Lithium Chloride Shows Effectiveness against the Poultry Red Mite (Dermanyssus gallinae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mites
2.2. Experimental Setup
2.3. Immersion Test
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Cosoroaba, I. Massive Dermanyssus gallinae (De Geer 1778) Invasion in Battery-Husbandry Raised Fowls in Romania [Egg-Laying Decrease, Mortality]. Rev. De Med. Vet. 2001, 152, 89–96. [Google Scholar]
- Wojcik, A.R.; Grygon-Franckiewicz, B.; Zbikowska, E.; Wasielewski, L. Invasion of Dermanyssus gallinae (De Geer, 1778) in Poultry Farms in the Toruń Region. Wiad. Parazytol. 2000, 46, 511–515. [Google Scholar] [PubMed]
- Pilarczyk, B.; Balicka-Ramisz, A.; Ramisz, A.; Pajak, B. Wplyw Inwazji Dermanyssus gallinae Na Zdrowotnosc I Produkcyjnosc Kur Niosek. Med. Weter. 2004, 60, 874–876. [Google Scholar]
- Kilpinen, O. How to Obtain a Bloodmeal without Being Eaten by a Host: The Case of Poultry Red Mite, Dermanyssus gallinae. Physiol. Entomol. 2005, 30, 232–240. [Google Scholar] [CrossRef]
- Mul, M.; Van Niekerk, T.; Chirico, J.; Maurer, V.; Kilpinen, O.; Sparagano, O.; Thind, B.; Zoons, J.; Moore, D.; Bell, B.; et al. Control Methods for Dermanyssus gallinae in Systems for Laying Hens: Results of an International Seminar. World’s Poult. Sci. J. 2009, 65, 589–600. [Google Scholar] [CrossRef] [Green Version]
- Chauve, C. The Poultry Red Mite Dermanyssus gallinae (De Geer, 1778): Current Situation and Future Prospects for Control. Vet. Parasitol. 1998, 79, 239–245. [Google Scholar] [CrossRef]
- van Emous, R. Wage War against the Red Mite! Recommendations for a Thorough and Effective Control Programme for These Irritating and Harmful Parasites. Poult. Int. 2005, 44, 26–33. [Google Scholar]
- George, D.R.; Finn, R.D.; Graham, K.M.; Mul, M.F.; Maurer, V.; Moro, C.V.; Sparagano, O.A. Should the Poultry Red Mite Dermanyssus gallinae Be of Wider Concern for Veterinary and Medical Science? Parasites Vectors 2015, 8, 178. [Google Scholar] [CrossRef] [Green Version]
- George, D.R.; Finn, R.D.; Graham, K.M.; Mul, M.F.; Maurer, V.; Valiente Moro, C.; Sparagano, O.A. Of Mites and Men: Should the Poultry Red Mite Dermanyssus gallinae Be of Wider Concern for Medical Science. In Proceedings of the 1st COST Conference and Management Committee Meeting Proceedings, Foggia, Italy, 27–29 May 2015. [Google Scholar]
- Valiente Moro, C.; Desloire, S.; Vernozy-Rozand, C.; Chauve, C.; Zenner, L. Comparison of the Vidas® System, Fta® Filter-Based Pcr and Culture on Sm Id for Detecting Salmonella in Dermanyssus gallinae. Lett. Appl. Microbiol. 2007, 44, 431–436. [Google Scholar] [CrossRef]
- Valiente Moro, C.; De Luna, C.J.; Tod, A.; Guy, J.H.; Sparagano, O.A.E.; Zenner, L. The Poultry Red Mite (Dermanyssus gallinae): A Potential Vector of Pathogenic Agents. In Control of Poultry Mites (Dermanyssus); Springer: Berlin/Heidelberg, Germany, 2009; pp. 93–104. [Google Scholar]
- Moro, C.V.; Fravalo, P.; Amelot, M.; Chauve, C.; Salvat, G.; Zenner, L. Experimental Studies on the Potential Role of the Poultry Red Mite, Dermanyssus gallinae, as a Vector of Salmonella Serotype Enteritidis. In Trends in Acarology; Springer: Dordrecht, The Netherlands, 2010; pp. 521–525. [Google Scholar]
- Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O’Brien, S.J.; Jones, T.F.; Fazil, A.; Hoekstra, R.M. International Collaboration on Enteric Disease "Burden of Illness" Studies the Global Burden of Nontyphoidal Salmonella Gastroenteritis. Clin. Infect. Dis. 2010, 50, 882–889. [Google Scholar] [CrossRef] [Green Version]
- De Luna, C.J.; Arkle, S.; Harrington, D.; George, D.R.; Guy, J.H.; Sparagano, O.A. The Poultry Red Mite Dermanyssus gallinae as a Potential Carrier of Vector-Borne Diseases. Ann. NY Acad. Sci. 2008, 1149, 255–258. [Google Scholar] [CrossRef]
