larval Mass-Rearing Optimization. J. Econ. Entomol. 2011, 104, 266–273. [Google Scholar] [CrossRef]
- Crawford, J.E.; Clarke, D.W.; Criswell, V.; Desnoyer, M.; Cornel, D.; Deegan, B.; Gong, K.; Hopkins, K.C.; Howell, P.; Hyde, J.S.; et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat. Biotechnol. 2020, 38, 482–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbert, H. Moorefield. Sexual dimorphism in mosquito pupae. Sex. Dimorphism Mosq. Pupae 1951, 11, 175–177. [Google Scholar]
- Couret, J.; Dotson, E.; Benedict, M.Q. Temperature, Larval Diet, and Density Effects on Development Rate and Survival of Aedes aegypti (Diptera: Culicidae). PLoS ONE 2014, 9, e87468. [Google Scholar] [CrossRef] [PubMed]
- Sasmita, H.I.; Tu, W.-C.; Bong, L.-J.; Neoh, K.-B. Effects of larval diets and temperature regimes on life history traits, energy reserves and temperature tolerance of male Aedes aegypti (Diptera: Culicidae): Optimizing rearing techniques for the sterile insect programmes. Parasites Vectors 2019, 12, 578. [Google Scholar] [CrossRef] [PubMed]
- Mamai, W.; Maiga, H.; Somda, N.S.B.; Wallner, T.; Konczal, A.; Yamada, H.; Bouyer, J. Aedes aegypti larval development and pupal production in the FAO/IAEA mass-rearing rack and factors influencing sex sorting efficiency. Parasite 2020, 27, 43. [Google Scholar] [CrossRef]
- Rull, J.; Barreda-Landa, A. Colonization of a hybrid strain to restore male Anastrepha ludens (Diptera: Tephritidae) mating competitiveness for sterile insect technique programs. J. Econ. Entomol. 2007, 100, 752–758. [Google Scholar] [CrossRef]
- Zhang, D.; Lees, R.S.; Xi, Z.; Bourtzis, K.; Gilles, J.R.L. Combining the Sterile Insect Technique with the Incompatible Insect Technique: III-Robust Mating Competitiveness of Irradiated Triple Wolbachia-Infected Aedes albopictus Males under Semi-Field Conditions. PLoS ONE 2016, 11, e0151864. [Google Scholar] [CrossRef]
- Madakacherry, O.; Lees, R.S.; Gilles, J.R.L. Aedes albopictus (Skuse) males in laboratory and semi-field cages: Release ratios and mating competitiveness. Acta Trop. 2014, 132, S124–S129. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, D.; Li, Y.; Yang, C.; Wu, Y.; Liang, X.; Liang, Y.; Pan, X.; Hu, L.; Sun, Q.; et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 2019, 572, 56–61. [Google Scholar] [CrossRef]
- Carvalho, D.O.; Nimmo, D.; Naish, N.; McKemey, A.R.; Gray, P.; Wilke, A.B.B.; Marrelli, M.T.; Virginio, J.F.; Alphey, L.; Capurro, M.L. Mass production of genetically modified Aedes aegypti for field releases in Brazil. J. Vis. Exp. 2014, 83, e3579. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Lees, R.S.; Xi, Z.; Gilles, J.R.L.; Bourtzis, K. Combining the Sterile Insect Technique with Wolbachia-Based Approaches: II- A Safer Approach to Aedes albopictus Population Suppression Programmes, Designed to Minimize the Consequences of Inadvertent Female Release. PLoS ONE 2015, 10, e0135194. [Google Scholar] [CrossRef] [PubMed]
- Zacarés, M.; Salvador-Herranz, G.; Almenar, D.; Tur, C.; Argilés, R.; Bourtzis, K.; Bossin, H.; Pla, I. Exploring the potential of computer vision analysis of pupae size dimorphism for adaptive sex sorting systems of various vector mosquito species. Parasites Vectors 2018, 11, 656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrichs, J.; Robinson, A.S. Prospects for the Future Development and Application of the Sterile Insect Technique. In Sterile Insect Technique, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Briceño, R.D.; Eberhard, W.G. Decisions during Courtship by Male and Female Medflies (Diptera, Tephritidae): Correlated Changes in Male Behavior and Female Acceptance Criteria in Mass-Reared flies. Flen 2002, 85, 14–31. [Google Scholar] [CrossRef]
