Monitoring the Methyl Eugenol Response and Non-Responsiveness Mechanisms in Oriental Fruit Fly Bactrocera dorsalis in China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains
2.2. Bioassays for ME Response
2.3. Assays for Olfactory Organ Detection of ME
2.4. RNA Extraction and cDNA Synthesis
2.5. Quantitative Real-Time PCR (qRT-PCR)
2.6. Bioassay of P450 Inhibitors
2.7. Statistical Analysis
3. Results
3.1. ME Response in B. dorsalis
3.2. Olfactory Organs Detecting ME in B. dorsalis
3.3. Expression Patterns of Genes Involved in ME Detection in B. dorsalis
3.4. P450-Mediated Resistance Response to ME in B. dorsalis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clarke, A.R.; Armstrong, K.F.; Carmichael, A.E.; Milne, J.R.; Raghu, S.; Roderick, G.K.; Yeates, D.K. Invasive phytophagous pests arising through a recent tropical evolutionary radiation: The Bactrocera dorsalis complex of fruit flies. Annu. Rev. Entomol. 2005, 50, 293–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, D.; Liu, Y.W.; Zhang, S.Y.; Xu, H.Q.; Smagghe, G.; Wang, J.J. A male accessory gland specific gene takeout2 regulates male mating success in Bactrocera dorsalis. Entomol. Gen. 2021, 41, 579–589. [Google Scholar] [CrossRef]
- Zeng, Y.; Reddy, G.V.P.; Li, Z.; Qin, Y.; Wang, Y.; Pan, X.; Jiang, F.; Gao, F.; Zhao, Z.-H. Global distribution and invasion pattern of oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). J. Appl. Entomol. 2019, 143, 165–176. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, D.j.; Xu, Y.; Wang, L.; Cheng, D.; Qi, Y.; Zeng, L.; Lu, Y. Invasion, expansion, and control of Bactrocera dorsalis (Hendel) in China. J. Integr. Agric. 2019, 18, 771–787. [Google Scholar] [CrossRef]
- Zhu, Y.-F.; Tan, X.-M.; Qi, F.-J.; Teng, Z.-W.; Fan, Y.-J.; Shang, M.-Q.; Lu, Z.-Z.; Wan, F.-H.; Zhou, H.-X. The host shift of Bactrocera dorsalis: Early warning of the risk of damage to the fruit industry in northern China. Entomol. Gen. 2022, 42, 691–699. [Google Scholar] [CrossRef]
- Nugnes, F.; Russo, E.; Viggiani, G.; Bernardo, U. First Record of an Invasive Fruit Fly Belonging to Bactrocera dorsalis Complex (Diptera: Tephritidae) in Europe. Insects. 2018, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; Liang, L.; Wang, J.; Zhu, S. Chromosome-level genome assembly of Bactrocera dorsalis reveals its adaptation and invasion mechanisms. Commun. Biol. 2022, 5, 25. [Google Scholar] [CrossRef]
- Han, P.; Wang, X.; Niu, C.-Y.; Dong, Y.-C.; Zhu, J.-Q.; Desneux, N. Population dynamics, phenology, and overwintering of Bactrocera dorsalis (Diptera: Tephritidae) in Hubei Province, China. J. Pest Sci. 2011, 84, 289–295. [Google Scholar] [CrossRef]
- Wei, D.D.; He, W.; Lang, N.; Miao, Z.Q.; Xiao, L.F.; Dou, W.; Wang, J.J. Recent research status of Bactrocera dorsalis: Insights from resistance mechanisms and population structure. Arch. Insect Biochem. Physiol. 2019, 102, e21601. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Menail, A.H.; Boutefnouchet-Bouchema, W.F.; Haddad, N.; Taning, N.T.C.; Smagghe, G.; Loucif-Ayad, W. Effects of thiamethoxam and spinosad on the survival and hypopharyngeal glands of the African honey bee (Apis mellifera intermissa). Entomol. Gen. 2020, 40, 207–215. [Google Scholar] [CrossRef]
- Palma-Onetto, V.; Oliva, D.; González-Teuber, M. Lethal and oxidative stress side effects of organic and synthetic pesticides on the insect scale predator Rhyzobius lophanthae. Entomol. Gen. 2021, 41, 345–355. [Google Scholar] [CrossRef]