- Sommer, D.; Heffels-Redmann, U.; Köhler, K.; Lierz, M.; Kaleta, E.F. Role of the Poultry Red Mite (Dermanyssus gallinae) in the Transmission of Avian Influenza a Virus. Tierarztl. Praxis. Ausg. G Grosstiere Nutztiere 2016, 44, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Chirico, J.; Eriksson, H.; Fossum, O.; Jansson, D. The Poultry Red Mite, Dermanyssus gallinae, a Potential Vector of Erysipelothrix Rhusiopathiae Causing Erysipelas in Hens. Med. Vet. Entomol. 2003, 17, 232–234. [Google Scholar] [CrossRef] [PubMed]
- Flochlay, A.S.; Thomas, E.; Sparagano, O. Poultry Red Mite (Dermanyssus gallinae) Infestation: A Broad Impact Parasitological Disease That Still Remains a Significant Challenge for the Egg-Laying Industry in Europe. Parasites Vectors 2017, 10, 357. [Google Scholar] [CrossRef]
- Sylejmani, D.; Musliu, A.; Ramadani, N.; Sparagano, O.; Hamidi, A. Associations between the Level of Biosecurity and Occurrence of Dermanyssus gallinae and Salmonella Spp. In Layer Farms. Avian Dis. 2016, 60, 454–459. [Google Scholar] [CrossRef]
- Sparagano, O.; George, D.; Harrington, D.; Giangaspero, A. Significance and Control of the Poultry Red Mite, Dermanyssus gallinae. Annu. Rev. Entomol. 2014, 59, 447–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mul, M.; Bens, H.; Odink-Schrijver, I. Fact Sheet Poultry Red Mite in Europe. The Poultry Red Mite Dermanyssus gallinae (De Geer, 1778) a Small Pest That Packs a Big Punch! Wageningen University. Available online: https://www.researchgate.net/publication/258553789_Fact_sheet_Poultry_Red_Mite_in_European (accessed on 15 October 2022).
- Windhorst, H. The European Egg Industry in Transition; International Egg Commission Special Economic Report: Berlin, Germany, 23 September 2015; Available online: https://www.internationalegg.com/resources/presentations/?_cat=iec-conference-location&_child_cat=iec-berlin-2015&_paged=3 (accessed on 15 October 2022).
- Sparagano, O.; Pavlićević, A.; Murano, T.; Camarda, A.; Sahibi, H.; Kilpinen, O.; Mul, M.; Van Emous, R.; Le Bouquin, S.; Hoel, K.; et al. Prevalence and Key Figures for the Poultry Red Mite Dermanyssus gallinae Infections in Poultry Farm Systems. In Control of Poultry Mites (Dermanyssus); Springer: Berlin/Heidelberg, Germany, 2009; pp. 3–10. [Google Scholar]
- Höglund, J.; Nordenfors, H.; Uggla, A. Prevalence of the Poultry Red Mite, Dermanyssus gallinae, in Different Types of Production Systems for Egg Layers in Sweden. Poult. Sci. 1995, 74, 1793–1798. [Google Scholar] [CrossRef]
- Skuce, P.; Morgan, E.; van Dijk, J.; Mitchell, M. Animal Health Aspects of Adaptation to Climate Change: Beating the Heat and Parasites in a Warming Europe. Animal 2013, 7, 333–345. [Google Scholar] [CrossRef] [Green Version]
- Abbas, R.; Colwell, D.; Iqbal, Z.; Khan, A. Acaricidal Drug Resistance in Poultry Red Mite (Dermanyssus gallinae) and Approaches to Its Management. World’s Poult. Sci. J. 2014, 70, 113–124. [Google Scholar] [CrossRef]
- Zdybel, J.; Karamon, J.; Cencek, T. In Vitro Effectiveness of Selected Acaricides against Red Poultry Mites (Dermanyssus gallinae, De Geer, 1778) Isolated from Laying Hen Battery Cage Farms Localised in Different Regions of Poland. Bull. Vet. Inst. Pulawy 2011, 55, 411–416. [Google Scholar]
- Beugnet, F.; Chauve, C.; Gauthey, M.; Beert, L. Resistance of the Red Poultry Mite to Pyrethroids in France. Vet. Rec. 1997, 140, 577–579. [Google Scholar] [CrossRef] [PubMed]