- Pudar, D.; Puggioli, A.; Balestrino, F.; Sy, V.; Carrieri, M.; Bellini, R.; Petrić, D. Effect of cage size on Aedes albopictus wing length, survival and egg production. Heliyon 2021, 7, e07381. [Google Scholar] [CrossRef]
- Schneider, J.R.; Chadee, D.D.; Mori, A.; Romero-Severson, J.; Severson, D.W. Heritability and adaptive phenotypic plasticity of adult body size in the mosquito Aedes aegypti with implications for dengue vector competence. Infect. Genet. Evol. 2011, 11, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Wijegunawardana, N.D.A.D.; Gunawardene, Y.I.N.S.; Abeyewickreme, W.; Chandrasena, T.G.A.N.; Dassanayake, R.S.; Manamperi, A. Optimization of Aedes albopictus rearing procedures for combined sterile insect techniques (SIT) and Wolbachia-based laboratory studies in Sri Lanka. Int. J. Trop. Insect. Sci. 2020, 40, 801–807. [Google Scholar] [CrossRef]
- Steinwascher, K. Relationship Between Pupal Mass and Adult Survivorship and Fecundity for Aedes aegypti. Environ. Entomol. 1982, 11, 150–153. [Google Scholar] [CrossRef]
- Yuval, B.; Wekesa, J.W.; Washino, R.K. Effect of body size on swarming behavior and mating success of maleAnopheles freeborni (Diptera: Culicidae). J. Insect. Behav. 1993, 6, 333–342. [Google Scholar] [CrossRef]
- Blackmore, M.S.; Lord, C.C. The relationship between size and fecundity in Aedes albopictus. J. Vector. Ecol. 2000, 25, 212–217. [Google Scholar]
- Maciel-De-Freitas, R.; Codeço, C.T.; Lourenço-De-Oliveira, R. Body size-associated survival and dispersal rates of Aedes aegypti in Rio de Janeiro. Med. Vet. Entomol. 2007, 21, 284–292. [Google Scholar] [CrossRef]
- Ponlawat, A.; Harrington, L.C. Age and Body Size Influence Male Sperm Capacity of the Dengue Vector Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2007, 44, 422–426. [Google Scholar] [CrossRef]
- Maïga, H.; Dabiré, R.K.; Lehmann, T.; Tripet, F.; Diabaté, A. Variation in energy reserves and role of body size in the mating system of Anopheles gambiae. J. Vector Ecol. 2012, 37, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Timmermann, S.E.; Briegel, H. Larval growth and biosynthesis of reserves in mosquitoes. J. Insect. Physiol. 1999, 45, 461–470. [Google Scholar] [CrossRef]
- Mamai, W.; Somda, N.S.B.; Maiga, H.; Konczal, A.; Wallner, T.; Bakhoum, M.T.; Yamada, H.; Bouyer, J. Black soldier fly (Hermetia illucens) larvae powder as a larval diet ingredient for mass-rearing Aedes mosquitoes. Parasite 2019, 26, 57. [Google Scholar] [CrossRef] [PubMed]
- Briegel, H.; Timmermann, S.E. Aedes albopictus (Diptera: Culicidae): Physiological Aspects of Development and Reproduction. J. Med. Entomol. 2001, 38, 566–571. [Google Scholar] [CrossRef]
MPY | RFP | |||||
---|---|---|---|---|---|---|
STRAIN | N | ♀/♂ TOOL | Mean ± SE (♀/♂ TOOL) | Mean ± SE (STRAIN) | Mean ± SE (♀/♂ TOOL) | Mean ± SE (STRAIN) |
DE F9-18 | 4 | Fay-Morlan | 26.8 ± 4.46 a | 26.4 ± 2.51 b | 0.62 ± 0.77 a | 1.84 ± 0.43 a |
15 | Sieve | 26.1 ± 2.30 a | 3.07 ± 0.40 a | |||
GR F1-8 | 8 | Fay-Morlan | 41.4 ± 3.16 b | 33.6 ± 2.41 ab | 0.56 ± 0.54 a | 1.64 ± 0.42 a |
6 | Sieve | 25.8 ± 3.64 a | 2.72 ± 0.63 a | |||