- Dias, N.P.; Zotti, M.J.; Montoya, P.; Carvalho, I.R.; Nava, D.E. Fruit fly management research: A systematic review of monitoring and control tactics in the world. Crop Prot. 2018, 112, 187–200. [Google Scholar] [CrossRef]
- Tan, K.H.; Nishida, R. Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. J. Insect Sci. 2012, 12, 56. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.H.; Nishida, R.; Jang, E.B.; Shelly, T.E. Pheromones, Male Lures, and Trapping of Tephritid Fruit Flies. In Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies: Lures, Area-Wide Programs, and Trade Implication; Shelly, T., Epsky, N., Jang, E.B., Reyes-Flores, J., Vargas, R., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 15–74. [Google Scholar]
- Steiner, L.F. Methyl Eugenol as an Attractant for Oriental Fruit Fly. J. Econ. Entomol. 1952, 45, 241–248. [Google Scholar] [CrossRef]
- Steiner, L.F.; Mitchell, W.C.; Harris, E.J.; Kozuma, T.T.; Fujimoto, M.S. Oriental Fruit Fly Eradication by Male Annihilation. J. Econ. Entomol. 1965, 58, 961–964. [Google Scholar] [CrossRef]
- Manoukis, N.C.; Vargas, R.I.; Carvalho, L.; Fezza, T.; Wilson, S.; Collier, T.; Shelly, T.E. A field test on the effectiveness of male annihilation technique against Bactrocera dorsalis (Diptera: Tephritidae) at varying application densities. PLoS ONE. 2019, 14, e0213337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ushio, S.; Yoshioka, K.; Nakasu, K.; Waki, K. Eradication of oriental fruit fly from Amami Island by male annihilation. J. Appl. Entomol. Z. 1982, 26, 1–9. (In Japanese) [Google Scholar] [CrossRef]
- Koyama, J.; Teruya, T.; Tanaka, K. Eradication of the Oriental Fruit Fly (Diptera: Tephritidae) from the Okinawa Islands by a Male Annihilation Method. J. Econ. Entomol. 1984, 77, 468–472. [Google Scholar] [CrossRef]
- Yu-Bing Huang, K.; Atlihan, R.; Gokce, A.; Yu-Bing Huang, J.; Chi, H. Demographic Analysis of Sex Ratio on Population Growth of Bactrocera dorsalis (Diptera: Tephritidae) With Discussion of Control Efficacy Using Male Annihilation. J. Econ. Entomol. 2016, 109, 2249–2258. [Google Scholar] [CrossRef]
- Allwood, A.J.; Vueti, E.T.; Leblanc, L.; Bull, R. Eradication of introduced Bactrocera species (Diptera: Tephritidae) in Nauru using male annihilation and protein bait application techniques. In Turning the Tide: The Eradication of Invasive Species; IUCN-The World Conservation Union: Gland, Switzerland, 2002; pp. 19–25. [Google Scholar]
- Barclay, H.J.; McInnis, D.; Hendrichs, J. Modeling the Area-Wide Integration of Male Annihilation and the Simultaneous Release of Methyl Eugenol-Exposed Bactrocera spp. Sterile Males. Ann. Entomol. Soc. Am. 2014, 107, 97–112. [Google Scholar] [CrossRef] [Green Version]
- Hee, K.A.; Tan, K.H. Transport of methyl eugenol-derived sex pheromonal components in the male fruit fly, Bactrocera dorsalis. Comp. Biochem. Phys. C 2006, 143, 422–428. [Google Scholar] [CrossRef]
- Hee, A.K.; Tan, K.H. Male sex pheromonal components derived from methyl eugenol in the hemolymph of the fruit fly Bactrocera papayae. J. Chem. Ecol. 2004, 30, 2127–2138. [Google Scholar] [CrossRef] [PubMed]
- Shelly, S.T. Flower-feeding affects mating performance in male oriental fruit flies Bactrocera dorsalis. Ecol. Entomol. 2000, 25, 109–114. [Google Scholar] [CrossRef]
- Orankanok, W.; Chinvinijkul, S.; Sawatwangkhoung, A.; Pinkaew, S.; Orankanok, S. Methyl eugenol and pre-release diet improve mating performance of young Bactrocera dorsalis and Bactrocera correcta males. J. Appl. Entomol. 2013, 137, 200–209. [Google Scholar] [CrossRef]