- Marangi, M.; Cafiero, M.A.; Capelli, G.; Camarda, A.; Sparagano, O.; Giangaspero, A. Evaluation of the Poultry Red Mite, Dermanyssus gallinae (Acari: Dermanyssidae) Susceptibility to Some Acaricides in Field Populations from Italy. Exp. Appl. Acarol. 2009, 48, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Thind, B.; Ford, H. Assessment of Susceptibility of the Poultry Red Mite Dermanyssus gallinae (Acari: Dermanyssidae) to Some Acaricides Using an Adapted Filter Paper Based Bioassay. Vet. Parasitol. 2007, 144, 344–348. [Google Scholar] [CrossRef]
- Marangi, M.; Morelli, V.; Pati, S.; Camarda, A.; Cafiero, M.A.; Giangaspero, A. Acaricide Residues in Laying Hens Naturally Infested by Red Mite Dermanyssus gallinae. PLoS ONE 2012, 7, e31795. [Google Scholar]
- Bartley, K.; Wright, H.W.; Huntley, J.F.; Manson, E.D.; Inglis, N.F.; McLean, K.; Nath, M.; Bartley, Y.; Nisbet, A.J. Identification and Evaluation of Vaccine Candidate Antigens from the Poultry Red Mite (Dermanyssus gallinae). Int. J. Parasitol. 2015, 45, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Harrington, D.; Canales, M.; de la Fuente, J.; de Luna, C.; Robinson, K.; Guy, J.; Sparagano, O. Immunisation with Recombinant Proteins Subolesin and Bm86 for the Control of Dermanyssus gallinae in Poultry. Vaccine 2009, 27, 4056–4063. [Google Scholar] [CrossRef]
- Ziegelmann, B.; Abele, E.; Hannus, S.; Beitzinger, M.; Berg, S.; Rosenkranz, P. Lithium Chloride Effectively Kills the Honey Bee Parasite Varroa Destructor by a Systemic Mode of Action. Sci. Rep. 2018, 8, 683. [Google Scholar] [CrossRef] [Green Version]
- Kolics, É.; Mátyás, K.; Taller, J.; Specziár, A.; Kolics, B. Contact Effect Contribution to the High Efficiency of Lithium Chloride against the Mite Parasite of the Honey Bee. Insects 2020, 11, 333. [Google Scholar] [CrossRef]
- Kolics, É.; Sajtos, Z.; Mátyás, K.; Szepesi, K.; Solti, I.; Németh, G.; Taller, J.; Baranyai, E.; Specziár, A.; Kolics, B. Changes in Lithium Levels in Bees and Their Products Following Anti-Varroa Treatment. Insects 2021, 12, 579. [Google Scholar] [CrossRef]
- Prešern, J.; Kur, U.; Bubnič, J.; Šala, M. Lithium Contamination of Honeybee Products and Its Accumulation in Brood as a Consequence of Anti-Varroa Treatment. Food Chem. 2020, 330, 127334. [Google Scholar] [CrossRef]
- Stanimirović, Z.; Glavinić, U.; Ristanić, M.; Aleksić, N.; Jovanović, N.; Vejnović, B.; Stevanović, J. Looking for the Causes of and Solutions to the Issue of Honey Bee Colony Losses. Acta Vet. Beogr. 2019, 69, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Thomas, E.; Zoller, H.; Liebisch, G.; Alves, L.F.A.; Vettorato, L.; Chiummo, R.M.; Sigognault-Flochlay, A. In Vitro Activity of Fluralaner and Commonly Used Acaricides against Dermanyssus gallinae Isolates from Europe and Brazil. Parasites Vectors 2018, 11, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, W.S. A Method of Computing the Effectiveness of an Insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Landau, S.; Everitt, B. A Handbook of Statistical Analyses Using Spss; Chapman and Hall/CRC: London, UK, 2003. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows; IBM: Armonk, NY, USA, 2013. [Google Scholar]
- Hill, A. The Possible Effects of the Aggregation of the Molecules of Haemoglobin on Its Dissociation Curves. J. Physiol. 1910, 40, 4–7. [Google Scholar]
- El-Samad, L.M.; El-Gendy, A.H.; Abdel-Moneim, A.M.; El-Ashram, S.; Augustyniak, M. Cuo Nps-Induced Damage to Testes and Deregulation of the Antioxidant System in Wild Terrestrial Organism Blaps Sulcata (Coleoptera: Tenebrionidae). Environ. Nanotechnol. Monit. Manag. 2022, 18, 100751. [Google Scholar] [CrossRef]
- Kolics, É.; Specziár, A.; Taller, J.; Mátyás, K.K.; Kolics, B. Lithium Chloride Outperformed Oxalic Acid Sublimation in a Preliminary Experiment for Varroa Mite Control in Pre-Wintering Honey Bee Colonies. Acta Vet. Hung. 2021, 68, 4. [Google Scholar] [CrossRef] [PubMed]