IT F68-74 | 3 | Fay-Morlan | 30.2 ± 5.15 a | 27.3 ± 3.41 ab | 0.60 ± 0.89 b | 5.09 ± 0.59 b |
4 | Sieve | 24.4 ± 4.46 a | 9.59 ± 0.77 a | |||
ME F2-8 | 9 | Fay-Morlan | 36.6 ± 2.98 a | 35.0 ± 1.97 a | 1.06 ± 0.51 a | 1.89 ± 0.34 a |
12 | Sieve | 33.5 ± 2.58 a | 2.72 ± 0.45 a |
MPY | RFP | |||||
---|---|---|---|---|---|---|
♀/♂ TOOL | N | STRAIN | Mean ± SE (STRAIN) | Mean ± SE (♀/♂ TOOL) | Mean ± SE (STRAIN) | Mean ± SE (♀/♂ TOOL) |
Fay-Morlan | 9 | ME F2-8 | 36.6 ± 2.98 a | 33.7 ± 2.02 b | 1.06 ± 0.51 a | 0.71 ± 0.35 b |
8 | GR F1-8 | 41.4 ± 3.16 a | 0.56 ± 0.54 a | |||
3 | IT F68-74 | 30.2 ± 5.15 a | 0.60 ± 0.89 a | |||
4 | DE F9-18 | 26.8 ± 4.46 a | 0.62 ± 0.77 a | |||
Sieve | 12 | ME F2-8 | 33.5 ± 2.58 a | 27.4 ± 1.68 a | 2.72 ± 0.45 a | 4.52 ± 0.29 a |
6 | GR F1-8 | 25.8 ± 3.64 a | 2.72 ± 0.63 a | |||
4 | IT F68-74 | 24.4 ± 4.46 a | 9.59 ± 0.77 b | |||
15 | DE F9-18 | 26.1 ± 2.30 a | 3.07 ± 0.40 a |
MPY | RFP | |||||
---|---|---|---|---|---|---|
STRAIN | N | DIET | Mean ± SE (DIET) | Mean ± SE (STRAIN) | Mean ± SE (DIET) | Mean ± SE (STRAIN) |
DE F16-18 | 6 | BLP-BY | 36.9 ± 3.47 a | 29.7 ± 2.18 a | 2.19 ± 0.49 a | 1.29 ± 0.31 a |
4 | IAEA-BY | 26.8 ± 5.83 a | 0.62 ± 0.61 a | |||
6 | SLP-BY | 25.3 ± 3.01 a | 1.08 ± 0.49 a | |||
GR F5-8 | 8 | BLP-BY | 45.3 ± 3.12 a | 39.7 ± 1.79 b | 2.01 ± 0.43 a | 1.44 ± 0.25 a |
8 | IAEA-BY | 41.4 ± 2.89 a | 0.56 ± 0.43 a | |||
7 | SLP-BY | 32.3 ± 2.61 a | 1.76 ± 0.46 a | |||
IT F73-74 | 7 | BLP-BY | 31.8 ± 4.17 a | 27.8 ± 2.35 a | 3.07 ± 0.46 a | 2.17 ± 0.33 a |
3 | IAEA-BY | 30.2 ± 3.91 a | 0.60 ± 0.70 a | |||
5 | SLP-BY | 21.4 ± 2.70 a | 2.85 ± 0.54 a |
MPY | RFP | |||||
---|---|---|---|---|---|---|
DIET | N | STRAIN | Mean ± SE (STRAIN) | Mean ± SE (DIET) | Mean ± SE (STRAIN) | Mean ± SE (DIET) |
BLP-BY | 8 | GR F5-8 | 45.3 ± 3.03 a | 38.0 ± 1.88 b | 2.01 ± 0.43 a | 2.42 ± 0.27 a |
6 | DE F16-18 | 36.9 ± 3.50 a | 2.19 ± 0.49 a | |||
7 | IT F73-74 | 31.8 ± 3.24 a | 3.07 ± 0.46 a | |||
IAEA-BY | 8 | GR F5-8 | 41.4 ± 3.03 a | 32.8 ± 2.41 ab | 0.56 ± 0.43 a | 0.59 ± 0.34 b |
4 | DE F16-18 | 26.8 ± 4.29 a | 0.62 ± 0.61 a | |||
3 | IT F73-74 | 30.2 ± 4.95 a | 0.60 ± 0.70 a | |||
SLP-BY | 7 | GR F5-8 | 32.3 ± 3.24 a | 26.3 ± 2.04 a | 1.76 ± 0.46 a | 1.90 ± 0.29 a |
6 | DE F16-18 | 25.3 ± 3.50 a | 1.08 ± 0.49 a | |||
5 | IT F73-74 | 21.4 ± 3.84 a | 2.85 ± 0.54 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malfacini, M.; Puggioli, A.; Balestrino, F.; Carrieri, M.; Dindo, M.L.; Bellini, R. Aedes albopictus Sterile Male Production: Influence of Strains, Larval Diet and Mechanical Sexing Tools. Insects 2022, 13, 899. https://doi.org/10.3390/insects13100899
Malfacini M, Puggioli A, Balestrino F, Carrieri M, Dindo ML, Bellini R. Aedes albopictus Sterile Male Production: Influence of Strains, Larval Diet and Mechanical Sexing Tools. Insects. 2022; 13(10):899. https://doi.org/10.3390/insects13100899
Chicago/Turabian StyleMalfacini, Marco, Arianna Puggioli, Fabrizio Balestrino, Marco Carrieri, Maria Luisa Dindo, and Romeo Bellini. 2022. "Aedes albopictus Sterile Male Production: Influence of Strains, Larval Diet and Mechanical Sexing Tools" Insects 13, no. 10: 899. https://doi.org/10.3390/insects13100899
APA StyleMalfacini, M., Puggioli, A., Balestrino, F., Carrieri, M., Dindo, M. L., & Bellini, R. (2022). Aedes albopictus Sterile Male Production: Influence of Strains, Larval Diet and Mechanical Sexing Tools. Insects, 13(10), 899. https://doi.org/10.3390/insects13100899