- Shelly, T.E. Evaluation of a Genetic Sexing Strain of the Oriental Fruit Fly as a Candidate for Simultaneous Application of Male Annihilation and Sterile Insect Techniques (Diptera: Tephritidae). J. Econ. Entomol. 2020, 113, 1913–1921. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.B.; Curbelo, K.M.; Manoukis, N.C.; Cha, D.H. Evaluating Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) Response to Methyl Eugenol: Comparison of Three Common Bioassay Methods. J. Econ. Entomol. 2022, 115, 556–564. [Google Scholar] [CrossRef]
- Shelly, S.T. Selection for non-responsiveness to methyl eugenol in male oriental fruit flies (Diptera: Tephritidae). Fla. Entmol. 1997, 80, 248–253. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, X.-F.; Fu, L.; Han, Y.-Y.; Chen, J.; Lu, Y.-Y. BdorOBP2 plays an indispensable role in the perception of methyl eugenol by mature males of Bactrocera dorsalis (Hendel). Sci. Rep. 2017, 7, 15894. [Google Scholar] [CrossRef] [Green Version]
- Feyereisen, R. Insect CYP Genes and P450 Enzymes. In Insect Molecular Biology and Biochemistry; Academic Press: Cambridge, MA, USA, 2012; pp. 236–316. [Google Scholar] [CrossRef]
- Jing, T.-X.; Wang, D.-F.; Ma, Y.-P.; Zeng, L.-L.; Meng, L.-W.; Zhang, Q.; Dou, W.; Wang, J.-J. Genome-wide and expression-profiling analyses of the cytochrome P450 genes in Bactrocera dorsalis (Hendel) and screening of candidate P450 genes associated with malathion resistance. Pest Manag. Sci. 2020, 76, 2932–2943. [Google Scholar] [CrossRef]
- Brown, T.M.; Bryson, P.K.; Payne, G.T. Synergism by Propynyl Aryl Ethers in Permethrin-Resistant Tobacco Budworm Larvae, Heliothis virescens. Pest Manag. Sci. 1996, 46, 323–331. [Google Scholar] [CrossRef]
- Feyereisen, R. Insect P450 inhibitors and insecticides: Challenges and opportunities. Pest Manag. Sci. 2015, 71, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Wheelwright, M.; Whittle, C.R.; Riabinina, O. Olfactory systems across mosquito species. Cell Tissue Res. 2021, 383, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Chieng, A.C.; Hee, A.K.; Wee, S.L. Involvement of the Antennal and Maxillary Palp Structures in Detection and Response to Methyl Eugenol by Male Bactrocera dorsalis (Diptera: Tephritidae). J. Insect Sci. 2018, 18, 19. [Google Scholar] [CrossRef]
- Verschut, T.A.; Farnier, K.; Cunningham, J.P.; Carlsson, M.A. Behavioral and Physiological Evidence for Palp Detection of the Male-Specific Attractant Cuelure in the Queensland Fruit Fly (Bactrocera tryoni). Front. Physiol. 2018, 9, 990. [Google Scholar] [CrossRef]
- Chen, X.; Lei, Y.; Li, H.; Xu, L.; Yang, H.; Wang, J.; Jiang, H. CRISPR/Cas9 mutagenesis abolishes odorant-binding protein BdorOBP56f-2 and impairs the perception of methyl eugenol in Bactrocera dorsalis (Hendel). Insect Biochem. Mol. Biol. 2021, 139, 103656. [Google Scholar] [CrossRef]
- Wu, Z.; Lin, J.; Zhang, H.; Zeng, X. BdorOBP83a-2 Mediates Responses of the Oriental Fruit Fly to Semiochemicals. Front. Physiol. 2016, 7, 452. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Chen, Z.S.; Zhang, D.J.; Lu, Y.Y. BdorOR88a Modulates the Responsiveness to Methyl Eugenol in Mature Males of Bactrocera dorsalis (Hendel). Front. Physiol. 2018, 9, 987. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Zhu, C.; Peng, T.; Zhang, H. Odorant receptor co-receptor Orco is upregulated by methyl eugenol in male Bactrocera dorsalis (Diptera: Tephritidae). J. Insect Physiol. 2012, 58, 1122–1127. [Google Scholar] [CrossRef]
- Liu, X.Q.; Jiang, H.B.; Liu, Y.; Fan, J.Y.; Ma, Y.J.; Yuan, C.Y.; Lou, B.H.; Wang, J.J. Odorant binding protein 2 reduces imidacloprid susceptibility of Diaphorina citri. Pestic. Biochem. Physiol. 2020, 168, 104642. [Google Scholar] [CrossRef]