- Stanimirovic, Z.; Glavinic, U.; Jovanovic, N.M.; Ristanic, M.; Milojković-Opsenica, D.; Mutic, J.; Stevanovic, J. Preliminary Trials on Effects of Lithium Salts on Varroa Destructor, Honey and Wax Matrices. J. Apic. Res. 2022, 3, 375–391. [Google Scholar] [CrossRef]
- Mueller, R.; Betz, L.; Anke, M. Essentiality of the Ultra Trace Element Lithium to the Nutrition of Animals and Man. In Proceedings of the 30 Scientific symposium of industrial toxicology, Bratislava, Slovakia, 16–18 June 2010. [Google Scholar]
- Voica, C.; Roba, C.; Iordache, A.M. Lithium Levels in Food from the Romanian Market by Inductively Coupled Plasma–Mass Spectrometry (Icp-Ms): A Pilot Study. Anal. Lett. 2020, 54, 242–254. [Google Scholar] [CrossRef]
- Schrauzer, G.N. Lithium: Occurrence, Dietary Intakes, Nutritional Essentiality. J. Am. Coll. Nutr. 2002, 21, 14–21. [Google Scholar] [CrossRef]
- González-Weller, D.; Rubio, C.; Gutiérrez, A.J.; González, G.L.; Mesa, J.M.C.; Gironés, C.R.; Ojeda, A.B.; Hardisson, A. Dietary Intake of Barium, Bismuth, Chromium, Lithium, and Strontium in a Spanish Population (Canary Islands, Spain). Food Chem. Toxicol. 2013, 62, 856–868. [Google Scholar] [CrossRef]
- Zarse, K.; Terao, T.; Tian, J.; Iwata, N.; Ishii, N.; Ristow, M. Low-Dose Lithium Uptake Promotes Longevity in Humans and Metazoans. Eur. J. Nutr. 2011, 50, 387–389. [Google Scholar]
- Fajardo, V.A.; Fajardo, V.A.; LeBlanc, P.J.; MacPherson, R.E. Examining the Relationship between Trace Lithium in Drinking Water and the Rising Rates of Age-Adjusted Alzheimer’s Disease Mortality in Texas. J. Alzheimer’s Dis. 2018, 61, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Aral, H.; Vecchio-Sadus, A. Toxicity of Lithium to Humans and the Environment—A Literature Review. Ecotoxicol. Environ. Saf. 2008, 70, 349–356. [Google Scholar] [CrossRef] [PubMed]
Licl Concentration | Experiment I. N | Experiment II. N |
---|---|---|
5.520 M | 50 | 32 |
2.760 M | 50 | 33 |
1.380 M | 50 | 29 |
0.690 M | 66 | |
0.345 M | 56 | |
0.173 M | 111 | |
0.086 M | 82 | |
0.043 M | 33 | |
0.014 M | 22 | |
0.000 (CONTROL) | 50 | 68 |
TOTAL | 200 | 532 |
Licl Concentration | Uncontrolled Movement | Immobility | Death |
---|---|---|---|
1.38 M | 1.183 ± 0.051 a | 1.5775 ± 0.045 a | 2.062± 0.061 a |
2.76 M | 0.750 ± 0.027 b | 1.1851 ± 0.043 b | 1.602 ± 0.054 b |
5.52 M | 0.459 ± 0.036 c | 0.9275 ± 0.055 c | 1.388 ± 0.052 c |
ANOVA | F(2,108) = 87.549 p < 0.05 | F(2,108) = 45.446 p < 0.05 | F(2,108) = 36.626 p < 0.05 |
Licl Concentration | LT50 (Minutes) | LT90 (Minutes) |
---|---|---|
5.52 M | 25 | 64 |
2.76 M | 45 | 87 |
1.38 M | 134 | 312.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolics, B.; Kolics, É.; Solti, I.; Bacsi, Z.; Taller, J.; Specziár, A.; Mátyás, K. Lithium Chloride Shows Effectiveness against the Poultry Red Mite (Dermanyssus gallinae). Insects 2022, 13, 1005. https://doi.org/10.3390/insects13111005
Kolics B, Kolics É, Solti I, Bacsi Z, Taller J, Specziár A, Mátyás K. Lithium Chloride Shows Effectiveness against the Poultry Red Mite (Dermanyssus gallinae). Insects. 2022; 13(11):1005. https://doi.org/10.3390/insects13111005
Chicago/Turabian StyleKolics, Balázs, Éva Kolics, Izabella Solti, Zsuzsanna Bacsi, János Taller, András Specziár, and Kinga Mátyás. 2022. "Lithium Chloride Shows Effectiveness against the Poultry Red Mite (Dermanyssus gallinae)" Insects 13, no. 11: 1005. https://doi.org/10.3390/insects13111005
APA StyleKolics, B., Kolics, É., Solti, I., Bacsi, Z., Taller, J., Specziár, A., & Mátyás, K. (2022). Lithium Chloride Shows Effectiveness against the Poultry Red Mite (Dermanyssus gallinae). Insects, 13(11), 1005. https://doi.org/10.3390/insects13111005