- Perry, T.; Batterham, P.; Daborn, P.J. The biology of insecticidal activity and resistance. Insect Biochem. Mol. Biol. 2011, 41, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.L.; Luo, Z.X.; Li, J.L.; Cai, X.M.; Bian, L.; Xiu, C.L.; Li, Z.Q.; Chen, Z.M.; Zhang, L.W. Identification of cytochrome P450, odorant-binding protein, and chemosensory protein genes involved in Type II sex pheromone biosynthesis and transportation in the tea pest, Scopula subpunctaria. Pestic. Biochem. Physiol. 2020, 169, 104650. [Google Scholar] [CrossRef]
- Pottier, M.A.; Bozzolan, F.; Chertemps, T.; Jacquin-Joly, E.; Lalouette, L.; Siaussat, D.; Maibeche-Coisne, M. Cytochrome P450s and cytochrome P450 reductase in the olfactory organ of the cotton leafworm Spodoptera littoralis. Insect Mol. Biol. 2012, 21, 568–580. [Google Scholar] [CrossRef]
- Khoo, C.C.; Tan, K.H. Rectal gland of Bactrocera papayae: Ultrastructure, anatomy, and sequestration of autofluorescent compounds upon methyl eugenol consumption by the male fruit fly. Microsc. Res. Tech. 2005, 67, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Ono, H.; Hee, A.K.; Jiang, H. Recent advancements in studies on chemosensory mechanisms underlying detection of semiochemicals in Dacini fruit flies of economic importance (Diptera: Tephritidae). Insects 2021, 12, 106. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC Monogr Eval Carcinog Risks Hum 101. 2013. Available online: https://monographs.iarc.fr/ENG/Classification/latest_classif.php (accessed on 1 October 2022).
- Smith, R.L.; Adams, T.B.; Doull, J.; Feron, V.J.; Goodman, J.I.; Marnett, L.J.; Portoghese, P.S.; Waddell, W.J.; Wagner, B.M.; Rogers, A.E.; et al. Safety assessment of allylalkoxybenzene derivatives used as flavouring substances—Methyl eugenol and estragole. Food Chem. Toxicol. 2002, 40, 851–870. [Google Scholar] [CrossRef]
Gene Name | NCBI Accession Number | Nucleotide Sequences (Forward) | Nucleotide Sequences (Reverse) |
---|---|---|---|
OBP2 | KC559113 | GTTTTGCTAGCCTTTGTCGC | CTTGCATGCACTTGGAGAAG |
Orco | MT474521 | CCTATTCGTGCCACTGGTATGAT | AGAACCGATGCAAACAAGTCC |
OR88a | KP743732 | TGTATGCTTCGTGGTTACCG | CATCCGGCACATTCATTTCC |
OBP83b | KP743700 | CTCCCGAAAGACTCTCCTGG | GAACATCCCCATCGCTGAAC |
α-tubulin | XM_011212814 | CGCATTCATGGTTGATAACG | GGGCACCAAGTTAGTCTGGA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Zhang, C.; Qin, Y.; Yin, X.; Dong, X.; Desneux, N.; Zhou, H. Monitoring the Methyl Eugenol Response and Non-Responsiveness Mechanisms in Oriental Fruit Fly Bactrocera dorsalis in China. Insects 2022, 13, 1004. https://doi.org/10.3390/insects13111004
Fan Y, Zhang C, Qin Y, Yin X, Dong X, Desneux N, Zhou H. Monitoring the Methyl Eugenol Response and Non-Responsiveness Mechanisms in Oriental Fruit Fly Bactrocera dorsalis in China. Insects. 2022; 13(11):1004. https://doi.org/10.3390/insects13111004
Chicago/Turabian StyleFan, Yinjun, Changzhen Zhang, Yu Qin, Xinhui Yin, Xinyi Dong, Nicolas Desneux, and Hongxu Zhou. 2022. "Monitoring the Methyl Eugenol Response and Non-Responsiveness Mechanisms in Oriental Fruit Fly Bactrocera dorsalis in China" Insects 13, no. 11: 1004. https://doi.org/10.3390/insects13111004
APA StyleFan, Y., Zhang, C., Qin, Y., Yin, X., Dong, X., Desneux, N., & Zhou, H. (2022). Monitoring the Methyl Eugenol Response and Non-Responsiveness Mechanisms in Oriental Fruit Fly Bactrocera dorsalis in China. Insects, 13(11), 1004. https://doi.org/10.3390/insects13111004